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Abstract 

We show the imprimitivity and induced representations of locally compact 

groups I. We study the Kadec norms and Borel sets in Banach spaces and function 

spaces with the weak topology. We investigate the problem of Kadison on 

maximal abelian and injective subalgebras in factors associated with free-groups. 

We obtain quasi-regular and induced representations of the infinite-dimensional 

nilpotent groups. We discuss problems concerning Borel structures in function 

spaces and in the Banach spaces with Baire measurability in spaces of continuous 

functions. We give the independence properties in subalgebras of ultraproduct II1 

factors and factors of type II1 without non-trivial finite index subfactors. 
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 الخلاصة

. درسنا نظائم كاديك Iلزمر التراص الموضعية أوضحنا التمثيلات غير البدائية والمحدثة 
وفئات بورل في فضاءات باناخ و في فضاءات الدالة مع الطبولوجيا الضعيفة. لقد درسنا مسألة 

الحرة. -كاديسون على الأبيلية العظمى والجبريات الجزئية الأحادية في العوامل المشاركة مع زمر
ثة للزمر ذات القوى الصحيحة الموجبة المساوية للصفر تحصلنا على التمثيلات شبه المنتظمة والمحد

البعد والزمر. ناقشنا بعض المسائل المختصة ببناءات بورل في فضاءات الدالة وفضاءات -لانهائية
للدوال المستمرة. أعطينا الخصائص على المستقلة في الجبريات  بايير في فضاءات مقييسباناخ مع 

بدون العوامل الجزئية للدليل المنتهي غير  II1وعوامل النوع  II1الجزئية للناتج الفوقي لعوامل 
   البدائي.
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Introduction 

We shall discuss a generalization of this notion which is more suitable for 

use in connection with infinite dimensional representation because it allows the 

direct sum decomposition to be continuous as well as discrete. 

This connection between representations of groups and representation of  

their subgroups has many interesting and useful properties in the finite case and it 

naturally occurs to on to  study the extent to which these properties persist in 

general. We introduce a property for a couple of topologies that allows us to give 

simple proofs of some classic results about Borel sets in Banach spaces by Edgar, 

Schacbermayer and Talagrand as well as some new results. It is show that the 

duality map〈∙〉: (ℓ∞, 𝑤𝑒𝑎𝑘) × ((ℓ∞)∗, 𝑤𝑒𝑎𝑘∗) → 𝑅 is not Borel. More generally, 

the evaluation 𝑒: (𝐶(𝐾),𝑤𝑒𝑎𝑘) × 𝐾 → 𝑅, 𝑒(𝑓, 𝑋) = 𝑓(𝑥),  is not Borel for any 

function space C(K) on a compact F-space. 

We show that under certain conditions Kadison's problem has an affirmative 

answer. We also show by a counter example that the hypothesis of separability is 

essential a von Neuman algebra 𝒜 acting on a Hilbert space ℋ is called injective. 

A von Neuman algebra 𝒜 acting on a Hilbert space ℋ is called injective if there 

exists a norm one projection from the Banach algebra of all linear bounded 

operators on ℋ onto 𝒜. As the injective von Neumann algebras form a monotone 

class, any von Neumann algebra has maximal injective von Neumann subalgebras. 

 In the present work an analog of the quasiregular representation which is 

well known for locally-compact groups is constructed for the nilpotent infinite-

dimensional group 𝐵0
ℕ  and a criterion for its irreducibility is presented.  The 

induced representation In d
G 
H
S  of a locally compact group G is the unitary 

representation of the group G associated with unitary representation S : H → U(V ) 

of a subgroup H of the group G.  To develop the concept of in- duced 

representations for infinite-dimensional groups. The induced representations for 

infinite-dimensional groups in not unique, as in the case of a locally compact 

groups. 

It is an open problem if any separable compact space K whose function 

space C(K) with thecylindrical σ-algebra is a standard measurable space, embeds in 

the space of the first Baire class functions on the Cantor set, with the pointwise 

topology. We prove that this is true for separable linearly orderedcompacta. 

Let C(K) be the Banach space of all continuous functions on a given compact 

space 𝐾. We investigate the 𝑤∗-sequential closure in 𝐶(𝐾)∗of the set ofall finitely 

supported probabilities on 𝐾 . M. Talagrand showed that, for the ˇCech-Stone 
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compactification   of the space of natural numbers
  
  , the norm and the weak 

topology generate different Borel structures in the Banach space C (  ). 

We call a sub factor N ⊂ M trivial if it is isomorphic with the obvious 

inclusion of N in M2 (ℂ)  ⊗ N.  We prove the existence of type II1  factors M 

without non-trivial finite index sub factors. Equivalently, every M-M-bimodule 

with finite coupling constant, both as a left and as a right M-module, is a multiple 

of  L2 (M) . We show that if 𝑄 ⊂ 𝑀   is either  an ultraproduct 𝑄 = ΙΙ𝜔𝑄𝑛   of 

subalgebras 𝑄𝑛 ⊂ 𝑀𝑛 with 𝑄𝑛 ≮ 𝑀𝑛 𝑄′𝑛 ∩𝑀𝑛∀𝑛 , or the centralizer 𝑄 = 𝐵′ ∩ 𝑀 

of aseparable amenable ∗-subalgebra 𝐵 ⊂ 𝑀 then for any separable subspace 𝑋 ⊂
𝑀⊝ (𝐵′ ∩ 𝑀) , there exists a diffuse abelian von Neumann subalgebra in 𝑄 which 

is free independent to 𝑋 , relative to 𝑄′ ∩ 𝑀 .  



VII 

The Contents 

Subject Page 

Dedication I 

Acknowledgements II 

Abstract III 

Abstract (Arabic) IV 

Introduction V 

The Contents VII 

Chapter 1 

Locally Compact Groups 

Section (1.1) Imprimitivity for Representations 1 

Section (1.2) Induced Representations 7 

Chapter 2 

Kadec Norms and Borel sets 

Section (2.1) Borel Sets in a Banach Space 43 

Section (2.2) Function Spaces with Weak Topology 54 

Chapter 3 

Problem of R.V. Kadison and Maximal Injective Subalgebras 

Section (3.1) Maximal Abelian *-Subalgebras in Factors 65 

Section (3.2) Factors Associated with Free Groups 77 

Chapter 4 

Quasiregular and Induced Representations of the Infinite-Dimensional Nilpotent 

Group 

Section (4.1) Infinite-Dimensional Nilpotent Group 95 

Section (4.2) Infinite-Dimensional Groups 135 

Chapter 5 

Some Problems and Baire Measurability with Borel Structures 

Section (5.1) Borel Structures in Function Space 167 

Section (5.2) Spaces of Continuous Functions 173 

Section (5.3) Banach Space 184 

Chapter 6 

Factors of Type 𝐈𝐈𝟏and Ultra Product 𝚰𝚰𝟏Factors 

Section (6.1) Non- Trivial Finite Index Subfactors 194 

Section (6.2) Independence Properties in Subalgebras 213 

List of Symbols 236 

References 237 

 



1 

Chapter 1 

Locally Compact Groups 

We study the imprimitivity and representations of the locally compact groups1and 

ergodicity and transitivity. We show ad determine the induced representations of locally 

compact groups 1. 

Section (1.1): Imprimitivity for Representations 

In the classical theory of representations of finite groups by linear transformations a 

representation 𝑠 →  𝑈𝑠  of a finite group is said to be imprimitive if the vector space 𝐻 in 

which the 𝑈𝑠 act is a direct sum of independent subspaces 𝑀1, 𝑀2, . . . , 𝑀𝑛, in such a manner 

that each 𝑈𝑠  transforms each 𝑀i  into some 𝑀j . In the present note we shall discuss a 

generalization of this notion which is more suitable for use in connection with infinite 

dimensional representation because it allows the direct sum decomposition to be continuous 

as well as discrete. Our principal theorem (well known for finite groups) deals with weakly 

(and hence strongly) continuous unitary representations of separable locally compact groups. 

It asserts that the pair consisting of such a representation and a "transitive system of 

imprimitivity" for it defines an essentially unique subgroup 𝐺0  and an essentially unique 

representation 𝐿  of 𝐺0  from which the original pair may be reconstructed in a quite explicit 

manner. 

This result has a number of applications. A recent theorem [2] which implies the 

Stone-von Neumann theorem on the uniqueness of operators satisfying the Heisenberg 

commutation relations is included as a special case. In addition it may be used to give a 

complete determination of the irreducible unitary representations of the members of a class of 

locally compact groups which are neither compact nor Abelian. 

Definition (1.1.1)[1]: Let 𝑠 →  𝑈𝑠;  −𝑀1, 𝑀2, . . . , 𝑀𝑛, Be an imprimitive representation in the 

classical sense. Suppose that the U, are unitary and that the 𝑀i are mutually orthogonal. Let 

𝑀 denote the set of integers 1, 2, …,n. For each 𝑠 in the group 𝐺 and each 𝑗 ∈  𝑀 let (𝑗)𝑠 be 

the index of the subspace into which 𝑈𝑠−1 carries 𝑀𝑗 . 𝐿𝑒𝑡 𝑃𝑗 denote the projection of H on 𝑀j. 

Then it is easy to see that  𝑈𝑠𝑃𝑗  𝑈𝑠
−1  =  𝑃(𝑗)𝑠−1 . More generally if 𝑃E  is defined by the 

equation 𝑃𝐸  = ∑ 𝑃𝐽(𝑗∈𝐸)   for each 𝐸 ⊆  𝑀 then 𝑈𝑠𝑃𝐸  𝑈𝑠
−1  =  𝑃(𝐸)𝑠−1. The motivation for the 

following definition should now be clear. Let 𝑀 be a separable locally compact space and let 

𝐺 be a separable locally compact group. Let 𝑥, 𝑠 →  (𝑥)𝑠 denote a mapping of 𝑀 × 𝐺 onto 𝑀 

which is continuous and is such that (a) for fixed 𝑠, 𝑥 →  (𝑥)𝑠 is a homeomorphism and (b) 

the resulting map of 𝐺 into the group of homeomorphisms of 𝑀 is a homomorphism. 

Let 𝑃(𝐸 →  𝑃𝐸) be a 𝜎 homomorphism of the 𝜎 Boolean algebra of all Borel subsets 

of 𝑀 into a 𝜎- Boolean algebra of projections in a separable Hilbert space H such that𝑃𝑀is the 

identity 𝐼.  Let 𝑈(𝑠 →  𝑈𝑠)  be a representation of 𝐺 in H; that is a weakly (and hence 

strongly) continuous homomorphism of 𝐺 into the group of unitary operators in H. If  

𝑈𝑆𝑃𝐸𝑈𝑠
−1  =  𝑃(𝐸)𝑆−1  for all E and 𝑠 and if 𝑃𝐸 takes on values other than 0 and I we shall say 

that 𝑈 is imprimitive and that P is a system of imprimitivity for U. We shall call Il the base of 

P. It is to be observed that P defines in 𝑀a family of null sets and that there exists in 𝑀 a 

family of mutually equivalent measures whose sets of measure zero are precisely these null 

sets. 
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The null sets are those sets 𝐸 for which 𝑃𝐸 = 0 and the measures are those of the form 

𝜇(𝐸)  =  (𝑃𝐸𝑓, 𝑓) where 𝑓 is an element [3] in H such that 𝑃𝐸𝑓 =  0 implies 𝑃𝐸 =  0. 

        Ergodicity and Transitivity.-When for each 𝑥 and 𝑦 in  𝑀 there exists 𝑠 in 𝐺 for which 

(𝑥)𝑠 =  𝑦 it is natural to say that 𝑃 is a transitive system of imprimitivity for 𝑈. When 𝑀 is 

finite every system of imprimitivity decomposes in a natural manner into transitive ones 

corresponding to the orbits of 𝑀 under 𝐺. The decomposition of 𝑀 into orbits is not reflected 

in a corresponding decomposition of 𝐻. It is rather the decomposition of 𝑀 into ergodic or 

metrically transitive parts which is relevant. We define a system of imprimitivity 𝑃 to be 

ergodic if 𝐺 acts ergodically on the base 𝑀 of 𝑃; that is, whenever (𝐸)𝑠 differs from 𝐸 by a 

null set for all 𝑠 ∈ 𝐺 then 𝐸 is itself a null set or the complement of one. In view of the 

current literature on the decomposition of measures the study of general systems of 

imprimitivity may be expected to be reducible to the study of ergodic systems. 

Ergodic systems which are not also transitive are rather difficult to handle and such 

results as we have at present are far from definitive. We deal exclusively with transitive 

systems. Fortunately in some applications it can be shown that only transitive systems can 

arise. Specifically let us say that the orbits of 𝑀 under 𝐺 are regular if there exists a countable 

family 𝐸1, 𝐸2, . .. of Borel subsets of M, each a union of orbits such that each orbit of 𝑀 is the 

intersection of the members of a sub-family 𝐸𝑛, , 𝐸𝑛, , . . .. Then the following theorem is easily 

showd. 

Theorem (1.1.2)[1]: If the orbits of 𝑀 under 𝐺 are regular then for each ergodic system of 

imprimitivity based on 𝑀 there is an orbit C such that 𝑃𝑀−𝐶  =  0. 

           Formulation of the Principal Theorem.-Let P be a transitive system of imprimitivity 

for the representation 𝑈 of the separable locally compact group G. Let 𝑥o be a point of the 

base 𝑀  of 𝑃 . Let 𝐺0  be the set of all 𝑠 ∈  𝐺  for which (𝑥0)𝑠  = 𝑥0 . Then 𝐺0  is a closed 

subgroup of 𝐺 and the mapping 𝑠 →  (𝑥0)𝑠  of 𝐺 on 𝑀 defines a one-to-one Borel set 

preserving map of the homogeneous space  𝐺/𝐺0  of right𝐺0 cosets onto 𝑀 . Thus 𝑃  is 

equivalent in an obvious sense to another system of imprimitivity for 𝑈 whose base is the 

homogeneous space 𝐺/𝐺0. In general we shall define a pair to be a unitary representation for 

the group 𝐺 together with a particular system of imprimitivity for this representation. If U, P 

and 𝑈′, 𝑃′ are two pairs with the same base 𝑀 we shall say that they are unitary equivalent if 

there exists a unitary transformation 𝑉 from the space of 𝑈 and P to the space of 𝑈′ 𝑎𝑛𝑑 𝑃′ 
such that 𝑉−1𝑈𝑠

′𝑉 =  𝑈𝑠  and 𝑉−1𝑃𝐸
′𝑉 =  𝑃𝐸  for all 𝑠 and E. It follows from the above 

remarks that the problem of determining to within unitary equivalence all pairs based on a 

given 𝑀 may always be reduced to the corresponding problem in which 𝑀 is a homogeneous 

space. We shall accordingly confine ourselves to this case. The arbitrariness in the choice of 

𝑥0 has the effect only of providing us with several essentially equivalent complete systems of 

invariants for the pairs based on a given 𝑀. 

We describe a method (which will show to be general) of constructing pairs based on a 

given 𝐺/𝐺0. Let, 𝜇 be a finite Borel measure on 𝐺/𝐺0 which is "quasi invariant" in the sense 

that the action of 𝐺 on 𝐺/𝐺0preserves null sets.[4] Let 𝐿(𝜉 →  𝐿𝜉) be a representation of 𝐺0 

by unitary operators in a Hilbert space 𝐻0. Then let 𝐻L be the set of all functions 𝑓 from 𝐺 to 

𝐻0 such that: (𝑎) 𝑓 is a Borel function in the sense that (𝑓(𝑠), 𝑣) is a Borel function of 𝑠 for 

all 𝑣 ∈  𝐻0; 
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(b) for all 𝑠 ∈ 𝐺  and all 𝜖 ← 𝐺0, 𝑓(𝜉𝑠)  =  𝐿𝜉𝑓(𝑠); and (𝑐) (𝑓(𝑠), 𝑓(𝑠))  (which by (b) is 

constant on the right 𝐺0 cosets) defines a summable function on 𝐺/𝐺0 . By a more or less 

obvious adaptation of the proof of the Riesz Fischer [6] it may be shown that 𝐻L is a Hilbert 

space with respect to the inner product (𝑓, 𝑔)𝐿 = ∫𝐺∕𝐺(𝑓(𝑠), 𝑔(𝑠))𝑑𝜇, and the obvious linear 

operations. Naturally functions which are equal almost everywhere are to be identified. Now 

let 𝑃 be the function on 𝐺 ×  𝐺/𝐺0 which for each fixed 𝑠 is the Radon Nikodym derivative 

of the translate of μ 𝑏𝑦 𝑠 with respect to 𝜇 itself. Then regarding 𝜌 , as we may, as a function 

on 𝐺 ×  𝐺  let 𝑈𝑠𝑓  for all 𝑠 ∈  𝐺  and 𝑓 ∈ 𝐻𝐿  be defined by the equation (𝑈𝑠𝑓) (𝑡)  =

 𝑓(𝑡𝑠)/√𝜌(𝑠−, 𝑡𝑠). It is readily verified that 𝑈𝑠, is a unitary transformation of 𝐻L onto itself 

and that the mapping 𝑠 →  𝑈𝑠  is a representation of G. For each Borel subset E of 𝐺 ∕
𝐺0 𝑙𝑒𝑡 ∅ be its characteristic function regarded as a function on 𝐺 . For 𝑓 ∈
 𝐻𝐿 𝑙𝑒𝑡 (𝑃𝐸𝑓) (𝑡)  = ∅(𝑡)𝑓(𝑡). It is easy to see that the mapping 𝑓 → 𝑃𝐸𝑓 is a projection and 

that 𝑈 and 𝑃 together constitute a pair in the sense of the above definition. We shall call it the 

pair generated by  𝑎𝑛𝑑𝜇 . We can now formulate our main theorem. 

Theorem (1.1.3)[1]: Let 𝐺 be a separable locally compact group and let 𝐺o  be a closed 

subgroup of G. Let 𝑈′, 𝑃′ be any pair based on 𝐺 ∕ 𝐺0. Let 𝜇 be any quasi invariant measure 

in 𝐺 ∕ 𝐺0.. Then there exists a representation 𝐿 of 𝐺0 such that 𝑈′, 𝑃′ is unitary equivalent to 

the pair generated by 𝐿 and A. If 𝐿 and 𝐿′ are representations of 𝐺0 and, 𝜇 and 𝜇′ are quasi 

invariant measures in 𝐺 ∕ 𝐺0.then the pair generated by 𝐿′ and 𝜇′ is unitary equivalent to the 

pair generated by 𝐿 and, u if and only if 𝐿 and 𝐿′ are unitary equivalent representations of 𝐺0. 
Proof. We shall give the proof in outline only leaving relatively routine details to the reader. 

Moreover we shall assume familiarity on the part of the reader with the section cited in [2] 

and will omit arguments similar to those given there. We shall refer to this section as SVN. 

The proof falls naturally into two parts. First we show that every pair defines a representation 

of 𝐺0  unique to within unitary equivalence and that two pairs defining equivalent 

representations of 𝐺0 are unitary equivalent. Then we complete the proof by showing that the 

representation of 𝐺0  defined by the pair generated by an arbitrary 𝐿  and 𝜇  is unitary 

equivalent to 𝐿 itself. 

Given a pair 𝑈′, 𝑃′ based on 𝐺 ∕ 𝐺0. we note first that the set of all 𝑃𝐸′  is a uniformly n 

dimensional Boolean algebra of projections (𝑛 =  1, 2,⋯ ,∞) in the sense of Nakano (see 

SVN 5). This follows from the fairly easily showd fact that 𝐺 acting on 𝐺 ∕ 𝐺0 is ergodic. Let 

N denote an n dimensional identity representation of 𝐺0, 𝑙𝑒𝑡 𝜇 be a quasi invariant measure in 

𝐺 ∕ 𝐺0.and let W,P be the pair generated by N and IA. Just as in No. 6 of SVN it is possible 

to show that the pair 𝑈′, 𝑃′ is unitary equivalent to the pair U,P where P comes from the pair 

W,P above and 𝑈 is a suitable representation of G. We define 𝑄𝑠 𝑎𝑠 𝑈𝑠𝑊𝑠
−1 and observe that 

𝑄𝑆𝑃𝐸  =  𝑃𝐸𝑄𝑠 for all E and s. It follows as in SVN that there exists a weakly Borel function 

𝑄~ from   G× to the group of unitary operators in the space 𝐻1in which the 𝑁𝑠, act such that 

for each 𝑠 in 𝐺 we have (𝑄𝑠𝑓)(𝑡)  =  𝑄
~(𝑠, 𝑡)𝑓(𝑡) . The identity 𝑄~(𝑠1𝑠2, 𝑡)  =

 𝑄~ (𝑠1, 𝑡)𝑄
~ (𝑠2, 𝑡𝑠1) holding for almost all triples is established as in SVN and from it the 

existence of a weakly Borel function B such that 𝑄~(𝑠, 𝑡)  =  𝐵−1(𝑡)𝐵(𝑡𝑠)  almost 

everywhere. The fact that the functions in 𝐻N are constant on the right 𝐺o cosets implies that 

𝑄~(𝑠, 𝜉𝑡)  =  𝑄~(𝑠, 𝑡) for all 𝜉 ∈  𝐺0 almost everywhere in 𝑠 and t. This implies in turn that 

𝐵−1(𝜉𝑡)𝐵(𝜉𝑡𝑠)  =  𝐵−1(𝑡)𝐵(𝑡𝑠) in the same sense or equivalently that 𝐵(𝜉𝑡𝑠)𝐵−1(𝑡𝑠)  =
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 𝐵(𝜉𝑡)𝐵−1(𝑡). In short for each 𝜉 ∈  𝐺0, 𝐵(𝜉𝑡)𝐵
−1(𝑡) is almost everywhere equal to a certain 

constant operator 𝐿𝜉 . A simple argument shows that  (𝐿𝜉𝑣0, 𝑣1)  is of the form 

∫
𝐺
𝜓(𝑡) (𝐵(𝜉𝑡)𝑣2, 𝑣1) for a dense set of 𝑣0′𝑠. Here 𝑣0, 𝑣1 and 𝑣2 are elements in 𝐻1 and 𝜓is a 

continuous complex valued function vanishing outside of a compact subset of G. It follows 

readily that (𝐿𝜉𝑣0, 𝑣1, ) is continuous in 𝜉 and, since 𝐿𝜉1𝜉2  =  𝐿𝜉1 𝐿𝜉2, 𝑡ℎ𝑎𝑡 𝐿(𝜉 →  𝐿𝜉) is a 

representation of 𝐺0. Of course 𝐿 may depend upon the choice of 𝜇, the choice of the unitary 

map of the given Hilbert space on 𝐻𝑁  and the choice of B. However, the fact that any two 

𝜇′s have the same null sets guarantees the lack of dependence of 𝐿 0𝑛 𝜇. As to the other 

possible dependencies note that a unitary map 𝑋 0𝑓 𝐻𝑁 on itself which commutes with all 𝑃E 

is defined by an equation of the form 𝑋𝑓(𝑡)  =  𝑋(𝑡)𝑓(𝑡) 𝑤ℎ𝑒𝑟𝑒 𝑋(𝑡) is a unitary operator 

on 𝐻1 for each 𝑡 and 𝑋(𝑡) is a weakly Borel function of t. Moreover 𝑋(𝜉𝑡)  =  𝑋(𝑡) for 𝜉 ∈
 𝐺0. It is readily calculated that the effect on Q of a transformation by X is to replace it by R 

where 𝑅(𝑠, 𝑡)  =  𝑋−1(𝑡)𝑄(𝑠, 𝑡)𝑋(𝑡𝑠).  Now if  𝐶−𝐼(𝑡)𝐶(𝑡𝑠)  =  𝑋−1(𝑡)𝐵−𝐼(𝑡)𝐵(𝑡𝑠)𝑋(𝑡𝑠)  it 

follows that 𝐵(𝑡)𝑋(𝑡)𝐶−1(𝑡) is (modulo null sets) independent of t. Thus for some constant 

operator K we have 𝐶(𝑡)  =  𝐾𝐵(𝑡)𝑋(𝑡)  so that 𝐶(𝜉𝑡)𝐶−1(𝑡)  =
 𝐾𝐵(𝜉𝑡)𝑋(𝜉𝑡)𝑋−1(𝑡)𝐵−𝐼(𝑡)𝐾−1  =  𝐾𝐿𝜉𝐾

−1. In short our original pair and in fact the unitary 

equivalence class to which it belongs determine 𝐿 to within unitary equivalence. 

Conversely a simple reversal of the argument shows that pairs leading to unitary equivalent 

𝐿′s must be themselves unitary equivalent. 

Now let 𝐿′ be an arbitrary representation of 𝐺0 and let 𝑈′, 𝑃′ be the pair generated by 𝐿′ 
and a quasi invariant measure 𝜇 𝑖𝑛 𝐺/𝐺0. By the argument of the preceding paragraph there is 

a unitary map 𝑉−1 of 𝐻𝐿′ on some 𝐻N such that 𝑉−1𝑃𝐸′𝑉 =  𝑃𝐸 where 𝑊,𝑃 is as before the 

pair generated by 𝑁 and 𝜇 and N is an identity representation of 𝐺0 on a Hilbert space 𝐻1. It 

is not difficult to show that there exists a weakly Borel function 𝑉~ defined on 𝐺 whose 

values are operators from 𝐻1  to the space 𝐻2  in which 𝐿′ operates such that (𝑉𝑓)(𝑡)  =
 𝑉~(𝑡)𝑓(𝑡). It follows from the fact that 𝑉 is unitary that 𝑉~(𝑡) is unitary from 𝐻1 𝑖𝑛𝑡0 𝐻2 

for almost all t and it follows from the fact that 𝑉𝑓 ∈  𝐻𝐿′ that for each 𝜉 ∈  𝐺0, 𝑉
∼(𝜉𝑡)  =

 𝐿𝜉′𝑉
~(𝑡)  for almost all 𝑡 . Now the 𝑄𝑠  of the preceding paragraph here take the form 

𝑉−1 𝑈𝑠
′𝑉𝑊𝑠

−1  so that 𝑈𝑠
′𝑉𝑊𝑠

−1  =  𝑉𝑄𝑠. Hence 𝑉∼ (𝑡𝑠)  =  𝑉∼(𝑡)𝑄∼(𝑠, 𝑡) 0𝑟 𝑉∼(𝑡𝑠)  =
 𝑉∼(𝑡)𝐵−1(𝑡)𝐵(𝑡𝑠) or 𝑉∼(𝑡𝑠)𝐵−1(𝑡𝑠)  =  𝑉∼(𝑡) − 𝐵−1(𝑡).  

Thus there exists a norm preserving operator K independent of 𝑡 such that 𝑉∼(𝑡)  =
 𝐾𝐵(𝑡) for almost all t. If K were known to map 𝐻1 onto the whole of 𝐻2 we could write 

𝐵(𝑡)  =  𝐾−1𝑉∼(𝑡)  and conclude at once that  𝐵(𝜉𝑡)𝐵−1 (𝑡) =  𝐾−1𝐿𝐸′  𝑉
∼(𝑡)𝑉∼ −

1′(𝑡)𝐾 = 𝐾−1𝐿𝜉𝐾 and hence that the 𝐿 𝑓0𝑟 𝑈′, 𝑃′ is unitary equivalent to 𝐿′. In order to 

show that K is indeed an onto mapping we must make use of certain facts about the space 𝐻𝐿′ 
which so far as we know at this point might be zero dimensional. For each continuous 

function w from 𝐺 𝑡0 𝐻2 which vanishes outside of a compact subset of 𝐺 let �̅� be defined by 

the equation (�̅�(𝑡), 𝑣)  = ∫
𝐺0
 (𝐿𝜉′−1𝑤(𝜉𝑡), 𝑣)𝑑𝑡𝜉 for all v in 𝐻1 and all 𝑡 in 𝐺. This function 

may be shown to be a continuous member of 𝐻𝐿′  which vanishes outside of a set whose 

image in 𝐺𝐼𝐺0 is compact. Arguments of a fairly routine nature show that for each t e 𝐺 the 

vectors �̅� (𝑡) span 𝐻2. Now suppose that K does not map 𝐻1 0𝑛𝑡0 𝐻2. Choose 𝑣0 orthogonal 
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to the range of K. Consider an arbitrary member of 𝐻L′ of the form �̅�. We have �̅�(𝑡)  =
 𝑉~(𝑡)𝑓(𝑡) for some f and almost all t. But 𝑉~(𝑡)𝑓(𝑡) is in the range of K for almost all 𝑡. 

Thus, since �̅� is continuous we can conclude that (�̅� (𝑡), 𝑣0)  =  0 for all 𝑡. Hence for 

all 𝑡, (�̅�(𝑡), 𝑣0)  =  0 for all �̅� and this contradicts the fact that the �̅�(𝑡) span for each 𝑡. 
The natural question concerning the connection between the reducibility of a pair 𝑈, 𝑃 

and the reducibility of the defining representation of 𝐺0 is easily answered. If 𝑇 commutes 

with all 𝐿𝜉  then a transformation 𝑇∼  taking 𝐻N  into 𝐻N  is defined by the equation 

(𝑇∼𝑓) (𝑡)  =  𝐵−1(𝑡)𝑇𝐵(𝑡)𝑓(𝑡) where 𝐵 is the function used in defining 𝐿. Then, as is easily 

seen 𝑇 → 𝑇∼ is a ∗ −isomorphism of the ring of all bounded linear operators which commute 

with all the 𝐿𝜉  onto the ring of all bounded linear operators which commute with all the 𝑈𝑆 

and all of the 𝑃E. In particular the 𝑈s and the 𝑃𝐸 are simultaneously reducible if and only if 𝐿 

is a reducible representation of 𝐺o. 

Application to the Determination of Group Representations.-Let 𝐺 be a separable 

locally compact group and let 𝐺1 be a closed normal Abelian subgroup of G. Let �̂�1 denote 

the character group of 𝐺1. Every member 𝑠 of 𝐺 defines an automorphism 𝑥 →  𝑠𝑥𝑠−1 0𝑓 𝐺1 
and this in turn induces an automorphism 𝑦 → (𝑦)𝑠 0𝑓 �̂�1. Now let 𝑈 be any irreducible 

representation of G. Restricted to 𝐺1  it admits a spectral resolution defined by a a 

homomorphism P of the Borel subsets of �̂�1, into a Boolean algebra of projections in the 

Hilbert space H in which 𝑈 acts. An obvious calculation shows that 𝑈𝑆𝑃𝐸𝑈𝑆
−1  =  𝑃(𝐸)𝑆−1. 

Thus P is a system of imprimitivity for U. Since 𝑈 is irreducible P must be ergodic. If we 

assume that 𝐺1 is "regularly imbedded" in 𝐺 in the sense that the orbits in 𝐺1 under 𝐺 are 

regular then Theorem (1.1.2) tells us that 𝐺1 may be replaced by a single orbit. Let y be a 

point in this orbit and let 𝐺v be.the closed subgroup of all 𝑠 for which (𝑦)𝑠 = 𝑦. Theorem 

(1.1.3) tells us that 𝑈 is unitary equivalent to the first member of the pair generated by an 

irreducible representation of 𝐺v. 
If 𝐺 is a "semi-direct product" of 𝐺1 and 𝐺𝐼𝐺1; that is, if there exists a closed subgroup 

𝐺2such that 𝐺1𝑛 𝐺2  =  𝑒 and 𝐺1𝐺2  =  𝐺 much more precise information is available.  

Theorem (1.1.4)[1]: Let 𝐺1 be imbedded regularly in 𝐺 and let 𝐺 be a semidirect product of 

𝐺1 and 𝐺2. From each orbit C of 𝐺1 under 𝐺2 choose a member 𝑌𝑐. Let 𝐺𝐶, denote the set of 

all 𝑠 ∈  𝐺2  with (𝑦𝑐)𝑠 = 𝑦𝑐 . Then the general irreducible representation of 𝐺 may be 

obtained as follows. Select an orbit C and an irreducible representation 𝐿 of 𝐺𝐶. Let 𝑀 be the 

irreducible representation of 𝐺1 − 𝐺C  which coincides with 𝐿 on 𝐺𝐶  and is 𝑦𝐶  times the 

identity on 𝐺1 . Then the first member of the pair generated by Mand a quasi invariant 

measure in 𝐺/(𝐺1. 𝐺C) is the required irreducible representation of G. 

Every irreducible representation of 𝐺 may be so obtained and two such are unitary 

equivalent if and only if they come from the same orbit and unitary equivalent 𝐿′𝑠.  
When the irreducible representations of 𝐺2  and its subgroups are known Theorem 

(1.1.4) furnishes a complete description of the irreducible representations of 𝐺. This is so, in 

particular, when 𝐺2 is Abelian. Moreover when 𝐺2 is Abelian (and 𝐺1 is imbedded regularly 

in G) it tells us that every 

Irreducible representation of 𝐺 is of "multiplier" form. More generally any imprimitive 

representation of 𝐺 generated by a one-dimensional representation of a subgroup is unitary 

equivalent to a representation in which the underlying Hilbert space is the space of square 
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summable functions on a homogeneous space and the action of the operator associated with 𝑠 
is to translate by 𝑠 and multiply by a certain function (the multiplier) of 𝑠 and a variable point 

in the homogeneous space. 

When 𝐺1 is not imbedded regularly in 𝐺 Theorem (1.1.4) fails only in that it does not describe 

all of the irreducible representations. The ones that it does describe still exist and are 

irreducible. We have examples, however, showing that in general there are many others. 

Their existence leads to various kinds of pathological behavior which we expect to discuss at 

another time. Since these "extra" representations are all infinite dimensional, Theorem(1.1.4)   

provides an analysis of all finite dimensional representations for arbitrary semidirect 

products. 

A number of well-known groups are regular semidirect products and Theorem (1.1.4) 

includes as special cases results in the literature analyzing their representations. Examples 

include the unique non-commutative two-parameter Lie group [6] (a semidirect product of 

two lines) and the group of Euclidean motions in two space [7] (a semidirect product of the 

two-dimensional translation group and the circle group). Wigner's [7] reduction of the 

representation problem for the inhomogeneous Lorentz group to that for the homogeneous 

Lorentz group is also a consequence of Theorem (1.1.4) since the former group is a 

semidirect product of a translation group and the latter group. 

(i) In the mapping from a representation 𝐿 of 𝐺0 to the pair it generates one can ignore 

𝑃 and obtain a mapping from representations of 𝐺0 to representations of 𝐺. It is not difficult 

to see that this mapping carries the regular representation of 𝐺0 into the regular representation 

of 𝐺. Thus (in view of No. 6) any analysis of the regular representation of 𝐺0 as a direct sum 

or integral will define a corresponding analysis of the regular representation of 𝐺 although the 

"parts" will not necessarily be irreducible. This decomposition when 𝐺0  is Abelian is the 

subject of a recent interesting note of 𝐺0 dement [8]. It was this note of 𝐺0 dement together 

with a discussion of such a space for compact groups given by 𝐴. Weil [9] that suggested our 

definition of the Hilbert space 𝐻𝐿. 

There are a number of questions suggested by the considerations, which we expect to 

investigate and report. We close by mentioning a few of these. (i) When is the representation 

𝑈 of 𝐺 generated by an irreducible representation 𝐿 of 𝐺0 itself irreducible? 

(ii) When 𝐺 is finite, 𝐿 and 𝑈 are finite dimensional and 𝐿 is irreducible there is a classical 

theorem which says that the number of times that 𝑈 contains a given irreducible 

representation 𝑉 of 𝐺 is equal to the number of times that the restriction of 𝑉 to 𝐺0 contains 

L. Weil [9] has recently extended this theorem to compact groups. One can ask whether (and 

in what sense) it continues to be .true for general locally compact groups. 

(iii) To what extent is it true that an arbitrary irreducible representation of 𝐺 is the 

imprimitive representation generated by a primitive representation 𝐿 of an appropriate 𝐺0? 

How is the possible failure of this to hold generally connected with the "extra" 

representations of non-regular semidirect products? (iv) Theorem (1.1.3) presumably can be 

used to show other theorems like Theorem (1.1.4). What are some of these? One notes in 

particular that 𝐺1  can probably be replaced by any group whose representations can be 

decomposed into irreducible parts in a suitably manageable manner. 
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Section (1.2): Induced Representations 

In the theory of representations of a finite group by linear transformations the closely 

related notions of "imprimitivity" and of "induced representation" play a prominent role. [28] 

has generalized these notions to the case in which the group is a Separable locally compact 

topological group and the linear transformations are unitary transformations in Hilbert space. 

It turns out (and this is the principle Theorem of [28]) that the classical Theorem of Frobenius 

according to which every "imprimitive" representation of a finite group is "induced" in a 

certain canonical fashion by a representation of a subgroup may be reformulated so as to 

remain true under the more general circumstances indicated above. This connection between 

representations of groups and representations of their subgroups has many interesting and 

useful properties in the finite case and it naturally occurs to one to study the extent to which 

these properties persist in general. 

The principal results, formulated as Theorems (1.2.34), (1.2.35) and (1.2.37) , are 

closely related; each being essentially a Corollary of its predecessor. The first asserts that if 𝐿 

is a representation of the closed subgroup G1  of 𝔊  and U𝐿  is the corresponding induced 

representation of 𝔊 then the restriction of U𝐿 to the closed subgroup 𝐺2  is a "sum" over the 

𝐺1: 𝐺2 double cosets of certain induced representations o 𝐺2. 
The second gives a similar decomposition of the Kronecker product U𝐿 f⨂ U𝑀 where L and 

M are representations of 𝐺1 and 𝐺2 respectively. 

The third provides a usable formula for computing the "strong intertwining numbers" 

of the induced representations 𝑈𝐿 and 𝑈𝑀 𝑜𝑓 𝔊. The "sums" in question are ordinary discrete 

sums only when there are at most countably many non trivial double cosets. 

In general "direct integrals" as defined by von Neumann in  [36] must be used and we must 

restrict ourselves to the case in which the relevant double coset decomposition of   𝔊 is 

"measurable".  

As we have shown in detail else where  [30] these Theorems for finite groups imply 

certain classical results; in particular the Frobenius reciprocity Theorem and the shoda criteria 

for the irreducibility and unitary equivalence of monomial representations. The Theorems 

yield generalizations of these results but these generalizations may be regarded as satisfactory 

only insofar as they deal with representations whose irreducible constituents are discrete and 

finite dimensional. 

We have made a start in [30] and hope to be able to discuss the situation more fully in 

[19], [28].  

Let 𝔈 be a separable locally compact group and let G be a closed subgroup of 𝔈. 

Let𝔐be the homogeneous space of right G cosets and let h (x ⟶  h(x))denot the canonical 

mapping of 𝔊  onto 𝔐.  If z =   h(x) ∈ 𝔚 and y ∈ 𝔈  then h(xy) depends only upon 𝑦 and 

ℎ(𝑥). 
We shall denote this element by [z]y . It is readily verified that z →  [z]y  is a 

homeomorphism, that [z]yIy2 = [[z]y1]y2 and that [z]y2  is continuous in both variables 

together. We shall be concerned with Borel measures in𝔐whose null sets are carried into null 

sets by the homeomorphisms 𝑧 →  [𝑧]𝑦. 

We shall need certain information about the connection between Borel sets in 𝔐 and 

Borel sets in 𝔈. This information is contained in the two lemmas below.  
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Lemma (1.2.1)[11]: There exists a Borel set B in 𝔈 such that: (a) B intersects each right G 

coset in exactly one point and (b) for each compact subset K of 𝔈 , (ℎ−1(ℎ(𝐾))) ⋂ 𝐵 has a 

compact closure.  

Proof: Choose a compact neighborhood V of the identity e of 𝔈 such that 𝑉 =  𝑉−1. If 𝔈 is 

connected then 𝔈 = ∪𝑛−1
∞  𝑉𝑛  and every compact subset of 𝔈 is in some 𝑉𝑛 . If 𝔈 is not 

connected then  ∪𝑛−1
∞  𝑉𝑛 is an open and closed subgroup with only countably many cosets. 

In any case it is clear that there exists in 𝔈 a countable family 𝐾1  ⊆ 𝑘2 ⊆ 𝐾3 ; of compact 

subsets of (M such that every compact subset of 𝔈 is contained in some 𝐾𝑗. By a Theorem of 

Federer and Morse  [14] there exists for each j a Borel subset 𝐵𝑗  ⊆  𝐾𝑗 such that ℎ(𝐵𝑗)  =

 ℎ(𝐾𝑗) and such that h is one-to-one on 𝐵j. Moreover the𝐵j may be chosen so that 𝐵𝑗+1  ⊇

 𝐵𝑗  𝑓𝑜𝑟 𝑗 =  1, 2, .. Indeed if 𝐵1, 𝐵2, … , 𝐵𝑗 have been chosen so that 𝐵1  ⊆  𝐵2  ⊆ ⋯ ⊆ 𝐵𝑗 we 

may define 𝐵𝑗+1 𝑎𝑠 (𝐵𝑗+1
′  − ℎ−1  (ℎ(𝐵𝑗)))  ∪ 𝐵𝑗  where 𝐵𝑗+1

′  is any Borel subset of𝑘𝑗+1  on 

which h is one-to-one and has range ℎ(𝑘𝑗+1). 

Since 𝐵j is a Borel set in a complete metric space and h is continuous and one-to-one on 𝐵j It 

follows from a Theorem in Kuratowski's "Topologie" [26] that ℎ(𝐵𝑗) is a Borel set and hence 

that 𝐵𝑗+𝑙 is a Borel set. Clearly 𝐵 =  𝑈𝑗=1
∞ 𝐵𝑗has the required properties.  

We shall call a Borel subset of 𝔊 with roperties (a) and (b) of the lemma a 

regular Borel section of 𝔊 with respect to G.  

Lemma (1.2.2)[11]: A necessary and sufficient condition that a subset 𝐸 𝑜𝑓 𝔐 be a Borel set 

is that ℎ−1 (𝐸) be a Borel set in 𝔈. A necessary and sufficient condition that a function 

𝑓 𝑜𝑛 𝔐  be a Borel function is that   𝑓 ∘ ℎ  , where (𝑓 ∘ ℎ) (𝑥)  =   𝑓(ℎ(𝑥)) , be a Borel  

function on 𝔊 .  

Proof: Let B be a regular Borel section of 𝔈 with respect to 𝐺. 𝐼𝑓 ℎ−1 (𝐸) is a B orel set 

then ℎ(ℎ−1(𝐸) ⋂ 𝐵)  =  𝐸 and is a Borel set by the Kuratowski Theorem referred To above. 

All other statements of the lemma are obvious or are consequences of this one.  

Let 𝜇 be a Borel measure in 𝔐; that is a completely additive non negative and plus infinity 

valued set function defined on all Borel subsets of 𝔐 and finite on compact sets. Suppose that 

 𝜇 is not identically zero. 

If for each Borel set 𝐸 ⊆  𝔐 and each 𝑦 ∈, 𝔈, 𝜇(𝐸) is zero when and only when 𝜇([𝐸]𝑦) is 

zero,we shall call 𝜇, a quasi invariant measure. It is easy to see that such measures exist [13]. 

Indeed let v be any finite, ≢  0 Borel measure in 𝔊 whose null sets are those of Haar 

measure zero and let 𝜇 (𝐸) =  𝑣 (ℎ−1(𝐸)) for each Borel set 𝐸 ⊆ 𝔐. Verification of the 

quasi invariance of 𝜇is immediate. It is our purpose here to study the uniqueness of quasi 

invariant measures and the analytical properties of the Radon-Nikodym derivatives of their 

translates. Our results are summarized in Theorem(1.2.6) below. The proof of the Theorem 

depends upon the three lemmas which follow.  

Lemma(1.2.3)[11]: Let 𝜇 be any quasi invariant measure in 𝔐. Then 𝜇(𝐸)  = 0 if and only if 

ℎ−1(𝐸) has Haar measure zero. 

Proof: Let v denote a right invariant Haar measure in G.For each Borel function f from𝔊 to 

the 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 [0, 1] 𝑙𝑒𝑡 𝑓′(𝑥) =  ∫ 𝑓(𝜉𝑥)
𝒪

  𝑑𝑣(𝜉). We note that 𝑓′ is constant on the right G 

cosets. Let ℑ be the family of all functions f under consideration for which 𝑓′ is also a Borel 
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function. It is immediate that ℑ is closed under the taking f point wise limits and easily seen 

that it contains all continuous functions with compact support. 

Thus ℑ contains all Borel functions. Let 𝑓" denote the unique Borel function on 𝔐such that 

𝑓" ∘ ℎ = 𝑓′  and for each Borel set 𝐸 ⊆ 𝔐 𝑙𝑒𝑡 𝛼(𝐸)  =  ∫
𝔐
∅𝐸
"  (𝑧)𝑑𝜇(𝑧)  where ∅𝐸  is the 

characteristic function of E. Then 𝛼 is a Borel measure in 𝔊 and𝛼(𝐸)  =  0 if and only if 

∅𝐸
"  (𝑧) =  0 for 𝜇 almost all z; that is if and only if ∫∅𝐸   (𝜉𝑥)𝑑𝑣(𝜉)  =  0 for 𝜇 almost all 

h(x); that is if and only if 𝑣([𝐸]𝑥
−1  ∩ 𝐺)  =  0 for 𝜇 almost all h(x). On the other hand for 

each fixed 𝑦 ∈ ℌwe have 𝑎[𝐸]𝑦 =  0 if and only if 𝑣([𝐸]𝑦𝑥−1 ⋂ 𝐺)  =  0 for 𝜇almost all 

ℎ(𝑥). But 𝑣([𝐸]𝑦𝑥−𝑙 ⋂ 𝐺)  =  𝑣([𝐸](𝑥𝑦−𝑙)−𝑙 ⋂ 𝐺)  =  𝑔(𝑥𝑦−𝑙) if 𝑔(𝑥)  =  𝑣([𝐸]𝑥−1 ⋂𝐺). 
Since 𝜇 is quasi invariant g(x) is zero for almost all ℎ(𝑥)  if and only if this is the case 

for 𝑔(xy−1). Thus ∝ (E)  =  0 if and only if α([E]y) =0. Thus a is quasi invariant and it 

follows from [14] Lemma 3 of [27] that α has thesame null sets as Haar measure. Finally it 

is an easy consequence of the definitions that ∝ (h−1(E))  = μ(E)v(G)where 0.∞ =  0. The 

truth of the lemma follows at once.  

Following Weil [42] but interchanging right and left let us write ∆(σ) for the constant 

Radon Nikody mderivative of the measure E → α (σE) with respect to the measure E → α(E) 
where α is right invariant Haar measure in 𝔊. Further let us write δ(σ) for the similarly 

defined constant Radon-Nikodym derivative in G. ∆ and a are continuous homeomorphisms 

of 𝔊and G respectively into the group of positive real numbers.  

Lemma (1.2.4)[11]: There exists a positive real valued Borel function p on 𝔊  which is 

Bounded on compact sets and such that 𝜌(𝜉𝑥) = (𝛿(𝜉)/∆(𝜉)) 𝜌(𝑥)𝑓𝑜𝑟𝑎𝑙𝑙  𝑥 ∈ 𝔊and all 𝜉 ∈

𝐺   
Proof: Let B be a regular Borel section of 𝔊 with respect to G. For each 𝑧 ∈  𝔐 Let 𝜓(𝑧) be 

the unique element of 𝐵 such that ℎ(𝜓/(𝑧))  = 𝑧. 
By the Kura-towski Theorem referred to in the proof of Lemma (1.2.1), 𝜓 is a Borel 

function so that  𝜓 ∘ ℎ is also a Borel function. 𝐿𝑒𝑡 𝜃1  = 𝜓 ∘ ℎ. Then 𝑥 ⟶ 𝑥(𝜃1(𝑥))
−1 is a 

Borel function from  𝔊  to G which we shall denote by 𝜃2 .  We now define 𝜌(𝑥)  =
 𝛿(𝜃2(𝑥))/∆(𝜃2(𝑥)). 

We leave it to verify that 𝜌  has the required properties; remarking only that the 

boundedness of p on compact sets follows from property (b) of regular Borel sections.  

We shall call a function with the properties listed in Lemma(1.2.4) a 𝜌-function. If 𝜌 is 

any 𝜌-function on 𝔊then 𝜌(𝑥𝑦)/𝜌(𝑥) is a Borel function of x and y which is constant on the 

𝐺 × 𝔊  right cosets in 𝔊 ×  𝔈. Since there is a natural homeomorphism of this coset space on 

𝔐×𝔈  there is a unique Borel function 𝜆𝜌 on 𝔐×𝔊  such that 𝜆𝜌(ℎ(𝑥), 𝑦) =  𝜌(𝑥𝑦)/

𝜌(𝑥) for all 𝑥 and y in 𝔊.  𝜆𝜌is easily seen to have the following properties: 

(a) for all 𝑧 𝑖𝑛 𝔐  and all 𝑥 and 𝑦 𝑖𝑛 𝔊. 𝜆𝜌(𝑧, 𝑥𝑦) =  𝜆𝜌([𝑧]𝑥, 𝑦) 𝜆𝜌(𝑧, 𝑥) , (b) for all 

𝜉 𝑖𝑛 𝐺, 𝜆𝜌(ℎ(𝑒), 𝜉) =  𝛿(𝜉)/∆(𝜉) where e is the identity of 𝔊, (𝑐) 𝜆𝜌(ℎ(𝑒), 𝑦) is bounded on 

compact sets as a function of y. We shall call a positive Borel function on  𝔐 ×  𝔊 with 

properties (a), (b) and (c) a 𝜆 − functoin. 

It is almost immediate that every  𝜆 -function is of the form 𝜆𝜌, for a p-function which 

is unique except for a positive multiplicative constant.  The proof of the next lemma is 



10 

modeled closely on an argument given by Weil [42] In studying "relatively invariant" 

measures.  

Lemma (1.2.5)[11]:  Let 𝜌 be an arbitrary 𝜌-function on 𝔊. Then there exists a quasi in- 

variant measure 𝜇 𝑖𝑛 𝔐 Such that for all 𝑦 ∈  𝔊 𝜆𝜌(. , 𝑦) is a Radon-Nikodym derivative of 

the measure 𝐸 →  𝜇([𝐸]𝑦) with respect to the measure 𝜇.  

Proof: Consider the mapping 𝑓 →  𝑓" defined in the proof of Lemma (1.2.3). As shown by 

Weil [43] this mapping is "onto" from the continuous functions with compact support in 𝔊 

bto the corresponding family of functions in 𝔐.  

By virtue of the well-known connection between integrals and measures [25] we may 

define M by defining ∫  𝑓"(𝑧) 𝑑𝜇(𝑧) for all f with compact support. 

We let a denote right invariant Haar measure in 𝔊 and set 

∫  𝑓"(𝑧) 𝑑𝜇(𝑧)  = ∫  𝑓(𝑥)𝜌(𝑥)𝑑𝛼(𝑥). 

In order for this definition to be valid it must be shown that ∫  𝑓"(𝑧) 𝑑𝜇(𝑧) depends only 

upon 𝑓"  and not on 𝑓 . Suppose that  𝑓" ≡ 0  for some f. We shall show 

that ∫𝑓(𝑥)𝜌(𝑥)𝑑𝑎(𝑥)  =  0 . Wehave by definition that ∫𝑓(𝜉𝑥)𝑑𝑣(𝜉)  = 0 .  Hence 

∫𝑓(𝜉−1𝑥)𝛿(𝜉−1)𝑑𝑣(𝜉)  = 𝑂 . Hence for each continuous 𝑔  With compact support 

∬𝑝(𝑥)𝑔(𝑥)𝑓(𝜉−1𝑥)𝛿(𝜉−1) 𝑑𝑣(𝜉) 𝑑𝑎(𝑥)  = 0 . Applying the Fubini Theorem and then 

𝑟𝑒𝑝𝑙𝑎𝑐𝑖𝑛𝑔 𝑥 𝑏𝑦𝜉𝑥 in the integration with respect to 𝑥 we obtain  

∬𝜌(𝜉𝑥)𝑔(𝜉𝑥)𝑓(𝑥)Δ (𝜉)𝛿(𝜉−1)𝑑𝑎(𝑥)𝑑𝑣(𝜉)  = 0 . 

Using the  𝜌  -function identity we may eliminate 𝛿 and ∆ . Following this with a 

reionterchange of the order of integration gives  

∬𝜌(𝑥)𝑔(𝜉𝑥)𝑓(𝑥) 𝑑𝑣(𝜉) 𝑑𝛼(𝑥)   =  0 𝑜𝑟 ∫𝜌(𝑥)𝑓(𝑥)𝑔′(𝑥)𝑑𝛼(𝑥) = 0   

But as already noted 𝑔′′can be any continuous function with a compact support in 𝔐. In 

particular if we choose g so that 𝑔′′ is one on h(K), where K is the compact support of 𝑓, we 

may conclude that ∫𝑓(𝑥)𝜌(𝑥) 𝑑𝑎(𝑥)  = 0 as desired. Now choose any y in 𝔊 and consider 

the measure 

 𝐸 → 𝜇([𝐸]𝑦)   =  𝜇𝑦(𝐸) ∫ 𝑓"(𝑧) 𝑑𝜇𝑦(𝑧) ∫ 𝑓
′′([𝑧]𝑦

−1)𝑑𝜇(𝑧) =∫𝑓(𝑥𝑦−1)𝜌(𝑥)𝑑𝛼(𝑥) =  

∫𝑓(𝑥)𝜌(𝑥𝑦)𝑑𝑎(𝑥) = ∫𝑓(𝑥)𝜆𝜌(ℎ(𝑥), 𝑦)𝜌(𝑥)𝑑𝛼(𝑥) = ∫𝑓"(𝑧)𝜆𝜌(𝑧, 𝑦) 𝑑𝜇(𝑧). 

It follows at once that 𝜇 is quasi invariant and 𝜆𝜌(. , 𝑦)is aRadon Nikodym derivative of 

𝜇𝑦with respect to 𝜇.  

Let us Write 𝜇 ∼ 𝜆 whenever 𝜆(. , 𝑦) is a Radon derivative othe measure 𝐸 → 𝜇([𝐸]𝑦) 
with respect to  𝜇 for all 𝑦 ∈  𝔊. Using the above lemmas and the accompanying remarks we 

should have no difficulty in verifying the truth of the following Theorem.  

Theorem (1.2.6)[11]: There exist quasi invariant measures In 𝔐. Any two have the same 

null sets and hence are mutually absolutely continuous. The Borel set 𝐸 𝑖𝑛 𝔐 is a null set if 

and only if ℎ−1(𝐸) has Haar measure zero. 

The relations 𝜇 ∼ 𝜆 and 𝜆 = 𝜆𝜌 between quasi invariant measures, 𝜆 − functions and 𝜌 -

functions have the following properties: 

(a) Every 𝜆 -function is of the form 𝜆𝜌;  𝜆𝜌1  =  𝜆𝜌2 if and only if𝜌1/𝜌2is constant. 
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(b) For every 𝜆 − 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝜆 there is a quasi invariant measure 𝜇 such that 𝜇 ∼ 𝜆;   𝑖𝑓 𝜇1 ∼
𝜆 and 𝜇2  ∼  𝜆 then 𝜇1 is a constant multiple of 𝜇2.  

(c) For every quasi invariant measure 𝜇 there is 𝑎 𝜆 − 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝜆 such that, 𝜇 ∼ 𝜆; if 𝜇 ∼
𝜆1and, 𝜇 ∼ 𝜆2then for all y, 𝜆1(. , 𝑦) = 𝜆2(. , 𝑦) almost everywhere in 𝔐. 

(d) If  𝜇 ∼ 𝜆𝜌1and, 𝜇 ∼ 𝜆𝜌2 then 𝜌1/𝜌2 is almost everywhere constant.  

By a representation 𝑈(𝑥 → 𝑈𝑥) of the separable4 locally compact group 𝔊 we shall mean a 

homomorphism of 𝔊 into the group of all unitary trans- formations of some separable [15] 

Hilbert space ℌ(𝑈) onto itself which is continuous in the sense that for each 𝑣 ∈  ℌ(𝑈) the 

function 𝑥 →  𝑈𝑥(𝑣) is a continuous function from 𝔊 𝑡𝑜 ℌ(𝑈). We remind the reader of the 

well known fact that in order to be able to conclude that U is continuous in this sense it is 

enough to know that for all 𝑣1 and 𝑣2 in ℌ(𝑈) 𝑥 →  (⋃𝑥(𝑣1)𝑣2) is a measurable function of 

𝑥. 

Here ( , ) denotes the scalar product of the expressions inside.  

Let G be a closed subgroup of 𝔊and let 𝐿 (𝜉 →  𝐿𝜉) be any representation of  G. Let 

𝜇be any quasi invariant measure in the homogeneous space 𝔐 =  𝔊/𝐺 of  right G cosets. Let 

us denote by 𝜇ℌ𝐿 the set of all functions 𝑓 from 𝔊 𝑡𝑜 ℌ(𝐿) such that  

 (a) (𝑓(𝑥), 𝑣) is a Borel function of x for all 𝑣 ∈ ℌ(𝐿).  
(b) 𝑓(𝜉𝑥)  =  𝐿𝜉(𝑓(𝑥)) for all 𝜉 ∈  𝐺 and all 𝑥 ∈ 𝔊. 

(c) ∫(𝑓(𝑥), 𝑓(𝑥))  𝑑𝜇(𝑧)   < ∞ where the meaning of the integral is to be found in the fact 

that the integrand is constant on the right G cosets and hence defines  a function on 𝔐 =
𝔊/𝐺 . It is readily showd that if  𝑓1 and 𝑓2   are any two members  of 𝜇ℌ𝐿  then 

∫(𝑓1(𝑥), 𝑓2(𝑥)) 𝑑𝜇(𝑧) is absolutely convergent. We denote its value by(𝑓1: 𝑓2). We shall 

leave the straightforward but rather  tedious task of verifying That when functions equal 

almost everywhere are identified 𝜇ℌ𝐿 becomes a Hilbert space under the inner product𝑓1: 𝑓2.  

It suffices to make obvious modifications in the corresponding proof for the square 

Summable functions on a measure space and keep in mind Lemma(1.2.2).  

Now let 𝜌 be a 𝜌-function such that 𝜇 ∼ 𝜆𝜌 For each 𝑦 𝑖𝑛 𝔊 let 𝑇𝑦 ,  map 𝑓 ∈ 𝜇ℌ𝐿   into g 

where 𝑔(𝑥)  =  √𝜌(𝑥𝑦)/𝜌(𝑥)𝑓(𝑥𝑦). 

An obvious calculation shows that g is also in 𝜇ℌ𝐿  and that  (𝑓 ∶ 𝑓)  = (𝑔: 𝑔) .  

Moreover 𝑇𝑣1(𝑇𝑣2(𝑓)) =  𝑇𝑦1𝑦2(𝑓) Finally an easy argument shows that  (𝑇𝑦(𝑓): 𝑔).   is a 

Borel function of y for each f and g in 𝜇ℌ𝐿 . Thus for each 𝑦, 𝑇𝑦  , defines a unitary 

transformation 𝜇𝑈𝑦𝐿, in the Hilbert in 𝜇ℌ𝐿-  space  [16] associated with 𝜇ℌ𝐿 and the mapping 

𝑦 → 𝜇𝑈𝑦𝐿 is the representations 𝜇𝑈𝐿𝑜𝑓𝔊 

Theorem (1.2.7)[11]: Let 𝜇 and 𝜇′be quasi is invariant measures in𝔐 = 𝔈/G. Then there 

exists a unitary transformation V from ℌ(𝜇𝑈𝐿) onto ℌ(𝜇′𝑈𝐿) such that 𝑉(𝜇𝑈𝑣𝐿) 𝑉
−1  = 𝜇′𝑈𝑣𝐿   

for all y in 𝔊; that 𝜇′ is the representations 𝜇𝑈𝐿  and 𝜇′𝑈𝐿 are unitary equivalent.  

Proof: Let 𝜓  with Borel function which is a Radon Nikodym derivative of μ 𝑤𝑖𝑡ℎ respect to  

μ′and let h denote the natural mapping of 𝔈 on 𝔊/𝐺. Then for each 𝑓 ∈𝜇  𝔊𝐿 , √𝜓 ∘ ℎ(𝑓) is 

in𝜇′ 𝔊𝐿   and the norm of 𝑓 in 𝜇𝔊𝐿  is equal to that of √𝜓 ∘ ℎ𝑓 in  𝜇𝔊𝐿 . Moreover every 𝑔in 

 𝜇′𝔊𝐿 is evidently of the form √𝜓 ∘ ℎ𝑓  for some 𝑓 in  𝜇𝔊𝐿  . Let V be multiplication by 
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√𝜓 ∘ ℎ.Then V defines a unitary map of  𝔊(𝜇𝑈𝐿) on ,𝔊(𝜇′𝑈𝐿) . The verification of the fact 

that 𝑉(𝜇𝑈𝑣𝐿)𝑉
−1  =𝜇

′
𝑈𝑣
𝐿for all y is immediate. 

Since we shall not in general distinguish between representations of a group  which are 

unitary equivalent we may drop the 𝜇 and refer simply to the representation 𝑈L of 𝔊. We 

shall call 𝑈L the representation of 𝔈 induced by the representation L of G. The notation 𝑈𝐿 is 

unambiguous only when no other group containing G as a closed subgroup is under 

consideration. 

Let v denote right invariant Haar measure in G and let 𝐶L  denote the set of all 

continuous functions with domain 𝔊, range in  𝔊(𝐿)and compact support. Let  𝐾f denote the 

compact support of the member f of 𝐶L.  

Lemma (1.2.8)[11]: For each 𝑓 ∈  𝐶𝐿.there is a unique function 𝑓o from 𝔈 𝑡𝑜 𝔈(𝐿) such that 

∫(𝐿𝜉−𝐼 (𝑓(𝜉𝑥)), 𝑣) 𝑑𝑣(𝜉) =   (𝑓
0(𝑥), 𝑣) 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑥 ∈  𝔊  and all 𝑣 ∈ ℌ (𝐿). This function is 

continuous and is in  𝜇𝔊𝐿 for all quasi invariant measures  𝜇. The function defined on𝔊\𝐺 by 

(𝑓0(𝑥), 𝑓0(𝑥))  has a compact support. Finally 𝑠𝑢𝑝𝑥∈𝔊‖ 𝑓
0(𝑥) ‖ ≦

  𝑣(𝐾𝑓𝐾𝑓
−1⋂ 𝐺) 𝑠𝑢𝑝𝑥∈𝔊‖ 𝑓(𝑥) ‖.  

Proof: For each fixed 𝑥 in 𝔊 consider ∫(𝐿𝜉−1(𝑓(𝜉𝑥), 𝑣) 𝑑𝑣(𝜉). It is evidently anti- linear 

and bounded as a function of v and hence is of the form (𝑓0(𝑥), 𝑣) where 𝑓0(𝑥)is a member 

of ℌ(𝐿) depending upon 𝑥. We must show that the function  𝑓0(𝑥 → 𝑓0(𝑥)) has the desired 

properties. Let K denote the compact support of 𝑓.  

It follows easily from the definition of 𝑓0 that‖𝑓0(𝑥1) −  𝑓
2(𝑥2)‖   ≦ 2( sup𝜉∈𝐺‖ 𝑓(𝜉𝑥1) −

 𝑓(𝜉𝑥2)‖ )(sup𝑥∈𝔈  𝑣(𝐾𝑥
−1  ∩   𝐺)) for all 𝑥1  and 𝑥2    in 𝔊. Since 𝑓 is uniformly continuous 

it will be sufficient to show the finiteness of supxϵ𝔊𝑣(Kx
−1  ∩  G) in order to be able to 

conclude that 𝑓0 is continuous. 

Now [17] for all 𝑥 ∈  𝐺𝐾,𝐾𝑥−1  ⊆  𝐾𝐾−1𝜉  for some 𝜉 ∈ 𝐺  and hence 𝐾𝑥−1 ⋂ 𝐺 ⊆
  (𝐾𝐾−1 ⋂ 𝐺)𝜉 . Moreover for all 𝑥 ∉  𝐺𝐾, 𝑣 (𝐾𝑥−1  ∩  𝐺)  =  0 . Thus 𝑣(𝐾𝑥−1  ∩  𝐺) ⊆
𝑣( 𝐾𝐾−1 ∩ 𝐺) for all x and hence is bounded as was to be showd. That 𝑓0(𝜉𝑥)  =  𝐿𝜉𝑓

0(𝑥)) 

for all 𝜉 ∈  𝐺 and 𝑥 ∈ 𝔊 follows from a straightforward calculation. It is equally easy to see 

that  (𝑓0(𝑥), 𝑓0(𝑥))  =  0 𝑓𝑜𝑟 𝑥 ∉  𝐺𝐾.Thus as a function 𝑜𝑛 𝔊/𝐺, (𝑓0(𝑥), 𝑓0(𝑥)) vanishes 

outside of the compact image of GK in 𝔊/𝐺. 

The proof of the final assertion is an obvious modification of that of the continuity of 

𝑓0.  

We shall denote the class of functions of the form 𝑓0 𝑓𝑜𝑟 𝑓 ∈  𝐶𝐿 by 𝐶𝐿
0.  

Lemma (1.2.9)[11]:  For each 𝑥 ∈  𝔊 the vectors 𝑓0(𝑥) 𝑓𝑜𝑟 𝑓0  ∈   𝐶𝐿
0 form a dense linear 

sub- space of ℌ(𝐿).  
Proof: Note first that if 𝑓0  ∈  𝐶𝐿

0 and 𝑓𝑠 is defined by the equation 𝑓𝑠(𝑥)  =  𝑓(𝑥𝑠) for all 𝑥  

and s in 𝔊 then (𝑓0)𝑠(𝑥)   =  (𝑓𝑠)
0(𝑥) so that for all 𝑓 and s, (𝑓0)𝑠  ∈  𝐶𝐿

0 . Thus the set of 

vectors  𝑓0(𝑥) 𝑓𝑜𝑟  𝑓0  ∈  𝐶𝐿
0  and 𝑥  fixed is independent of 𝑥 . Letℌ1  be the  orthogonal 

complement of this set of vectors. Then if 𝑣 ∈ ℌ1we have (𝑓0(𝑥), 𝑣)  =  0 for all𝑓0 and all 

𝑥. Thus (𝑓0 ( 𝜉𝑥), 𝑣))  =  (𝑓0(𝑥), 𝐿𝜉−1(𝑣)) is zero for all 𝑓0  and 𝑥 and all 𝜉 ∈ 𝐺. 

Hence ℌ1is invariant under the representation 𝐿. Let 𝐿′ be the component  of L in ℌ1. 

Suppose that there exists a non zero member 𝑓0 𝑜𝑓 𝐶𝐿
0 . Then𝑓0  ∈  𝐶𝐿

0   and we have a 

contradiction since the values of 𝑓0are all in  ℌ1 . Thus in order to show that ℌ1  =  0 and 
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complete the proof of the lemma we need only show that when ℌ1  ≠ 0 there exists a non 

zero member f of 𝐶𝐿
0. But if none existed then  ∫(𝐿𝜉−1

′ (𝑓(𝜉𝑥)), 𝑣)  𝑑𝑣(𝜉)  would be zero for 

all 𝑥, all 𝑣 in ℌ(𝐿) and all 𝑓 in 𝐶𝐿  This is readily seen to be impossible.  

Lemma (1.2.10)[11]:   Let C be any family of functions from 𝔊 𝑡𝑜 ℌ  (𝐿) such that: 

(a) For some quasi invariant measure𝜇 𝑖𝑛 𝔊/𝐺, 𝐶 ⊆ 𝜇ℌ𝐿   

(b) For each 𝑠 ∈  𝔊 there exists a Positive Borel function 𝜌𝑆 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑓 ∈ 𝐶, 𝑃𝑆𝑓𝑆 ∈
𝐶 where 𝑓𝑆(𝑥)   =   𝑓(𝑥𝑠).  
(c) If 𝑓 ∈  𝐶  then 𝑔𝑓 ∈  𝐶  for all bounded continuous complex valued functions 𝑔 on 𝔊 

which are constant on the right G cosets.  

(d) There exists a sequence 𝑓1 , 𝑓2, … of members of C and a subset 𝑃 𝑜𝑓 𝔊 of positive Haar 

measure such that for each 𝑥 ∈  𝑃 the members 𝑓1(𝑥), 𝑓2(𝑥). , .. of  ℌ(𝐿) have  ℌ(𝐿) as their 

closed linear  span. 

Then the members of C have 𝜇ℌ𝐿 as their closed linear span.  

Proof: Choose 𝑓1, 𝑓2, …  as indicated under (d). Let  𝑢  be any member of  𝑢ℌ𝐿  which is 

orthogonal to all members of C. Then ((𝜌𝑠𝑔) (𝑓𝑗)𝑠: 𝑢) is zero for every s and every bounded 

continuous 𝑔 𝑜𝑛 𝔊 which is constant on the right G cosets.  

If  follows at once that for all s and all 𝑗 = 1, 2, … (𝑓𝑗(𝑥𝑠), 𝑢(𝑥))  =  0 for almost all 𝑥 𝑖𝑛 𝔊. 

Since (𝑓𝑗(𝑥𝑠), 𝑦(𝑥))  is a Borel function on 𝔊  we may apply the Fubini Theorem and 

conclude that for almost all x, (𝑓𝑗(𝑥𝑠), 𝑢(𝑥)) is zero for almost all s 

Since j runs over a countable  class we may select  a single  null set N in𝔊 such that for each 

𝑥 ∉ 𝑁, (𝑓𝑗(𝑥𝑠), 𝑢(𝑥))  is , for almost all 𝑠,zero for all  𝑗. It follows that for 𝑥 ∉ 𝑁 there exists 

𝑠 ∈ 𝑥−1𝑃  such that (𝑓𝑗(𝑥𝑠), 𝑢(𝑥)) = 0 𝑓𝑜𝑟 𝑗 = 1,2,…  and  hence that  𝑢(𝑥) = 0  thus u is 

almost every  where  zero and C must be dense in  𝜇ℌ𝐿  

Lemma(1.2.11)[11]: Let 𝐶1 be any family of functions from ℌ 𝑡𝑜 ℌ(𝐿)  such that: 

(a) For each 𝑓 ∈  𝐶1 there exists a positive Borel function 𝜌 𝑜𝑛 𝔊 such that  (𝑓(𝑥)/𝜌(𝑥), 𝑣) 
is continuous in x for all 𝑣 ℌ(𝐿). 
(b) For some quasi invariant measure 𝜇 𝑖𝑛𝔊 𝐺⁄ , 𝐶1 ≦ 𝜇ℌ𝐿  

(c) For each 𝑠 ∈   𝔊  there exists a positive Borel function 𝜌𝑠 , such that for all 𝑓 ∈
 𝐶1, 𝜌𝑠 𝑓𝑠  ∈  𝐶1 where 𝑓𝑠(𝑥)  =  𝑓(𝑥𝑠). 
(d) If 𝑓 ∈  𝐶1 then 𝑔𝑓 ∈  𝐶1 for all continuous complex valued functions 𝑔 on 𝔊  which are 

constant on the right G cosets and vanish outside of ℎ−1(𝐾) for some com- pact subset K of 

𝔊/𝐺.  

(e) For some (and hence all) 𝑥 ∈  𝔊  the members  𝑓(𝑥) 𝑜𝑓 ℌ (𝐿) for 𝑓 ∈  𝐶1  and 𝑥  fixed 

have ℌ (𝐿)  as their closed linear span.  

Then the members of 𝐶1 have 𝜇ℌ𝐿 as their closed linear span. 

Proof: Choose 𝑓1, 𝑓2, …  𝑖𝑛 𝐶1 so that 𝑓1(𝑒), 𝑓2(𝑒),… have ℌ (𝐿)  as their  closed linear span; 

 𝑒 being the identity of 𝔈. Let 𝑢 be any member of 𝜇ℌ𝐿 which is orthogonal to all members of 

𝐶1. Then (𝜌𝑠 𝑔(𝑓𝑗)𝑠: 𝑢) is zero for every 𝑠 ∈  𝔊 and  every g which satisfies the conditions 

listed under (d). It follows at once that for all x and all 𝑗 =  1, 2, , (𝑓𝑗(𝑥𝑠), 𝑢(𝑥)) =  0 for 

almost all x in𝔊. 
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Since (𝑓𝑗(𝑥𝑠), 𝑢(𝑥)) is a Borel function on 𝔊 𝑋𝔊 we may apply the Fubini Theorem and  

conclude that for almost all 𝑥, (𝑓𝑗(𝑥𝑠), 𝑢(𝑥)) is zero for almost all s. Since j runs over a 

countable class we may select a single null set 𝑁 𝑖𝑛 𝔊  such that for each 𝑥 ∉  𝑁,
(𝑓𝑗(𝑥𝑠), 𝑢(𝑥)) is for almost all s zero for all j. Suppose that 𝑢(𝑥1)  ≠  0 for some 𝑥1 ∉ 𝑁 then 

(𝑓𝑗(𝑒), 𝑢(𝑥1)) ≠ 0 for some j. But for some positive𝜌, (𝑓𝑗(𝑥), 𝑢(𝑥1))/𝜌(𝑥) is continuous in 

x.Hence (𝑓𝑗 , (𝑥1𝑠), 𝑢(𝑥1))/𝜌(𝑥1𝑠)  ≠  0  for s in some neighborhood of 𝑥1
−1 . 

Hence (𝑓𝑗(𝑥𝑠), 𝑢(𝑥1))  ≠  0 for s in some neighborhood of 𝑥1
−1.But this contradicts the fact 

that  (𝑓𝑗(𝑥𝑠), 𝑢(𝑥1))  is almost everywhere zero. 

Thus 𝑢(𝑥)  is zero almost everywhere. Thus only the zero element is orthogonal to all 

members of 𝐶1 and it follows that 𝐶1 must be dense.  

Lemma (1.2.12)[11]:𝐶1
0 is dense in 𝜇ℌ𝐿 for all quasi invariant measures𝜇 𝑜𝑛 𝔊/𝐺. 

Proof: The truth of the lemma is an immediate consequence of Lemmas (1.2.8), (1.2.9) and 

(1.2.11).   

Let there be given two closed subgroups 𝐺1 and 𝐺2 of 𝔊 such that 𝐺1 ⊆ 𝐺2.  

Let L be a representation of 𝐺1 . Then we may form  𝐺2
𝑈 𝐿 and  𝔊𝑈 

𝐿
. Denoting the 

first of these representations by M we may also form  𝔊𝑈 
𝑀

. 

Our object is to show [18] that the representations 𝑈M and 𝑈L are unit ary equivalent; 

in words that one may "raise L from 𝐺1 up to 𝔊" in several stages without affecting the result.  

To do this let 𝜇1 ,  and 𝜇2  be arbitrary quasi invariant measures in 𝔊/𝐺1  and  𝔊/𝐺2 
Respectively and let 𝜌1 and 𝜌2 be associated 𝜌 -functions. Then let us define  

 𝜌3(𝑥) 𝑎𝑠 𝜌1(𝑥)/𝜌2(𝑥) for all 𝑥 𝑖𝑛 𝔊 and let 𝛿1 and 𝛿2 be defined for 𝐺1 and 𝐺2 as 𝛿 was for 

G. 

We see at once the  𝜌3(𝜉𝑥)  = 𝜌1(𝜉𝑥)/𝜌2(𝜉𝑥) =  
𝛿1(𝜉)

 Δ(𝜉)
 𝜌1(𝑥)

𝛿2(𝜉)

 Δ(𝜉)
⁄  𝜌2(𝑥) =

𝛿1(𝜉)

 𝛿2(𝜉)
  𝜌3(𝑥) for 

𝜉 ∈  𝐺1 and 𝑥 ∈  𝔊. Thus 𝜌3  restricted to 𝐺2  is a  𝜌-function for the homogeneous space 

𝐺2/𝐺1 . We let 𝜇3be a quasi invariant measure associated with this 𝜌 -function. In what 

follows 𝑣1, , 𝑣2 and 𝑣 will denote right invariant Haar measure in 𝐺1, 𝐺2 and 𝔊 respectively. 

When 𝑓  is a function on 𝐺2  which is con-stant on the right 𝐺1 , cosets we shall use the 

notation ∫ 𝑓(𝑦) 𝑑𝜇3(𝑧) to indicate the integral with respect to𝜇3of the function defined 𝐺2/

𝐺1by 𝑓 and likewise for  𝜇1and 𝜇2. 

We shall also use 𝔊𝐶𝐿
0
 etc. to distinguish between the possible meanings of 𝐶𝐿

0 in the 

present context. Now for each fixed 𝑥 𝑖𝑛 𝔊 and each 𝑓 in  for 𝜇1ℌ𝐿  let 𝑓𝑥 denote the function 

from 𝐺2 𝑡𝑜 ℌ(𝐿) which takes 𝑦 ∈ 𝐺2 into  𝑓(𝑦𝑥)√𝜌3(𝑦𝑥)/𝜌3(𝑦).   We show first that for 𝑓  

in a certain dense subspace of  𝜇1ℌ𝐿we have 𝑓𝑥 ∈ 𝜇1ℌ𝐿 for all 𝑥 . It is evident that for any 𝑓 ∈

𝜇1ℌ𝐿we have 𝑓𝑥(𝜉𝑦) = 𝐿𝜉(𝑓𝑥(𝑦)) for all 𝜉 ∈  𝐺1 and all 𝑦 ∈  𝐺2. Moreover   

(𝑓𝑋(𝑦), 𝑤)  =   (𝑓(𝑦𝑥),𝑤) √𝜌3(𝑦𝑥) ∕ 𝜌3(𝑦) 
 which is surely a Borel function of y for all 𝑤 ∈ ℌ(𝐿). Finally we show that if𝑓 is of the 

form 𝑈𝑠1
𝐿  (𝐹1) + 𝑈𝑠2

𝐿  (𝐹2) + …+ 𝑈𝑠𝑛
𝐿  (𝐹𝑛) where each 𝐹𝑗  ∈  𝐶𝐿

0 and each 𝑆𝑗   ∈  𝔊 then for all 

𝑥, ∫(𝑓𝑥(𝑦), 𝑓𝑥(𝑦)) 𝑑𝜇3(𝑧)  < ∞ so that 𝑓𝑥 is in , 𝜇3ℌ𝐿  .To do this we need only consider the 

case in which f is actually of the form 𝑈𝑠
𝐿(𝐹) for an 𝐹 ∈  𝐶𝐿

0. 
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Since we shall have use a little later for the resulting formula we shall compute 

∫(𝑓𝑥(𝑦), 𝑓𝑥
′(𝑦)) 𝑑𝜇3(𝑧)  where 𝑓′ =  𝑈𝑠′

𝐿 (𝐹′) and 𝑠′ and 𝐹′ may be different from  s and F. It 

is not clear that this integral has meaning unless the integrand is non negative. However its 

finiteness in the case 𝑠 =  𝑠′ and 𝐹 =  𝐹′ implies its meaningfulness and finiteness in the 

general case. Thus we may compute it on the assumption that the integrand is summable and 

this assumption  will be justified by the fact that the endresult will be evidently finite in all 

cases. 

We have 

∫(𝑓𝑥(𝑦), 𝑓′(𝑦))  𝑑𝜇3(𝑧)  = ∫(𝜌3(𝑦𝑥)/𝜌3(𝑦 ))(𝑓(𝑦𝑥),  

𝑓′(𝑦𝑥)) 𝑑𝜇3(𝑧)  =   ∫𝜌3(𝑦𝑥)/𝜌3(𝑦)) (√𝜌1(𝑦𝑥𝑠)𝜌1(𝑦𝑥𝑠′)/𝜌1(𝑥)) (𝐹(𝑦𝑥𝑠), 

𝐹′(𝑦𝑥𝑠′)𝑑𝜇3(𝑧) using the fact that  𝜌1(𝑦𝑥𝑠)/𝜌1(𝑥)  = 𝜌2(𝑦𝑥𝑠)𝜌3(𝑦𝑥𝑠) ∕ 𝜌2(𝑦𝑥)𝜌3(𝑦𝑥) and 

𝜌2(𝑦𝑥𝑠) 𝜌2(𝑦𝑥)⁄ = 𝜌2(𝑥𝑠) 𝜌2(𝑥)⁄  this reduces to   

  √𝜌2(𝑥𝑆)𝜌2(𝑥𝑠
′) ∕ 𝜌2(𝑥)) ∫√𝜌3(𝑦𝑥𝑠)𝜌3(𝑦𝑥𝑠′) /𝜌3(𝑦))(𝐹(𝑦𝑥𝑠), 𝐹′(𝑦𝑥𝑠′)) 𝑑𝜇3(𝑧). 

Now by Lemma(1.2.8)  (F(xs), F′(xs′) as a function of x defines a continuous function with 

compact support on 𝔊/𝐺1 . Thus by the argument of Weil referred to in the proof of Lemma 

(1.2.5) it may be put in the form (F(xs), F′(xs′)) =   ∫ψ(ξ𝑥)dv1ξ where 𝜓 is continuous on 

𝔊 and has compact support. Thus our expression may be written [19]  

 (√𝜌2(𝑥𝑠)𝜌2(𝑥𝑠
′)/𝜌2(𝑥)) ∫√𝜌3(𝑦𝑥𝑠)𝜌3(𝑦𝑥𝑠

′) /𝜌3(𝑦)) ∫𝜓 (𝜉𝑦𝑥) 𝑑𝑣1(𝜉) 𝑑𝜇3(𝑧)   

= (√𝜌2(𝑥𝑠)𝜌2(𝑥𝑠
′)/𝜌2(𝑥)) ∫√𝜌3(𝑦𝑥𝑠)𝜌3(𝑦𝑥𝑠

′)  𝜓 (𝑦𝑥)𝑑𝑣2(𝑦)  

 and this is evidently finite. 

Let us designate the set of all 𝑓 , s of the form 𝑈𝑠1
𝐿 (𝐹1)+ . . . + 𝑈𝑠𝑛

𝐿 (𝐹2)  by 𝐶𝐿
𝑇. Our next task is 

to show that for each 𝑓 ∈  𝐶𝐿
𝑇 the function 𝑥 → 𝑓𝑥   from 𝔊 to 𝜇3ℌ𝐿  is  in  𝜇2ℌ𝑀 and  has the  

same norm as amember of  𝜇2ℌ𝑀   that 𝑓 foes when regarded as a member of  𝜇2ℌ𝐿. First of all 

if  𝑓  is any element of 𝐶𝐿
𝑇  and 𝑔 ∈  𝜇3ℌ𝐿  then (𝑓𝑥: 𝑔) =

∫√𝜌3(𝑦𝑥)𝜌3(𝑦) (𝑓 (𝑦𝑥), 𝑔(𝑦))𝑑𝜇3(𝑧) and this is  clearly a Borel function of x. Moreover  

 𝑓𝜂𝑥(𝑦)  =   𝑓(𝑦𝜂𝑥)√𝜌3(𝑦𝜂𝑥) /𝜌3(𝑦)  

=  𝑓((𝑦𝜂)𝑥)√𝜌3(𝑦𝜂𝑥)/𝜌3(𝑦𝜂) √𝜌3(𝑦𝜂)/𝜌3(𝑦) 𝑓𝑥(𝑦𝜂)√𝜌3(𝑦𝜂)/𝜌3(𝑦 ). 
For all x in 𝔊 and  all 𝜂and y in 𝐺2. Thus 𝑓𝜂𝑥 = 𝑀𝑛(𝑓𝑥)Finally in order to establish the fact 

that ∫(𝑓𝑥: 𝑓𝑥) 𝑑𝜇2(𝑧) is finite and equal to ∫(𝑓(𝑥), 𝑓(𝑥) 𝑑𝜇1(𝑧)we need only show that if 

𝑓 ∈𝔈 𝑈𝑠
𝐿(𝐹) and 𝑓′  = 𝑓 ∈𝔈 𝑈𝑠′

𝐿 (𝐹′) where 𝐹  and 𝐹′ are in 𝔊𝐶𝐿
0

 then  ∫(𝑓𝑥: 𝑓𝑥
′) 𝑑𝜇2(𝑧)  =

 ∫(𝑓(𝑥), 𝑓′(𝑥)  𝑑𝜇1(𝑧) . Moreover just as in the corresponding situation above we may 

assume that the first Integrand is summable. Using the expression computed above for 

𝑓𝑥: 𝑓𝑥
′we get  

 ∫(𝑓𝑥: 𝑓𝑥
′) 𝑑𝜇2(𝑧)

=   ∫(√𝜌2(𝑥𝑠)𝜌2(𝑥𝑠
′)/𝜌2(𝑥)) ∫√𝜌3(𝑦𝑥𝑠)𝜌3(𝑦𝑥𝑠

′)  𝜓(𝑦𝑥)𝑑𝑣2(𝑦)𝑑𝜇2(𝑧)  
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 = ∫√𝜌2(𝑥𝑠)𝜌2(𝑥𝑠
′) √𝜌3(𝑥𝑠)𝜌3(𝑥𝑠

′) 𝜓(𝑥) 𝑑𝑣(𝑥)  =  √𝜌1(𝑥𝑠)𝜌1(𝑥𝑠
′)𝜓(𝑥) 𝑑𝑣(𝑥). 

   

On the other hand  

 ∫(𝑓(𝑥), 𝑓′(𝑥)) 𝑑𝜇1(𝑧)  =  ∫√(𝜌1(𝑥𝑠)𝜌1((𝑥𝑠′) /𝜌1(𝑥)) 𝐹(𝑥𝑠), 𝐹′(𝑥𝑠′)𝑑𝜇1(𝑧)   

= ∫√(𝜌1(𝑥𝑠)𝜌1((𝑥𝑠′) /𝜌1(𝑥))  (∫𝜓 (𝜉𝑥) 𝑑𝑣1(𝜉))𝑑𝜇1(𝑧) 

 =  ∫√(𝜌1(𝑥𝑠)𝜌1((𝑥𝑠′)𝜓(𝑥)𝑑𝑣(𝑥). 

Thus the desired equality is established.  

We have now a linear norm preserving map from the dense subspace 𝐶L
𝑇  of 

𝜇1ℌ𝐿  𝑖𝑛𝑡𝑜 𝜇2ℌ𝐿. We denote by T its unique continuous extension to all of  T then is a unitary 

map of  𝜇1ℌ𝐿  onto a closed subspace of 𝜇2ℌ𝑀 . In order to Complete the proof of the unitary 

equivalence of  𝑈L  and 𝑈𝑀 we must show that  𝑇𝔊𝑈𝑥
𝐿  =  𝔊𝑈𝑋

𝑀
  for all x in 𝔈 and that T has 

all of 𝜇2ℌ𝑀 for its range. 

An obvious computation shows that  𝑇𝔊𝑈𝑥
𝐿  = 𝔊𝑈𝑋

𝑀
 𝑇(𝑓 )  for all  𝑓  in 𝐶L

𝑇  and the 

corresponding result for general f follows from the density of 𝐶L
𝑇. To show that the range of T 

is all of 𝜇2ℌ𝑀 we have only to show that this range is dense in 𝜇2ℌ𝑀 and this may be done 

using Lemmas(1.2.10) and (1.2.11). Let C of Lemma (1.2.10) be the set of all 𝑇(𝑓) for 𝑓 ∈
𝐶𝐿
𝑇 . Then (a) of this lemma is clearly satisfied. That (b) and (c) are also satisfied follows from 

quite elementary considerations. It remains to verify (d). To this end we first apply  Lemma 

(1.2.11) to show that for each 𝑥 ∈  𝔊 the set of all members of  𝜇3ℌ𝑀 of the form 𝑓𝑥 for 𝑓 ∈

 𝐶𝐿
0 is dense in 𝜇3ℌ𝑀 given 𝑥 ∈  𝔊, let 𝐶1 of this lemma be the set of all members of 𝜇3ℌ𝑀 of 

the form 𝑓𝑥  for 𝑓 ∈  𝐶𝐿
0. If 𝑓𝑥   ∈  𝐶1 then 𝑓𝑥(𝑦) = 𝑓(𝑦𝑥)√𝜌3(𝑥𝑦) ∕ 𝜌3(𝑦). Since by Lemma 

(1.2.8), (𝑓(𝑦𝑥),𝑤) is continuous in  𝑦  for each 𝑤  in ℌ(𝐿)   it follows that (a) of 

Lemma(1.2.11) is satisfied. Condition (b) has already been verified and conditions (c) and (d) 

may be verified by obvious arguments. That condition (e) is satisfied follows immediately 

from Lemma  (1.2.9). Thus Lemma(1.2.11) applies and for each 𝑥 ∈ 𝔊 the 𝑓𝑥 for 𝑓 ∈𝔊  𝐶𝐿
0 

are indeed dense in 𝜇3ℌ𝐿. Now choose a sequence 𝑓1 , 𝑓2, …. of members of 𝔊𝐶𝐿 such that for 

each  𝑓 ∈𝔊  𝐶𝐿
0  there exists a subsequence  𝑓𝑛1  , 𝑓𝑛2 , ….which converges uniformly to  𝑓 and 

is such that its members vanish outside of a common compact set. We shall show that the 

sequence 𝑇(𝑓1
0), 𝑇(𝑓2

0),  of members of 𝜇2ℌ𝑀    has  the property  required in (d) of lemma 

(1.2.10); that  we shall  show that for  each 𝑥 𝑖𝑛𝔊 the members 𝑦 → 𝑓𝑗
0(𝑥𝑦)√𝜌3(𝑦𝑥) ∕ 𝜌3(𝑦) 

of 𝜇3ℌ𝐿 are dense in 𝜇3ℌ𝐿 . In view of the foregoing we need only show that 𝑖𝑓 𝑥 ∈

 𝔊 and 𝑓𝑛𝑘   →   𝑓  in the sense indicated above then  (𝑓𝑛𝑘
0 )
𝑥
→  (𝑓0)𝑥  in the 𝜇3ℌ𝐿 norm. 

Thus we need only show that ‖𝑓𝑥
0‖ ≤ 𝑀(𝑥. 𝐾)𝑠𝑢𝑝𝑠∈𝔊‖𝑓(𝑠)‖ where K is a compact  

set containing   the support  of  𝑓  and 𝑀(𝑥. 𝐾)  is a positive real number. But ‖𝑓𝑥
0‖ =

∫(𝑓0(𝑦𝑥), 𝑓0(𝑦𝑥)) (𝜌3(𝑦𝑥)/𝜌3(𝑦)) 𝑑𝜇3(𝑧)  and if 𝑓  vanishes outside K and  ℎ2 𝑚𝑎𝑝𝑠 𝐺2  

canonically on 𝐺2/𝐺1 then 𝑓(𝑦𝑥)  vanishes for 𝑦 ∈  𝐾𝑥
−1⋂ 𝐺2 𝑠0𝑓

0(𝑦𝑥)  vanishes for 
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ℎ(𝑦)  ∉  ℎ(𝐾𝑥
−1⋂ 𝐺2). Let 𝜓 be continuous and have compact support in 𝐺2 and be such that 

𝜓1(𝑦) = ∫𝜓(𝜉𝑦)𝑑𝑣(𝜉) is  one on ℎ(𝐾𝑥
−1⋂𝐺2). Then 

‖𝑓𝑥
0‖2 ≦ (𝑠𝑢𝑝𝑢∈𝑔‖𝑓

0(𝑢)‖2)∫𝜓(𝑦)𝜌3(𝑦𝑥)𝑑𝑣2(𝑦)

≤ 𝑣1(𝐾𝐾
−1⋂𝐺1)∫𝜓(𝑦)𝜌3(𝑦𝑥)𝑑𝑣2(𝑦)(𝑠𝑢𝑝𝑢∈𝑔‖𝑓(𝑢)‖

2). 

We have thus completed the proof.     

Theorem (1.2.13)[11]: If L is the regular representation of 𝐺2⊆ 𝔊 then ,𝔊U
L is the regular 

representation of 𝔊.  

Let us denote the conjugate space of a Hilbert space ℌ by ℌ̅. We know of  course that 

there is a standard norm preserving anti linear mapping 𝑣 → 𝑣∗  of ℌ onto ℌ̅; This being 

defined by the equation 𝑣∗(𝑤)  =  (𝑤, 𝑣). Nevertheless it will be convenient to distinguish 

between ℌ and ℌ̅ (although not between ( ℌ and ℌ̅)). 

We have thus two meanings to be attached to the adjoint 𝑇∗  of a bounded linear 

operator 𝑇 𝑖𝑛 ℌ; the ordinary general meaning as an operator in ℌ̅  and the specific Hilbert 

space meaning 𝑇∗(𝑣)  =  (𝑇∗(𝑣∗))∗. We shall use 𝑇∗ in both cases trusting to the context or 

explanatory remarks to make clear what is meant in each instance.  

Let Ube an arbitrary representation of the separable locally compact group ℌ. By �̅�  the 

adjoint of U we shall mean the representation of 𝔊 𝑖𝑛 ℌ(𝑈)̅̅ ̅̅ ̅̅ ̅ defined  by the equation (�̅�)𝑥  =
 (𝑈𝑥−1)

∗  

Now let 𝐿 be a representation of the closed subgroup 𝐺 𝑜𝑓 ℌ. If ,𝜇  is a quasi  invariant 

measure in 𝔊/𝐺  and 𝑓and  𝑔  are members of  ℌ(𝜇𝑈𝐿) and ℌ ((𝜇𝑈�̅�))  respectively then for 

each 𝑥 ∈  𝔊 (𝑓(𝑥), 𝑔(𝑥)∗) is a well defined complex number. 

We have in addition (𝑓(𝜉𝑥), 𝑔(𝜉𝑥)∗)  =  (𝑓(𝑥), 𝑔(𝑥)∗) for all 𝜉 𝑖𝑛 𝐺 . Thus since  

(𝑓(𝑥), 𝑔(𝑥)∗) ≦ ‖𝑓(𝑥)‖   ‖𝑔(𝑥)‖  and ‖𝑓(𝑥)‖2  and ‖𝑔(𝑥)‖2  defines define summable 

functions on 𝔊/𝐺 we may form∫(𝑓(𝑥), 𝑔(𝑥)∗𝑑𝜇(𝑧) = 𝑓|𝑔 Thus each 𝑔 ∈ ℌ(𝜇𝑈𝐿) . Defines 

a member 𝑓 → 𝑓|𝑔𝑜𝑓 ℌ(𝜇𝑈𝐿̅̅ ̅̅ ̅)̅̅ ̅̅ ̅̅ ̅̅ ̅ .  
Theorem (1.2.14)[11]: The meaning of ℌ(𝜇

𝑈�̅�
) into ℌ(𝜇𝑈𝐿)̅̅ ̅̅ ̅̅ ̅̅ ̅defined by the equation 𝑓|𝑔 =

∫(𝑓(𝑥), 𝑔(𝑥)∗𝑑𝜇(𝑧)  is onto and unitary. It sets up a unitary equivalence  between the 

representations 𝑈�̅� and 𝑈𝐿̅̅̅̅ .  

Let ℌ1 and ℌ2be two Hilbert spaces and let T be a linear transformation from ℌ̅2 𝑡𝑜 ℌ1. Then 

𝑇∗ will be a linear transformation fromℌ̅1 𝑡𝑜 ℌ2 . 
Let A be defined by the equation 𝐴(𝑣) =  (𝑇 ∗ (𝑇(𝑣)∗))∗ 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑣 ∈  ℌ̅2.  . Then A is a non 

negative self adjoint operator in ℌ̅2 and admits accordingly a (possibly infinite)  trace. We let  

‖|𝑇|‖    =  √𝑇𝑟𝑎𝑐𝑒𝐴 .As is well known and easily verified the set of all T for which ‖|𝑇|‖ <
∞ is a Hilbert space under the norm → ‖|𝑇|‖ . 

The corresponding inner product is given by  (T,S) = Trace B were  𝐵(𝑣)  =  (𝑆∗(𝑇(𝑣)∗))∗. 
The T's in this Hilbert space are called the Hilbert-Schmidt operators from ℌ̅2and ℌ1.  and 

the Hilbert space itself the Kronecker product ℌ1 × ℌ2𝑜𝑓 ℌ1and ℌ2 
 Now let U and V be representations of the separable locally compact groups ℌ1and ℌ2 . 
 For each 𝑥1 , 𝑥2 ∈  𝔊1 𝑋 𝔊2  the mapping 𝑇 → 𝑈𝑥1 , 𝑇(𝑉𝑥2)

∗  is a unitary transformation of 

ℌ(𝑈)  ×  ℌ(𝑉)onto itself. We shall denote it by (𝑈 𝑋 𝑉)𝑥1,𝑥2.  
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Clearly the map 𝑥1, 𝑥2  →   (𝑈   × 𝑉)𝑥1,𝑥2 is a unitary representation of  𝔊1   × 𝔊2.We shall 

call it the outer Kronecker product 𝑈  ×  𝑉 of the representations U and V of 𝔊1 𝑋 𝔊2 .if 

𝔊1 = 𝔊2 = 𝔊 then the subgroup �̃�2  of all  𝑥, 𝑦 𝑖𝑛 𝔊1  ×  𝔊 2  =   𝔊𝑋𝔊 𝑤𝑖𝑡ℎ 𝑥 =  𝑦  is 

isomorphic to 𝔊. The restriction to �̃�2  of 𝑈 𝑋 𝑉 thus defines a representation Of 𝔊 which we 

shall call the Kronecker product 𝑈⨂ 𝑉  of the representations U and V of 𝔊. We note that 

𝑇 →  𝑇∗ sets up a unitary equivalence between 𝑈⨂ 𝑉 and 𝑉 ⨂ 𝑈.  

Theorem (1.2.15)[11]: Let L and M be representations of the closed subgroups 𝐺1 and 𝐺2 of 

the separable locally compact groups 𝔊1 and 𝔊2 respectively. 

Then the representations  𝔊1 × 𝔊2
𝑈𝐿×𝑀 𝑎𝑛𝑑 𝔊1  𝑈

𝐿   ×  𝔊2  𝑈
𝑀  𝑜𝑓 𝔊1  ×  𝔊2  are unitary 

equivalent.  

Proof: Let T be a member of ℌ(𝑈𝐿  × 𝑈𝑀) [that is an operator from ℌ(𝜇2U𝑀)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅   to ℌ(𝜇1𝑈
𝐿)] 

whose range is finite dimensional.Then there exist  𝑓1, 𝑓2, … 𝑓𝑛 ∈  𝐻(
𝜇1𝑈𝐿)  and 

𝑔1, 𝑔2… . 𝑔𝑛  ∈   , ℌ(
𝜇2𝑈𝑀) such that for each  𝑔 ∈   , ℌ(𝜇2𝑈𝑀) we have 𝑇(𝑔∗) = (𝑔1, 𝑔)𝑓1 +

⋯+ (𝑔𝑛, 𝑔)𝑓𝑛. For each  𝑥, 𝑦 ∈  𝔊1  ×  𝔊2   we may define an operator 𝐴𝑇(𝑥, 𝑦)  

fromℌ(𝑀)̅̅ ̅̅ ̅̅ ̅ 𝑡𝑜 ℌ(𝐿) as follows. (𝐴𝑇(𝑥, 𝑦)(𝑤
∗) = 𝑓1(𝑥)(𝑔1(𝑦),𝑤) +⋯+ 𝑓𝑛(𝑥)(𝑔𝑛(𝑦), 𝑤). 

We note at once that 𝐴𝑇(𝜉𝑥, 𝜂𝑦)  =  𝐿𝜉𝐴𝑇(𝑥, 𝑦)𝑀𝜂
∗  𝑓𝑜𝑟 𝑎𝑙𝑙 𝑥, 𝑦 ∈  𝔊1 × 𝔊2  and all𝜉, 𝑛 ∈

𝐺1 × 𝐺2. 

 Moreover  ‖|𝐴𝑇(𝑥, 𝑦)|‖
2 = ∑ (𝑓𝑖(𝑥), 𝑓𝑗(𝑥)) (𝑔𝑖(𝑦), 𝑔𝑖(𝑦))𝑖𝑗   and  

‖|𝑇|‖2 =∑(𝑓𝑖: 𝑓𝑗)(𝑔𝑗: 𝑔𝑖)

𝑖𝑗

=∑ (∫(𝑓𝑖(𝑥), 𝑓𝑗(𝑥))𝑑𝜇1(𝑧)) (∫(𝑔𝑗(𝑦), 𝑔𝑖(𝑦)𝑑𝜇2(𝑧))
𝑖𝑗

 

= ∫(∑ (𝑓𝑖(𝑥), 𝑓𝑗(𝑥)
𝑖,𝑗

) (𝑔𝑗(𝑦), 𝑔𝑖(𝑦))𝑑(𝜇1 × 𝜇2)(𝑧)

= ∫‖|𝐴𝑇(𝑥, 𝑦)|‖
2 𝑑(𝜇1 × 𝜇2)(𝑧). 

Thus the function 𝐴𝑇(𝑥, 𝑦 → 𝐴𝑇(𝑥, 𝑦))  is a member of ℌ(𝑈𝐿𝑋𝑀) and the mapping 𝑇 →  𝐴𝑇 

is linear and norm preserving. Moreover the domain and range of this mapping are dense in 

ℌ(𝑈𝐿 𝑋 𝑈𝑀) andℌ (𝑈𝐿𝑋𝑀) respectively. 

As far as the domain is concerned this follows from the theory of Hilbert-Schmidt operators.  

To show that the range is dense we need only apply Lemma(1.2.11)  to those particular 𝐴𝑇′𝑆 

for which the 𝑓𝑖  and 𝑔𝑗  are in 𝔊1𝐶𝐿
0 and,𝔊2𝐶𝑀

0  respectively.We leave the easy but mildly 

tedious task of verifying that the hypotheses of this lemma are satisfied. 𝑇 →  𝐴𝑇  may thus 

be extended by continuity to give a unitary map of ℌ(𝑈𝐿 𝑋𝑈𝑀) 𝑂𝑛 ℌ(𝑈𝐿𝑋𝑀) and it is almost 

immediate that this map sets  up the required unitary equivalence. 

Corollary (1.2.16)[11]: Let the separable locally compact group 𝔊 be the direct product 𝐺 ×
𝐺1 of the closed subgroups 𝐺 and 𝐺1 and let L be a representation of G. 

Then 𝑈L  is  unitary equivalent to the outer Kronecker product of L with the regular 

representation of 𝐺1.  
 The second of our three main Theorems asserts the existence of a certain useful  direct sum 

decomposition of the Kronecker product 𝑈𝐿⨂𝑈𝑀 of two induced representations of a group 

𝔊. By definition𝑈𝐿⨂ 𝑈𝑀 is obtained from the outer Kronecker product 𝑈𝐿𝑋 𝑈𝑀 𝑜𝑓 𝔊𝑋 𝔊 by 

restricting 𝑈𝐿 𝑋𝑈𝑀  to the subigroup 𝔊 𝑜𝑓 𝑎𝑙𝑙 𝑥, 𝑦 ∈  𝔊 𝑋 𝔊 𝑤𝑖𝑡ℎ 𝑥 =  𝑦 . By Theorem 
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(1.2.15) , 𝑈𝐿𝑋𝑀  is unitary equivailent to 𝑈𝐿 𝑋𝑈𝑀 . Thus 𝑈𝐿 𝑋𝑈𝑀  can be analyzed by 

ahalyzing the restriction of 𝑈 𝐿𝑋𝑀𝑡𝑜 �̅�.Our Theorem on Kronecker products follows from 

these remarks and a Theorem (our first main Theorem) on the decomposition of the 

restriction   of an induced representation to a closed subgroup. Let L be a representation of 

the closed subgroup 𝐺1 𝑜𝑓𝔊  and consider the restriction 𝑈𝐿,𝐺2  𝑜𝑓 𝑈𝐿  to a second closed 

subgroup 𝐺2. 
While 𝔊 acts transitively on the homogeneous space 𝔊/𝐺1 or right 𝐺1 cosets 

this will not be true in general of 𝐺2. 
Moreover any division of  𝔊/𝐺1  into two parts 𝑆1 and 𝑆2,each a Borel set which is not a null 

set9, and each invariant under 𝐺2 leads to a corresponding direct sum decomposition of U𝐿,𝐺2  . 
indeed the closed subspaces ℌ𝑠1and ℌ𝑠2 of all 𝑓 ∈  𝔊(𝜇𝑈𝐿) which vanish outside 

of ℎ−1(𝑆1) and ℎ
−1(𝑆2) respectively are invariant and are orthogonal Complements of one 

another. 

Suppose that there is a null set N in 𝔊/𝐺1 whose complement is the union of countably 

many non null orbits 𝐶1, 𝐶2, …  𝑜𝑓 𝔊/𝐺1  . under 𝐺2. Then we obtain by the above procedure a 

direct sum decomposition of 𝑈𝐿,𝐺2  into as many parts as there are non null orbits. Our 

Theorem follows from an analysis of the nature of these parts and it is with this analysis that  

the present is concerned. 

         We consider a more general case in which all of the orbits can be  null sets and our sum 

becomes an integral. 

Since we can do so with but little extra effort we will make the analysis to follow apply to 

this case as well. Of course according to the definition given above ℌ𝑐  will be zero 

dimensional whenever C is a null orbit. However it is possible to reword the definition so that 

it always  gives a non zero Hilbert space and so that when C is not a null set this definition is 

essentially the same as that already given. 

Indeed note that when C is an  orbit which is not a null set then ℌ𝑐may be equivalently 

defined as follows. 

Let 𝑥0 be any member of 𝔊 such that ℎ(𝑥0)  ∈  𝐶 and consider the set ℌ𝑐
1 of all functions 𝑓 

from the double coset 𝐺1𝑥0𝐺2 𝑡𝑜 ℌ(𝐿) such that:(a) (f(x),v) is a Borel function for all 𝑣 ∈

ℌ(𝐿), = (𝑏) 𝑓(𝜉𝑥) = 𝐿𝜉(𝑓(𝑥)) for all 𝜉 ∈  𝐺1 and all 

𝑥 ∈  𝐺1𝑥0𝐺2 and   (𝑐) ∫ (𝑓(𝑥), 𝑓(𝑥))𝑑𝜇(𝑧) < ∞
𝑐

 where𝜇 is a quasi-invariant measure in 

𝔊/𝐺1. 

ℌ𝑐
1  under the norm implicitly defined under (c) is evidently isomorphic to ℌ𝑐 in a natural 

manner. Moreover the measure in C need not be defined by restricting  𝜇 𝑡𝑜 𝐶. Instead noting 

that 𝐺2 acts transitively on C we may apply Theorem(1.2.6) and define 𝜇𝑐as a quasi invariant 

measure in C associated with the 𝜆 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝜆𝑐 , 𝑤ℎ𝑒𝑟𝑒 𝜆𝑐 , is the restriction to 𝐶 𝑋 𝔊2  of 

the𝜆-function associated with 𝜇. Strictly speaking Theorem (1.2.6) does not apply since C is 

not a coset space  or even known to be locally compact. 

However the mapping 𝑥 →   ℎ(𝑥0𝑥)  sets up a one-to-one Borel set preserving 

Correspondence between the points of C and  those of the coset space 𝐺2/𝐺0 Where 𝐺0 is the 

set of all 𝑥 ∈  𝐺2such that ℎ(𝑥0𝑥) =   ℎ(𝑥0); that is 𝐺0  =  𝐺2 ⋂(𝑥0
−1𝐺1𝑥0).Moreover it is 

evident that this mapping allows us to apply Theorem(1.2.6) to the case at hand. Using 
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𝜇𝑐  𝑓𝑜𝑟 𝜇 the above  - definition of ℌ𝑐
′  gives a non trivial space for every orbit C. We are now 

in a position to formulate the lemma giving the sought for analysis.  
Lemma(1.2.17)[11]:  Let C be any orbit in 𝔊/𝐺1 under 𝐺2 and let 𝑥o be such that ℎ(𝑥0)  ∈
𝐶. 

Let ℌ𝑐
′ be defined as above .Let U be the representation of 𝐺2 induced by the representation 

𝜂 → 𝐿𝑥0𝜂𝑥0−1of G2⋂ (x𝑥0
−1G1x0). Then there is a unitary map of ℌ(U) on  ℌ𝑐

1 such that if 𝑓 ∈

 ℌ(𝑈) corresponds to  𝑔 ∈ ℌ𝑐
1 ' then 𝑈𝑠(𝑓) corresponds to𝑔𝑠  where 𝑔𝑠(𝑥) = 𝑔(𝑥𝑠)√𝜆(𝑥, 𝑠) 

for all 𝑥 ∈ 𝐶 and all 𝑠 ∈  𝐺2.  
Proof: For each function f on 𝐺1𝑥0𝐺2 which satisfies conditions (a) and (b) of the definition 

of ℌ𝑐
′  let 𝑓(𝑡)  =  𝑓(𝑥0𝑡) 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑡 ∈  𝐺2 . 

Then (𝑓(𝑡), 𝑣) is a Borel function on 𝐺2   for all 𝑣 ∈ ℌ(𝐿)   . Moreover if 𝜂 ∈  𝐺0 =

 𝐺2 ⋂ (𝑥0
−1 𝐺1𝑥0)  then if 𝜉 =  𝑥0𝜂𝑥0

−1   we have  𝑓(𝜂𝑡) =   𝑓(𝑥0
−1𝜉𝑥0𝑡)  =  𝑓(𝜉𝑥0𝑡)  =

 𝐿𝜉  𝑓 (𝑡)   = 𝐿𝑥0𝜂𝑥0−1  (𝑓(𝑡)) that is   

(∗)𝑓(𝜂𝑡) = 𝐿𝑥0𝜂𝑥0−1  (𝑓(𝑡)) 

 for all 𝑡 ∈  𝔊2  and all 𝜂 ∈ 𝐺2 ⋂ (𝑥0
−1𝐺1𝑥0).  Conversely let 𝑔  be any function from 

𝐺2𝑡𝑜 ℌ(𝐿) which is a Borel function in the sense that 𝑓 was and which satisfies (*).We define 

𝑓(𝜉𝑥0𝑡)  =  𝐿𝜉( (𝑔 𝑡))  for all 𝜉 ∈ 𝐺1  and 𝑡 ∈ 𝐺2 . If 𝜉1𝑥0𝑡1 = 𝜉2𝑥0𝑡2 then 𝜉2
−1  𝜉1   =

𝑥0𝑡2𝑡1
−1𝑥0

−1  so that 𝑔(𝑡2𝑡1
−1𝑡)  =  𝐿𝜉2𝜉1

−1 (𝑔(𝑡)).   Thus  𝐿𝜉2(𝑔(𝑡2)) = 𝐿𝜉1(𝑔(𝑡1))  and 𝑓 is 

unambiguously defined. We show next that (𝑓(𝑥), 𝑣) is a  Borel function of x for all 𝑣 ∈
 ℌ(𝐿). Let 𝑓1(𝜉, 𝜂)  =  𝐿𝜉(𝑔(𝜂)) for all 𝜉, 𝜂 in 𝐺1, 𝐺2  . 

 Then  (𝑓1( 𝜉, 𝜂), 𝑣)   = (𝑔(𝜂), 𝐿𝜉−1(𝑣))   =   ∑ (𝑔(𝜂), 𝜑𝑖)
∞
𝑖=1 (𝜑𝑖 , 𝐿𝜉−1(𝑣)   where {𝜑𝑖} is an 

orthonormal basis for ℌ(𝐿). 
Evidently then   (𝑓1( 𝜉, 𝜂), 𝑣) is a Borel function of 𝜉, 𝜂 ∈  𝐺1𝑋 𝐺2. 
Let us introduce a new group operation in 𝐺1𝑋 𝐺2 . by defining  (𝜉1, 𝜂1)(𝜉2, 𝜂2) =
(𝜉1𝜉2, 𝜂2𝜂1)and let us call the resulting group 𝐺3. 
Then 𝜉1𝑥0𝜂1 = 𝜉2𝑥0𝜂2   if and only if (𝜉2, 𝜂2)

−1(𝜉1, 𝜂1) = 𝜉2
−1𝜉1, 𝜂1𝜂2

−1 has the form 

𝜉, 𝑥0
−1𝜉−1𝑥0.  

  The set of all such is a subgroup 𝐺4 𝑜𝑓 𝐺3 .Thus  𝜉, 𝜂 → 𝜉𝑥0𝜂  sets up a one-to-one 

correspondence between the points of the homogeneous space 𝐺3/𝐺4 and the points of the 

double coset 𝐺1𝑥0𝐺2. 

Moreover it follows from the existence of Borel sections that the function on 𝐺3/𝐺4 defined 

by  (f1(ξ, η), v) is a Borel function. 

That (𝑓(𝑥), 𝑣) is a Borel function now follows from the fact that the mapping of 𝐺3/𝐺40f  on 

𝐺1𝑥0𝐺2 defined above preserves Borel sets. 

Observe finally that f̃  = g is a one-to-one map of Borel functions satisfying (*) onto 

functions satisfying (a) and (b) of the definition of ℌ𝑐
′  .Consider the mapping 𝑡 →

ℎ (𝑥0𝑡) of 𝐺2 𝑜𝑛𝑡𝑜 𝐶.  It is one-to-one and Borel set preserving from G2/(G2  ∩
 (x0

−1G1xo))to C  Moreover if t and z correspond under the map and 𝜂 ∈  𝐺2 then [𝑡]𝜂  and 

[𝑧]𝜂 do  also. Finally the functions  ‖𝑓‖2 and  ‖𝑓‖
2
  define function on C and G2 ∕ (G2 ∩

(x0
−1Glx0)) respectively which correspond under this map. 



21 

If we use this  same map to transfer the measure  μc in C  over to the homogeneous space   

G2/(G2  ∩  (x0
−1G1xo)  we will get a quasi invariant measure v There such that  

∫‖f(x)‖2 dμ(z)   =  ∫‖f̃(x)‖
2
 dv(z′).  Thus 𝑓 → 𝑓′  sets up the unitary transformation 

demanded by the conclusion of the lemma. 

Let 𝐺1 and 𝐺2 be closed subgroups of the separable locally compact group 𝔊.  

We shall say that 𝐺1 and 𝐺2 are discretely related if there exists a subset of 𝔊  whose 

complement has Haar measure zero and which is itself the union of countably many 𝐺1: 𝐺2 
double cosets. Since the double cosets 𝐺1: 𝐺2  are in an obvious natural one-to-one 

correspondence with the orbits in 𝔊/𝐺1 under 𝐺2 the discussion in the preceding and Lemma 

(1.2.17). 

Theorem (1.2.18)[11]:  Let 𝑈L be the representation of 𝔊 induced by the representation L of 

the closed subgroup 𝐺1  of 𝔊. Let 𝐺2 be a second closed subgroup of 𝔊 and suppose that 

𝐺1 and 𝐺2 are discretely related. For each 𝑥 ∈  𝔊  consider the subgroup  𝐺2 ∩
 (𝑥−1𝐺1𝑥) 𝑜𝑓 𝐺2 and let 𝑥𝑉 denote the representation of 𝐺2 induced by the representation 

𝜂 →   𝐿𝑥𝜂𝑥1 of this subgroup.Then  𝑥𝑉 is determined to within unitary  equivalence by the 

double coset 𝐺1𝑥𝐺2  =  𝐷(𝑥) to which x belongs and we may write DV = xV where D = D(x). 

Finally 𝑈L restricted to 𝐺2 is the direct sum of the  DV over those 𝐺1: 𝐺2 double cosets D 

which are not of measure zero.  

As a fairly easy Corollary of this Theorem combined with Theorem(1.2.15)  we get . 

Theorem (1.2.19)[11]:  Let 𝐺1 and 𝐺2 be discretely related closed subgroups of 𝔊and let L 

M be representations of 𝐺1 and 𝐺2  respectively. For each 𝑥, 𝑦 ∈  𝔊 𝑋 𝔊 consider  the 

representations  𝑠 →   𝐿𝑥𝑠𝑥−1  and 𝑠 →   𝑀𝑦𝑠𝑦−1  of the subgroup (𝑥−1𝐺1𝑥)  ∩ (𝑦
−1𝐺2𝑦)  of 

𝔊. Let us denote their Kronecker product by 𝑁𝑥,𝑦 and form the induced representation 𝑈𝑁𝑥,𝑦 

of 𝔊. Then  𝑈𝑁𝑥,𝑦, is determined to within unitary equivalence by the double coset 𝐺1 𝑥𝑦
−1 𝐺2 

to which 𝑥𝑦
−1 belongs and the direct sum of the 𝑈𝑁𝑥,𝑦 over those double cosets which are not 

of measure zero, is unitary equivalent to the  Kronecker Product 𝑈𝐿⨂𝑈𝑀 𝑜𝑓 𝑈𝐿 and 𝑈𝑀. 
Proof:  𝑈𝐿⨂𝑈𝑀  Is the representation of 𝔊  obtained from the representation  

𝑈𝐿⨂𝑈𝑀 𝑜𝑓 𝔊 ×by restriction to the isomorphic replica �̃�  of 𝔊  consisting of all 𝑥, 𝑦 ∈
 𝔊 𝑋 𝔊 𝑤𝑖𝑡ℎ 𝑥 =  𝑦. Moreover by Theorem(1.2.15) , 𝑈𝐿 × 𝑈𝑀is unitary  equivalent to 𝑈L×M 

where 𝐿 × 𝑀 is of course a representation of 𝐺1 × 𝐺2. 
Thus we have to do with the restriction of an induced representation to a subgroup and may 

try to apply Theorem(1.2.18). An easy computation shows that the  mapping  𝑥, 𝑦 →
 𝑥𝑦−1 𝑜𝑓 𝔊 ×   𝔊 𝑜𝑛 𝔊  sets up a one-to-one correspondence between the double cosets 

(𝐺1  × 𝐺2): �̃� 𝑜𝑓 𝔊 ×  𝔊 and the double cosets 𝐺1: 𝐺2  𝑜𝑓 𝔊 in which  (𝐺1  ×

 𝐺2) (𝑥, 𝑦) �̃� corresponds to 𝐺1𝑥𝑦
−1𝐺2 . Furthermore in this  mapping double cosets of 

measure zero correspond to double cosets of Measure zero. 

Indeed 𝑥1, 𝑦1 and 𝑥2, 𝑦2 go into the same point of 𝔊 if and only if they  belong to the same 

left �̃� coset.  Thus a one-to-one mapping of 𝔊 onto the left  coset space (𝔊 ×  𝔊)//�̃� is 

induced.  By Lemma (1.2.3)(which is of course equally true for left coset spaces) a double 

coset in 𝔊 ×  𝔊 is of measure zero if and only  if its image in(𝔊 ×  𝔊)//�̃� is of Measure 

zero with respect to the quasi invariant measures in this coset space. 
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 On the other hand the measure in  transferred to  (𝔊 ×  𝔊)//�̃�by the one-to-one mapping in 

question is readily seen to be quasi invariant.  Thus the hypotheses of Theorem (1.2.18)are 

satisfied. By this Theorem 𝑈𝐿×𝑀  restricted to �̃�  is a direct sum over the double cosets 

(𝐺1 𝑋 𝐺2) (𝑥, 𝑦) �̃� which are not of measure zero and the summand associated with the 

double coset containing 𝑥, 𝑦 is the representation of 3 induced by the representation 

s, s →  (L × M) (x,y)(s,s)(x,y)−1   of �̃�  ∩  ((x, y)
−1(G1 × G2) (x, y)). 

But it is easily verified that �̃�  ∩ ((x, y)−1(G1 × G2) (x, y)) transferred to 𝔊 by the natural  

isomorphism is the subgroup x−1G1x ∩ y
−1G2y  and that the representation s , s →

 (L × M) (x,y)(s,s)(x,y)−1  becomes the representation  L′ × M′  where 𝐿′  is  𝑠 →

𝐿𝑥𝑠𝑥and M
′is s → Mysy−1 .  

Let U and V be representations of the separable locally compact group 𝔈. A bounded linear 

operator T from ℌ(𝑉) 𝑡𝑜 ℌ(𝑈) will be called an intertwining operator for U and V if UxT =
 TVx.for all 𝑥 ∈ 𝔊. 

If T is in addition a Hilbert Schmidt operator it will be called a strong intertwining operator. 

The dimension  0, 1, 2, . . , ∞ of the vector space of all intertwining operators For U and V will 

be called the intertwining number I(U;  V) of U and V. The dimension of the vector space of 

all strong intertwining operators will be called the strong intertwining number J(U, V) of U 

and V.  

Let (ℌ(U)), be the smallest closed subspace of ℌ (U)  which contains all finite dimensional 

subspaces of ℌ(U) which are invariant under U. Then  (ℌ(U))fitself an invariant subspace 

of ℌ(U). The component of U in this invariant subspace we shall call the finite discrete part 

of U and denote it by 0U.  

Lemma (1.2.20)[11]:  Let U and V be representations of the separable locally compact group 

𝔊. Then J(U, V) (D(U)) =  I(0U,0 V) and this  number is equal to the number of  times that 

𝑈 ⨂ �̅� contains the identity representation as a discrete direct summand; that is the dimension 

of the subspace of ℌ(𝑈) in which all 𝑈𝑥.act as the identity.  

Proof. If UxT =  TVx. then UxTVx
−1  = T which may be written UxTx

∗= 𝑇 Or (𝑈⨂�̃�)
𝑥
(𝑇) =

𝑇. Since all steps are reversible the equality of J(U, V) to the dimension of the identity 

component of 𝑈⨂�̃� is established. We now show  the equality of J(U, V) and 𝐼(0𝑈,0 𝑉). Let 

T be any strong intertwining operator for U and V. Let 𝑀1 be the orthogonal complement of 

the null space of T and let 𝑀1 be the closure of the range of T. Since T is an intertwining 

operator it follows that 𝑀1and 𝑀2 are invariant under U and V respectively. Let A(v)  = 

(T*(T(v)*))*. Then A is a self adjoint operator in ℌ(𝑉) which commutes with  all 𝑉𝑥 and is 

completely continuous. Because of the latter property it has a pure point spectrum and each 

non zero value occurs only a finite number of times. It follows that 𝑀2 is a direct sum of 

finite dimensional invariant subspaces and  a similar argument shows that the same is true of 

𝑀1 . Thus 𝑀2  ⊆ (ℌ(𝑉))𝑓  and  𝑀2 ⊆(&(U))f . Hence every strong intertwining operator 

carries (ℌ(𝑉))𝑓  into  (ℌ(𝑈))𝑓 fand is zero on the orthogonal complement of (ℌ(𝑉))𝑓  it 

follows at  once that 𝐽(0𝑈,0 𝑉)  =  𝐽(𝑈;  𝑉). Finally it is evident that both  𝐼(0𝑈,0 𝑉)  and 

𝐽(0𝑈,0 𝑉)are equal to ∑𝑤𝑛𝑤𝑚𝑤  where the sum is over all finite dimensional  irreducible 

representations of 𝔊  which appear as components of either 𝑈 
0  𝑜𝑟 𝑉 

0 , and where 

𝑛𝑤 (𝑟𝑒𝑠𝑝.𝑚𝑤) is the multiplicity of occurrence of W in 𝑈 
0  (resp. 𝑉 

0 ).  
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Lemma (1.2.21)[11]:  Let L be a representation of the closed subgroup G of the separable 

locally compact group 𝔊. 

Then the number of times that 𝑈L contains the identity as a discrete direct summand is equal 

to the number of times that L contains the identity as a discrete direct summand provided that 

𝔊/𝐺  admits a finite invariant measure. If 𝔊/𝐺  does not admit a finite invariant measure 

then𝑈L does not contain the identity as a discrete direct summand.  

Proof: Suppose first that 𝔊/𝐺 admits a finite invariant measure 𝜇. 𝐿𝑒𝑡 𝑓 be any member of 

, ℌ(𝜇𝑈𝐿) such that f(xs)  =  f(x) almost everywhere in 𝑥  for each s.  Then 𝑓(𝑥) is almost 

everywhere equal to a certain constant vector 𝑣. 𝑆𝑖𝑛𝑐𝑒  𝑓(𝜉𝑥)  =  𝐿𝜉(𝑓(𝑥))  for all 𝑥 in 𝔈 and 

all 𝜉 in G it follows that 𝑣 =  𝐿𝜉(𝑣) for all 𝜉 ∈  𝐺. Conversely let 𝑣 be any member of ℌ(𝐿) 

such that 𝑣 =  𝐿𝜉(𝑣) for all 𝜉 ∈  𝐺  and let 𝑓(𝑥)  =  𝑣 for all 𝑥 ∈ 𝔊. 

Since ,𝜇 is finite it follows at once that 𝑓 ∈  ℌ(𝜇𝑈𝐿)  and that 𝑈𝑠(𝑓)   = 𝑓 for all 𝑠 𝑖𝑛 𝔊. 

Thus 𝑣  →  𝑓𝑣 where 𝑣 ∈ ℌ (𝐿) and 𝑓𝑣(𝑥)  sets up a one-to one linear map of the identity 

component of ℌ(𝐿)onto the identity component of , ℌ(U𝐿) and the first part of the lemma is 

showd. 

Now let ,𝜇be any quasi invariant measure in 𝔊/𝐺  and let 𝜌 be an associated 𝜌 -function. 

Suppose that 𝑈L contains the identity a non zero number of times and that 𝑓 Is a non trivial 

member of the corresponding subspace of ℌ(, 𝜇𝑈𝐿)  . Then  𝑓 √(𝑥𝑠) 𝜌(𝑥𝑠)/𝜌(𝑥) =  𝑓(𝑥) for 

all s for almost all x. Thus 𝑓(𝑥) √𝜌(𝑥) is almost everywhere equal to some fixed vector 𝑣. 

Thus for each 𝜉 ∈  𝐺  and almost all 𝑥 𝑣/𝜌(𝜉𝑥)  =  𝐿𝜉(𝑣)/𝜌(𝑥) . It follows that 𝜌(𝜉𝑥)  =

 𝜌(𝑥)  for all 𝜉and 𝑥  and hence that 𝜌 is constant on the right G cosets. Now  ‖𝑓‖2   =
 ‖𝑣‖2 ∫(1/𝑝(𝑥)) 𝑑𝜇(𝑧) . Thus the measure whose Radon Nikodym derivative with respect 

to  𝜇 𝑖𝑠  1 𝜌′⁄ (where 𝜌′is the  function on 𝔊/𝐺 defined by 𝜌) is a finite measure. Moreover it 

is easily seen to be invariant.  

With the aid of these two lemmas and Theorem(1.2.19) we may show the discrete case 

of the third main Theorem.  

Theorem (1.2.22)[11]:  Let 𝔊, 𝐺1, 𝐺2, 𝐿 and M be as in Theorem(1.2.19) .For each 𝑥 and y in 

𝔊 consider the    representations 𝑠 →  𝐿𝑥𝑠𝑥−1 , and 𝑠 →  𝑀𝑦𝑠𝑦−1, of (𝑥−1𝐺1𝑥)⋂(𝑦
−1𝐺2𝑦) and 

let 𝐽(𝐿;  𝑀;  𝑥, 𝑦) denote their strong intertwining number. Then 𝐽(𝐿,𝑀, 𝑥, 𝑦) depends only 

upon the double coset 𝐷 =  𝐷(𝑥, 𝑦)  =  𝐺1𝑥𝑦
−1𝐺2 to which 𝑥𝑦−1 belongs so that we may 

write 𝐽(𝐿,𝑀,𝐷).  Moreover whether or not  (𝑥−1𝐺1𝑥)  ∩  (𝑦
−1𝐺2𝑦)    is such that 𝔊/

((𝑥−1𝐺1𝑥) ⋂ (𝑦
−1𝐺2𝑦)) admits a finite invariant measure depends only on this double coset. 

Let be the set of all double cosets for which a finite invariant  measure does exist and which 

are not of measure zero. Then   

∑ 𝐽(𝐿,𝑀, 𝐷)   =   𝐽(𝑈𝐿, 𝑈𝑀)

𝐷∈𝔇𝑓

   

Proof: By Lemma (1.2.21), 𝐽(𝑈𝐿, 𝑈𝑀)  is equal to the number of times that  𝑈𝐿⨂𝑈𝑀̅̅ ̅̅ =

 𝑈𝐿  ⊗ 𝑈�̅� contains the identity. By Theorem(1.2.19) , 𝑈𝐿  ⊗ 𝑈�̅�  is a direct sum over the 

double cosets of positive measure of certain induced representations 𝑈D
𝑁

 .Hence 𝐽(𝑈𝐿, 𝑈𝑀)is 

the sum over these double cosets of the number of times that 𝑈D
𝑁

contains the  identity. By 

Lemma (1.2.21) agiven deon  tributes to this sum only if 𝐷 ∈  𝔇𝑓 and then its contribution is 
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the number of times that the Kronecker product 𝐷N contains the identity .But again by lemma 

(1.2.20) the number of times that  𝐷N  contains the identity is exactly J(L, M, D). This 

completes the proof. 
If in Theorem(1.2.20) we let 𝐺1 =  𝐺 and 𝐺2  =  𝔊 then there is only one 𝐺1: 𝐺2double coset 

and we may take x = y = e. 

The Theorem then reduces to the following generalization of the Frobenius 

Reciprocity Theorem.  

Theorem (1.2.23)[11]:  Let L be an irreducible representation of the closed subgroup G of  

the separable locally compact group 𝔊  and let M be any finite dimensional irreducible 

representation of 𝔊. Then if  𝔊/𝐺 admits a finite invariant measure, 𝑈L contains  M as a 

discrete direct summand exactly as many times as the restriction of M to G contains L as a 

discrete direct summand. If 𝔊/𝐺 does not admit a finite invariant measure then 𝑈L contains 

no finite dimensional discrete direct summands.  

Corollary (1.2.24)[11]:. If 𝔊 is not compact then its regular representation contains no finite 

dimensional discrete direct summands.  

Theorem (1.2.21) for compact (not necessarily separable) groups has been showed by Weil 

[42]. F. I. Mautner informs me that he has found a somewhat different generalization of the 

Frobenius reciprocity Theorem than Theorem (1.2.21) for the case in which G is compact.  

In order to rid the results of Part II of the rather severe discreteness restriction there imposed 

we need  the notion of a direct integral or continuous direct sum of Hilbert spaces. Such a 

notion has been developed by von Neumann [36] and in another form by Godement [21], 

[22]. 

Mautner [31], [32], [33], and Godement [22] have applied this notion to the 

decomposition of unitary representations of locally compact groups. 

For our own use we have written up the theory  in a form differing slightly 

but not essentially from that of both von Neumann and Godement. 

We shall sketch our form of the theory so as to have its principal results available for 

later use. 

We shall call the members of this field the Borel sets in  Y. Let μ be a completely 

additive measure defined on all Borel sets and σ-finite in the sense that  Y is a union of 

countably many Borel sets of finite measure. 

The members  of the smallest σ -field containing all Borel sets and all subsets of Borel sets of 

measure zero will be called the measureable subsets of  Y . The measure μ of course has a 

unique extension to this larger - σ field. 

We shall call the system of objects just described a Borel measure space. Now suppose 

that there is given for each y ϵ Y a finite or infinite dimensional separable Hilbert space 

ℌ𝑦 . Let 𝔍 denote the set of all functions 𝑓 from 𝑌 to 𝑈𝑦∈𝑌ℌ𝑦 such that 𝑓(𝑦)  ∈  ℌ𝑦 for all y 

and such that 𝑦 → ‖ 𝑓(𝑦)‖2 is, 𝜇 summable on Y. We shall call a subset 𝑋 𝑜𝑓  𝔉 linear if it is 

closed under the formation of finite linear combinations of its members. It is easy to see that 

𝑦 → (𝑓(𝑦), 𝑔(𝑦)) is 𝜇  summable whenever 𝑓 and g are members of a linear X and that X 

becomes a (possibly incomplete) Hilbert  space under the scalar product (𝑓: 𝑔)  =
 𝑓 (𝑓(𝑦), 𝑔(𝑦) 𝑑𝜇(𝑦)  when functions which are equal almost everywhere are identified. If X 

is maximal linear in the sense that it is contained in no properly larger linear 𝑋′ then a slight 
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and obvious modification of the standard proof of the completeness of the space of square 

summable functions shows that X is complete and hence is a Hilbert space. 

Let X be a linear subset of ℑ. We shall say that X is pervasive if it contains a countable 

family of elements 𝑓1, 𝑓2, … such that for almost every y in Y the 

Sequence of elements 𝑓1(𝑦), 𝑓2(𝑦), … has ℌ𝑦 as its closed linear span. Modulo automorphism 

of the ℌ𝑦 there is at most one pervasive maximal linear X. We have  

 Lemma (1.2.25)[11]:  Let𝑋1and 𝑋2 be two pervasive maximal linear subsets of 𝔉. 

Then for each 𝑦 ∈  𝑌 there exists a unitary transformation 𝑈𝑦 𝑜𝑓 ℌ𝑦  onto itself such that 𝑓 ∈

𝑋1 if and only if 𝑔 ∈  𝑋2 where 𝑔(𝑦)  = 𝑈𝑦 (𝑓(𝑦)) for almost all 𝑦 ∈ 𝑌.  

Proof: By an orthogonalization process it is possible to replace the given pervading 

sequences  𝑓1 , 𝑓2, … , 91, 92, …. for 𝑋1 and 𝑋2  respectively by new sequences 

𝑓1
′, 𝑓2

′, .  . .  and 𝑔1
′ , 𝑔2

′ , …  having the following properties: (a) each  𝑓1
′ (𝑟𝑒𝑠𝑝. 𝑔𝑖

′)  is the 

product of a complex valued measurable function and a member of 𝑋1 (𝑟𝑒𝑠𝑝. 𝑋2), (b) for 

almost all 𝑦, 𝑓′(𝑦) =  0  implies 𝑓𝑖+1
′ (𝑦)  = 0 and 𝑔𝑖

′(𝑦)  =  0 implies 𝑔𝑖+1
′ (𝑦)   =  0, (𝑐) for 

almost all 𝑦 𝑡ℎ𝑒 𝑓𝑖
′(𝑦) which are not zero form a complete orthonormal set in ℌ𝑦  and the 

same is true of the 𝑔𝑖
′(𝑦). 𝑈𝑦 is then defined so that for almost all 𝑦, 𝑈𝑦(𝑓𝑖

′(𝑦))   =  𝑔𝑖
′(𝑦). 

There is no reason for supposing that a pervasive maximal linear X will exist  in 

general and indeed it need not.  

On the other hand if all of the ℌ𝑦 have the same dimension one can be constructed as 

follows. Simply map all of the ℌ𝑦  onto a fixed representative ℌ0 and consider the set of all 

functions f from Y to ℌ0  such that (𝑓(𝑦), 𝑣)  is measurable in y for each v in ℌ0 and 

(𝑓(𝑦), 𝑓(𝑦)) is summable. More generally suppose that for 𝑛 =  ∞, 1, 2, …  the y with ℌ𝑦, of 

dimension n form a measurable set 𝑌n. For each n let us map the ℌ𝑦 of this dimension on a 

fixed representativeℌ𝑛.  Then we may obtain a pervasive maximal linear X as follows. Let 

X be the set of all functions from 𝑌 𝑡𝑜 𝑈ℌ𝑛 such that 𝑓(𝑦)  ∈  ℌ𝑛  for all 𝑦 ∈  𝑌𝑛 such that 

(𝑓(𝑦), 𝑣) is measurable on 𝑌𝑛  for each 𝑣 ∈   ℌ𝑛  and such that  ∫(𝑓(𝑦), 𝑓(𝑦) 𝑑𝜇(𝑦)  < ∞. 
Conversely it follows from Lemma(1.2.1) and the argument used to show it that this is the 

general situation. 

If a pervasive maximall linear X exists then 𝑌𝑛 is measurable for each n and X can be 

defined in the manner just described. In the special case in which Y is a finite or countable  

set and 𝜇 is never zero it is clear, because of the measurability of all functions, that there is 

only one pervasive maximal linear X and that is ℑ itself. 

In general however there will be, if any, many different but equivalent such 𝑋′𝑠 
corresponding to the many ways of mapping the ℌ𝑦  of a given dimension onto a 

representative-which are not derivable from one another in a "measurable fashion". We  shall 

refer to each pervasive maximal linear X as a direct integral of the ℌ𝑦with respect to 𝜇. In 

applications there is often a "natural" choice of X. 

In particular there will often be given a pervasive linear subset of ℑ and it is not difficult to 

show that every pervasive linear subset of  ℑ is contained in a unique (pervasive) maximal 

linear subset of ℑ. 
Let X be a direct integral of the ℌ𝑦, and suppose that we are given a bounded operator 

v𝑇 in each ℌ𝑦.  If (′𝑇(𝑓(𝑦)), 𝑔(𝑦)) is measurable in y for each f and g in X and if  ‖′𝑇‖  is 
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bounded then for each f in 𝑋, 𝑦 →′ T(f(y)) = fT(y)   will be in X also and 𝑓  → fT  will 

define a bounded linear operator T of X into itself. 

We shall call T the direct integral ∫ ′𝑇  𝑑𝜇(𝑦)  of the VT with respect to X. It is  not difficult 

to show that this notion has the expected elementary properties; that is  

 ∫𝑣𝑇∗𝑑𝜇(𝑦)    =  ( 𝑣𝑇∗𝑑𝜇(𝑦))
∗, ∫(𝑣𝑇𝑣𝑆) 𝑑𝜇(𝑦)  = (∫𝑣𝑇𝑑𝜇(𝑦)) (∫𝑣𝑆𝑑𝜇(𝑦))  

and soon.  

Now suppose that there Is given in each ℌ𝑦 a representation 𝑣𝑈(𝑥  → 𝑣𝑈𝑥)) of  a fixed 

separable locally compact group 𝔊. We shall say that the mapping 𝑦 → 𝑣𝑈  is measurable 

with respect to a maximal pervasive linear X if for each fixed 𝑥 ∈ 𝔊 the direct integral 𝑉𝑥  =
 ∫ 𝑣𝑈𝑥𝑑𝜇 (𝑦) of the𝑣𝑈𝑥  with respect to X exists in the sense described in the preceding 

paragraph. 

We shall say that 𝑦 →  𝑣𝑈 is measurable if it is measurable with respect to X for some 

X. Let now y→ 𝑣𝑈  be measurable (with respect to X say). 

It follows from the elementary properties of direct integrals of operators that 

Each 𝑉x is unitary and that 𝑥 →  𝑉x  has the algebraic properties of a representation. In order 

to show that 𝑥 →  𝑉x  is actually a representation we have need of the following measure 

theoretic lemma.  

Lemma (1.2.26)[11]: Let Y be 𝑎 Borel measure space and let 𝑣 be a Borel measure in a 

separable locally compact metric space 𝔐. 

Let f be a complex valued function defined  on 𝔐×𝑌  which for each fixed y in Y is 

continuous on 𝔐 and for each fixed x in 𝔐 is measurable on Y. 

Then f is a measurable function on the product space  𝔐 ×  𝑌. 

Proof: There is clearly no loss in  generality in upposing that 𝔐 is compact. For each 𝑛 =
1, 2, . ..  we may  Write 𝔐 as a disjoint union of Borel sets each of diameter less than 1 ∕
𝑛: 𝔐 = 𝑚1

𝑛⋃𝑚2
𝑛⋃…𝑚𝑗𝑛

𝑛   Choose a point 𝑥𝑗
𝑛 in each 𝑚𝑗

𝑛 and let 𝑓n (𝑥, 𝑦) = 𝑓(𝑥𝑗
𝑛, 𝑦) for all 

x in 𝑚𝑗
𝑛 and all y in Y. Then it is obvious that 𝑓𝑛, is measurable in both variables and a very 

easy argument  shows that for all x, and y,  𝑙𝑖𝑚𝑛→∞𝑓𝑛(𝑥, 𝑈. . . 𝑦)  =  𝑓(𝑥, 𝑦). 
 Now let f and g be arbitrary members of X and note that (𝑉𝑥(𝑓): 𝑔)  =
 ∫(𝑣𝑈𝑥(𝑓(𝑦)), 𝑔(𝑦)) 𝑑𝜇(𝑦). Since 𝑣Uis a representation the integrand is continuous in x for 

each y and by definition it is measurable in y for each 𝑥. Thus by Lemma (1.2.25) this 

integrand is measurable in both variables. Applying the Fubini Theorem we conclude that  

(𝑉𝑥(𝑓): 𝑔) is measurable in x so that V is in fact a representation. It is readily verified that the 

following operations will carry V into a representation which is unitary equivalent to itself: 

(a) Change of 𝑦U on a set of  measure zero. (b) Replacement of X by any other maximal 

pervasive linear 𝑋′ with  respect to which 𝑦 − 𝑣𝑈 is measurable. (c) Replacement, of each 𝑣𝑈 

by a unitary equivalent representation. (d) Replacement of ,𝜇 by any other measure  with the 

same null sets. We shall call V the direct integral of the 𝑣𝑈  with respect  to𝜇 . 𝑉  =
 ∫ 𝑣𝑈  𝑈𝑑𝜇(𝑦).   
Theorem (1.2.28)[11]: Let G be a closed subgroup of the separable locally compact group 𝔊. 

Let M be a representation of G which is a direct integral over a Borel  measure space 𝑌, 𝜇1 of 

representation𝑠𝑦  𝐿;  𝑀 =  𝑓 ′𝐿 𝑑𝜇(𝑦). Then 𝑦 → 𝑈𝑌𝐿     Is measurable and ∫𝑈𝑌𝐿  𝑑𝜇(𝑦) is 

unitary equivalent to 𝑈M.   
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In any event M will be a discrete direct sum of representations each  of which is a 

direct integral of 𝑣𝐿,𝑠 having a common dimension. Thus we need only consider the case in 

which all of the ℌ(𝑣𝐿) have the same dimension. 

We may assume without loss of generality that there is a single Hilbert space ℌ1 in 

which all𝑣𝐿 act and that ℌ(𝑀) is the set of all functions from 𝑌 𝑡𝑜 ℌ  such that (𝑓(𝑦), 𝑤) is 

measurable for all 𝑤 ∈ ℌ1  ∫(𝑓 (𝑦), 𝑓(𝑦))
2
𝑑𝑗𝜇(𝑦) < ∞ .  

  Now let 𝐶ℌ1, denote the set of all functions from 𝔊𝑡𝑜 ℌ1 which are continuous and have 

compact support. 

For each 𝑔 ∈  𝐶ℌ1  and each 𝑦 ∈  𝑌 we may define 𝑔𝑦
0(𝑥) as in Lemma (1.2.8)using 𝐿 𝑓𝑜𝑟 𝐿. 

We shall write 𝑔𝑦
0(𝑥)  =   �̂�(𝑥, 𝑦). By Lemma (1.2.8), �̂�(𝑥, 𝑦) is for each fixed y a member of 

, ℌ(𝜇𝑈𝑦𝐿) where ,𝜇 is any quasi invariant  measure in 𝔊/𝐺   Now let 𝔖 be the set of all 

functions from 𝔊 × 𝑌 to ℌ1 of the  form ∅1 �̂�2 + … .+∅𝑛�̂�𝑛) where each 𝑔𝑗  ∈  𝐶ℌ1 ,  and 

each ∅𝑗 is a bounded measurable complex valued function of y alone which vanishes outside 

of a set of finite measure. Let r be any member of 𝔖. For each fixed 𝑥 ∈ 𝔊, 𝑟(𝑥, 𝑦) is a 

function from 𝑌 𝑡𝑜 , ℌ1.  

It is not difficult to show that it is weakly measurable, bounded and zero outside of a set of 

finite measure. Thus it is a member of ℌ(𝑀).We denote this member of ℌ(𝑀) 𝑏𝑦 𝑟𝑥
′ . There 

are also no difficulties in showing that the maping  𝑥 → 𝑟𝑥
′  is continuous from 

𝔊 𝑡𝑜  ℌ(𝑀).and is indeed a  member of ℌ(𝑈𝑀). Finally by Lemma(1.2.11) the set of all 

members of ℌ(𝑈𝑀) of the form 𝑥 → 𝑟𝑥
′ for 𝑟 ∈  𝔖 is dense in  ℌ(𝑈𝑀). On  the other hand the 

members of  𝔖 may be looked at in another way. For each fixed 𝑦 𝑖𝑛 𝑌, 𝑟(𝑥, 𝑦) as a function 

of x is a member of ℌ(𝑥𝑈2𝐿). Call it 𝑟𝑦
′′! The mapping 𝑦 →  𝑟𝑦

′′ is thus a function in the class 

ℑ use in constructing direct integrals of the spaces ℌ(𝑥𝑈2𝐿). The set R of all members of ℑ of 

the form 𝑦 →  𝑟𝑦
′′ for r in e is readily seen to be  linear and pervasive. Moreover it is closed 

with respect to multiplication by bounded measurable functions of y which vanish outside 

sets of finite measure. 

By a result in direct integral theory then R is dense in the unique maximal pervasive linear 

subset of ℑ  containing R. Call this maximal set X. It is easy to see  that 𝑦 → 𝑈𝑦𝐿  is 

measurable with respect to X. We take X then as ℌ(∫𝑈𝑦𝐿 𝑑𝜇(𝑦)). 
It is an immediate consequence of the Fubini Theorem that the member of ℌ(𝑈𝑀) 

defined by 𝑟 ∈  𝔖 has the same norm as the member of X defined by r. Thus we  have a 

norm preserving linear map of a dense subspace of ℌ(𝑈𝑀)on the dense subspace 𝑅 𝑜𝑓  𝑋 =
  ℌ(∫𝑈𝑦𝐿 𝑑𝜇(𝑦)). This extends to a unitary map of one space  on the other which can be 

seen without difficulty to set up  the desired unitary equivalence.  

Corollary (1.2.28)[11]: Let the regular representation of G be decomposed as a direct  

integral of representations 𝑦𝐿 . Then the regular representation of 𝔊 is a direct integral of the 

representations 𝑈𝑌L.  

The decomposition of the regular representation of a group defined by a decomposition 

of the regular representation of a subgroup has been noted by Godement [9] for the case in 

which the subgroup is Abelian and the decomposition is into one dimensional parts.  

Let 𝔐 be a separable locally compact space and let ,𝜇 be a finite measure in  𝔐. Let 

there be given an equivalence relation in 𝔐. Let the equivalence classes form a set Y and for 
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each 𝑥 ∈   𝔐 𝑙𝑒𝑡 𝑟(𝑥)  ∈  𝑌  denote the equivalence class to  which x belongs. Following 

Rohlin [38] we shall say that the equivalence relation is measurable if there exists a countable 

family 𝐸1 , 𝐸2, …of subsets of Y such that 𝑟−1(𝐸𝑖) is measurable for each i and such that each 

point y of Y is the intersection of the 𝐸i which contain it. We shall need a lemma asserting 

that ,𝜇   may be "decomposed" as an integral over Y of measures 𝜇𝑦concentrated in the 

various equivalence classes.  

Lemma (1.2.29)[11]:  Let  �̃� be the measure in Y such that 𝐸 ⊆  𝑌 is measurable if and only 

if 𝑟−1 (𝐸) is 𝜇 measurable and such that �̃�(𝐸)  =  𝜇(𝑟−1(𝐸)). 
Then for  each y in Y there exists a finite Borel measure 𝜇𝑦 𝑖𝑛 𝔐  such that 𝜇𝑦(𝔐−

  𝑟−1({𝑦}))  = 0 and ∫𝑓(𝑦) ∫𝑔(𝑥)𝑑𝜇(𝑥) 𝑑∼(𝑦  = ∫𝑓(𝑟(𝑥))𝑔(𝑥) 𝑑𝜇 (𝑥)   whenever 𝑓 ∈
𝔏1 (𝑌, �̃�) and g is bounded and measurable on 𝔐.  

We shall not stop to give a proof of this lemma. In one form or another it has been 

showd in a number of places. 

See for example von Neumann [34], Halmos [23], [24], Dieudonne [13], and Rohlin 

[38]. The formulation given here has been influenced by conversations on the subject with R. 

Go dement and a reading of a joint manuscript of Godement and N. Bourbaki. The Godement 

Bourbaki treatment will presumably appear in a subsequent volume of N. Bourbaki's well 

known treatise.  

We shall apply Lemma (1.2.29) when 𝔐 is the homogeneous space 𝔊/𝐺 and 𝜇 is a 

quasi invariant measure in 𝔊/𝐺. We shall need to know that the 𝜇𝑦 are also  quasi invariant 

and devote to a proof of this fact. 

Lemma (1.2.30)[11]: Let 𝜇1 and 𝜇2 be Borel measures in the separable locally compact 

spaces 𝔐1 and 𝔐2 . Let 𝑟1, 𝑌1 and 𝑟2, 𝑌2  define measurable equivalence relations in 

𝔐1 and 𝔐2 respectively. 

Let 𝑌 =  𝑌1 𝑋 𝑌2  and let r, where 𝑟(𝑥1 × 𝑥2) = 𝑟(𝑥1), 𝑟(𝑥2)   be the product equivalence 

relation in 𝔐1 and 𝔐2. Then r is measurable and in the decomposition of 𝜇1 × 𝜇2by Lemma 

(1.2.29) we may take (𝜇1)𝑦 × (𝜇)2 𝑓𝑜𝑟  (𝜇1 × 𝜇2)𝑦 .  

  Proof: The proof results from writing down the defining equation of (𝜇1 × 𝜇2)𝑦and making 

a few obvious manipulations.  

Lemma (1.2.31)[11]: Let  𝜇, 𝑟, 𝑌  and 𝔐 be as in Lemma(1.2.29)  and let t be a 

homeomorphism of  𝔐with itself such that 𝑟([𝑥]𝑡)  =   𝑟(𝑥) 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑥 𝑖𝑛 𝔐. Let 𝜇𝑡(𝐸)  =

  𝜇([𝐸]𝑡). Then in decomposing  𝜇𝑡  by Lemma(1.2.29) (𝜇𝑡)𝑦,  may be taken to be (𝜇𝑦)
𝑡
  

Lemma (1.2.32)[11]:  Let  𝜇, 𝑟, 𝑌 Let and 𝔐 be as in Lemma (1.2.29) and let k be a non 

negative function on 𝔐  which is 𝜇  summable. v be the measure whose Radon-Nikodym 

derivative with respect to ,𝜇  is k. Then �̃�  is absolutely continuous with respect to  �̌� the 

Radon-Nikodym derivative being 𝜆 say. 

Moreover in the decomposition of 𝑣 𝑣𝑦   may be taken to be that measure, absolutely 

continuous with respect to 𝜇𝑦 whose Radon-Nikodym derivative is zero or 𝑥 →  𝑘(𝑥)/𝜆(𝑦) 

depending upon whether or not 𝜆(𝑦) is zero.  

Proof: It follows by an easy argument from Lemma (1.2.29) that for all �̃� measurable sets 

𝐴, �̃�(𝐴)  =  𝑓𝐴  ∫ 𝑘(𝑥)  𝑑𝜇𝑦(𝑥) 𝑑�̃�(𝑦).  Thus �̃�  is absolutely continuous  and we may take 

𝜆(𝑦)  = ∫𝑘(𝑥)  𝑑𝜇𝑦(𝑥) . The defining equations of 𝜇𝑦 and 𝑣𝑦 lead at once to the equation   
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∫𝑓(𝑦)𝜆(𝑦)  ∫ g(x)dvy(x)dμ̃(y) = ∫𝑓(𝑦)∫g(x)k(x)𝑑μ𝑦(𝑥) dμ̃(y). 

Thus for μ̃  almost all 𝑦, 𝜆(𝑦)  ∫ g(x)dvy(x) = ∫ g(x)k(x)𝑑𝜇𝑦(𝑥)dμ̃(x).   now 𝜆(𝑦) > 0  for 

almost oll 𝑦 . Thus for almost �̃� all y 

 ∫ g(x)dvy(x) = (1 ∕ (λ(y)) ∫ g(x)k(x)𝑑𝜇𝑦(𝑥). 

and the truth of the lemma follows.  

Lemma (1.2.33)[11]:  Let 𝔐, r, Y and μ be as in Lemma (1.2.29) and let the separable 

locally compact group  𝔊act on 𝔐 in such a manner that: (a) x →  [x]z is a homeomorphism 

tz for each z ϵ 𝔊, (b) z → 𝑡zis a homomorphism of 𝔊 into the  group of  homeomorphisms of 

𝔐 onto itself. (𝑐) [𝑥]𝑧 is continuous in both variables together,  (𝑑) 𝑟([𝑥]𝑧)  =  𝑟(𝑥) for all 𝑧 
in 𝔊 and all 𝑥 ∈  𝔐. 

(e)  is quasi invariant under the action of 𝔊. Then in the decomposition of  𝜇  

almost all of the .𝜇𝑦  are also quasi invariant under 𝔊.   

Proof: Let v be any finite quasi invariant measure in 𝔊. Let 𝔐0 = 𝔐 𝑋𝔊 and 𝑌0  =  𝑌 𝑋 𝔊. 

For all 𝑥, 𝑧 ∈  𝔐0 𝑙𝑒𝑡 𝑟0(𝑥, 𝑧)  =  𝑟(𝑥), 𝑧 and let (𝑥, 𝑧)𝑡 =  [𝑥]𝑧, 𝑧. 
Then 𝑟0 is a measurable equivalence relation and 𝑡 is a self homeomorphism 

of  𝔐0  No.  Since the hypotheses of Lemma (1.2.31) are clearly satisfied we may, in de-

composing by Lemma (1.2.29),choose [(𝜇 ×  𝑣)𝑡]𝑣,𝑧  𝑎𝑠 ((𝜇 ×  𝑣)𝑣,𝑧)
𝑡 . By Lemma (1.2.30), 

we may choose (𝜇𝑦 × 𝑣𝑧)𝑓𝑜𝑟 (𝜇 × 𝑣)𝑦,𝑧  where 𝑣𝑧 is a measure concentrated in the point 𝑧 

and such that 𝑣𝑧({𝑧})  =  1. On the other hand it is evident that (𝜇𝑦 × 𝑣𝑧)
𝑡
= (𝜇𝑦)

𝑧 × 𝑣𝑧 

.Thus[(𝜇 × 𝑣)𝑡]𝑦,𝑧 may be taken as  (𝜇𝑦)
𝑧
× 𝑣𝑧 Now(𝜇 × 𝑣)𝑡 is readily seen to be absolutely 

continuous with respect to  ×  𝑣 . X v because of the quasi invariance of  𝜇. By Lemma 

(1.2.32) for μ̃ × v almost all pairs 𝑦, 𝑧, the measure (𝜇𝑦)
𝑧 × 𝑣𝑧 is absolutely continuous with 

respect to(𝜇𝑦 × 𝑣𝑧) . 

Thus for almost all 𝑦 he measure(𝜇𝑦)
𝑧
is absolutely continuous with respect to  𝜇𝑦for 

almost all z. But for fixed y the set of all z for which (𝜇𝑦)
𝑧
 is absolutely continuous with 

respect to 𝜇𝑦 is closed under multiplication. But the v null sets of 𝔊 are just those of Haar 

measure zero and it is easily seen that a multiplicatively closed subset of a group cannot have 

a complement of Haar measure zero unless the subset is the whole group.Thus for almost all 

𝑦, . 𝜇𝑦  invariant. 

We are now in a position to show generalizations of Theorems (1.2.18) and (1.2.19) for 

the case in which the closed subgroups 𝐺1and 𝐺2 are not necessarily discretely related. On 

the other hand we may not allow completely general pairs𝐺1, 𝐺2.They must be related in such 

a manner that almost all of the orbits in  𝔊/𝐺1 under the action of 𝐺2 form the equivalence 

classes of a measurable equivalence relation. In any case we can of course find a countable 

set 𝐸1, 𝐸2, … of  Borel unions of orbits which generates (modulo null sets) the a field of all 

measurable unions of orbits. 

The unique equivalence relation r such that r(x) = r(y)  if and only if 𝑥 and y are in the 

same sets 𝐸j  will be measurable and this measurable equivalence relation will define a 

decomposition of the quasi invariant measure  into smaller quasi invariant parts. This will 

lead in turn to a decomposition of 𝑈L restricted to 𝐺2. 
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However the equivalence classes may be unions  of many orbits instead of single 

orbits. When this happens the components of the decomposition of 𝑈𝐿,𝐺2  will not be 

associated with single double cosets and will not be identifiable as induced representations of 

𝐺2 as in Theorem (1.2.18). In fact at the present time we know little or nothing about the 

nature of these components. Presumably of course the theory of the decomposition of 

measures into ergodic parts can be used to show that all of these components are imprimitive 

with respect to ergodic but not necessarily transitive systems of imprimitivity. But as 

indicated in [28] we know very little about non transitive systems of imprimitivity. Just as we 

did in [28] then we restrict ourselves to the case in which this phenomenon of non transitive 

ergodicity does not arise. 

Specifically we define the closed subgroups 𝐺1 and 𝐺2  of the separable locally compact 

group to be regularly related if there exists a sequence 𝐸0, 𝐸2, 𝐸2, . ..  of measurable subsets 

of𝔊 each of which is a union of 𝐺1 ∶  𝐺2 double cosets such that 𝐸0 has Haar measure zero 

and each double coset not in 𝐸0 is the intersection of the  𝐸𝑗 which contain it. Because of the 

correspondence between orbits of  𝔊/𝐺1, under 𝐺2 and double 𝐺1 ∶  𝐺2 cosets it is clear that 

𝐺1 and 𝐺2 are regularly related if and only if the orbits outside of a certain set of measure 

zero form the equivalence classes of a measurable equivalence relation.  

For each 𝑥 ∈  𝔊 𝑙𝑒𝑡 𝑠(𝑥) denote the 𝐺1 ∶  𝐺2double coset to which x belongs. 

If v is any finite measure in 𝔊with the same null sets as Haar measure we 

May define a measure𝑣0 𝑖𝑛 𝔇, the set of all 𝐺1 ∶  𝐺2 double cosets, by letting 

𝑣0(𝐸)  =   𝑣(𝑠
−1(𝐸)) whenever E is such that 𝑠−1(𝐸) is measurable. Such a measure we 

shall call an admissible measure in 𝔇. Clearly any two such have the same null sets. In terms 

of these notions we may state.  

Theorem (1.2.34)[11]:  Let 𝑈L be the representation of the separable locally compact group 

𝔊 induced by the representation L of the closed subgroup 𝐺1 𝑜𝑓 𝔊. Let 𝐺2 be a second closed 

subgroup of 𝔊 and suppose that 𝐺1 and 𝐺2 are regularly related. 

For each 𝑥  consider the subgroup 𝐺2 ∩ (𝑥
−1𝐺1𝑥) 𝑜𝑓 𝐺2 and 𝑙𝑒𝑡 𝑥𝑉  denote the 

Representation of 𝐺2 induced by the representation 𝜂 → 𝐿𝑥𝜂𝑥−1 of this  subgroup. 

Then 𝑥𝑉 is determined to within equivalence by the double coset 𝐺1𝑥𝐺2 =  𝑠(𝑥) to which x 

belongs and we may write 𝑥𝑉 =   𝐷𝑉 𝑤ℎ𝑒𝑟𝑒 𝐷 =  𝑠(𝑥). Finally 𝑈𝐿   restricted to 𝐺2  is a 

direct integral over 𝔇, with respect to any admissible measure in 𝔇, of the representations 

𝐷𝑉.  

Proof: Given an admissible measure 𝑣0 𝑖𝑛 𝔇 𝑙𝑒𝑡 𝑣 be the generating measure in 𝔊and 𝑙𝑒𝑡 , 𝜇 

be the quasi invariant measure in 𝔊/𝐺1 defined by the equation𝜇(𝐸)  =  𝑣(ℎ−1(𝐸)). For each 

𝑧 𝑖𝑛 𝔊/𝐺1𝑙𝑒𝑡 𝑟(𝑥)  =  𝑠(ℎ
−1(𝑧)). Then since 𝐺1 and 𝐺2  are regularly related r is a regular 

equivalence relation. 

Applying Lemma (1.2.19) we find that 𝜇 is an integral of measures 𝜇𝐷, where  𝐷 ∈  𝔇, with 

respect to the measure 𝑣0 𝑖𝑛 𝔇. Each  is concentrated in the orbit 𝑟−1(𝐷) and by Lemma 

(1.2.33) is quasi invariant. We define 𝜇𝐷 as the ℌ𝑐
′  𝑜𝑓 # 6 where 𝐶 =  𝑟(𝐷) and 𝔉  is the set 

of all functions 𝑓  from 𝔇  to  𝑈𝐷∈𝔇ℌ𝐷   such that 𝑓(𝐷)  ∈  ℌ𝐷  for all 𝐷  and  ‖𝑓‖2𝑖𝑠 𝑣0 
summable on 𝔇. 

We shall exhibit a natural unitary map of ℌ(𝜇𝑈𝐿) onto a pervasive maximal linear subset of  

𝔉 and then show that this direct integral decomposition of ℌ(𝜇𝑈𝐿)  yields the desired 
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decomposition of 𝑈L . Let f be any function in ℌ(𝜇𝑈𝐿) . Then ∫‖𝑓(𝑥)‖  𝑎𝜇(𝑧)𝑑𝑣0(𝐷)  =

 ∫‖𝑓(𝑥)‖2  𝑑𝜇(𝑧) < ∞ . Thus for almost all D the restriction 𝑓𝐷 of 𝑓 to 𝐷 is a member of ℌ𝐷. 

Moreover the function from 𝔇 𝑡𝑜 𝑈𝐷∈𝔇ℌ𝐷defined as 𝑓𝐷  or zero according to whether or 

not 𝑓𝐷 ∈ ℌ𝐷  is a member of 𝔉 with the same norm as f. Let us denote this member of 𝔉 by 

T(f). Then  (𝑇(𝑓))𝐷  =   𝑓𝐷  for almost all D. Let X be the range  of T. X is obviously linear 

and complete. 

Moreover it is closed under multiplication by bounded Borel functions in 𝔇. 

Thus in order to show it maximal linear and pervasive it suffices to show it pervasive. In 

order to do this observe first that it is easy to show that there exists a sequence  𝑓1, 𝑓2, …  of 

continuous members of ℌ(𝑈𝐿) such that for each 𝑥 ∈  𝔊 𝑡ℎ𝑒 𝑓𝑘(𝑥) are dense in ℌ(𝐿). Indeed 

the proof  is carried through more or less explicitly in the latter part of the proof of Theorem 

(1.2.13). Now let g1, g2, …   be a dense subset of the continuous complex valued functions 

with compact support on 𝔊/𝐺1, and let g𝑗
′ (𝑥)  =   𝑔𝑗(ℎ(𝑥)). We leave it. To the reader to 

show that any sequence containing all of the  𝑔𝑗𝑓𝑖  is pervading for X. Finally let  𝜂be an 

element of 𝐺2 and consider the  operator𝑢𝑈𝜂
𝐿 . It takes  𝑓 ∈ ℌ(𝜇𝑈𝐿)into the function 𝑥 →

 𝑓(𝑥𝜂)√𝜌(𝑥𝜂)/𝑝(𝑥)  Where  𝜌  is a p-function  associated with ,𝜇 . Thus 𝑇𝜇𝑈𝜂
𝐿𝑇−1  is the 

operator defined in X by the family of operators 𝐷 →𝐷 𝐴𝜂  where (𝐷 𝐴𝜂𝑓𝐷)(𝑥)   =

  𝑓𝐷(𝑥𝜂)√𝜌(𝑥𝜂)/𝑝(𝑥).  

  Let (𝐷 𝐵𝜂𝑓𝐷)(𝑥) = 𝑓𝐷(𝑥𝜂)𝜆𝐷(ℎ(𝑥), 𝜂)   where 𝜆𝐷  is a 𝜆 -function associated with the 

measure𝜇𝐷 . Since  ,𝑈𝜂
𝐿 is unitary it follows that D𝐴𝜂 is unitary for almost all D and hence 

that  D𝐴𝜂 is for almost all D the same as D𝐵𝜂-It follows at once that the representation  𝜇𝑈𝐿 is 

unitary equivalent to the direct integral of the Representations 𝜂 →  D𝐵𝜂 and by 

Lemma(1.2.17)  that each is unitary equivalent to 𝑥𝑉 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑥 ∈  𝐷.Thus the Theorem is 

showd.  

Theorem (1.2.35)[11]: Let 𝐺1 and 𝐺2 be regularly related closed subgroups of the separable 

locally compact group 𝔊 and let L and M be representations of 𝐺1 and 𝐺2 respectively. For 

each 𝑥, 𝑦 ∈  𝔊 × 𝔊  consider the representations 𝑠 →   𝐿𝑋𝑆𝑋−1  and 𝑠  → 𝑀𝑦𝑠𝑦−1  of the 

subgroup (𝑥−1𝐺1𝑥) ∩ (𝑦
−1𝐺1𝑦) 𝑜𝑓 𝔊. Let us denote their Kronecker  product by 𝑁𝑥,𝑦 and 

form the induced representation 𝑈𝑁𝑥,𝑦 𝑜𝑓 𝔊 . Then 𝑈𝑁𝑥,𝑦  is determined to within unitary 

equivalence by the double coset in question. Finally 𝑈𝐿 ⨂ 𝑈𝑚 is unitary equivalent to the 

direct integral of the 𝑈D  with Respect to any admissible measure in the set 𝔇 of double 

𝐺1: 𝐺2 cosets.  

Proof: The deduction of Theorem (1.2.35) from Theorem (1.2.34) is almost exactly the same 

as the deduction of Theorem (1.2.19)from Theorem (1.2.18). 

We turn now to our generalization of Theorem(1.2.22) deriving a formula for  

𝐽(𝑈𝐿;  𝑈𝑀) in the case in which 𝐺1 and 𝐺2 are only assumed to be regularly related. Just as 

before we base the derivation on an analysis of the Kronecker  product of 𝑈𝐿 and 𝑈�̅� . 

However there are some important differences which necessitate a more elaborate argument. 

Let us introduce the notation 𝑛1(𝑈) to  denote the number of times that The representation U 

contains the identity representation as a discrete direct summatid. 
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Then 𝐽(𝑈𝐿, 𝑈𝑀) =  𝑛1(𝑈
𝐿  ⨂𝑈�̅�). 𝐿𝑒𝑡 𝐷1, 𝐷2, … denote the 𝐺1: 𝐺2 double cosets in 𝔊, if any 

exist, which are of  measure different from zero and let 𝔇′ denote the set of all 𝐺1: 𝐺2 double 

cosets which are of measure zero. Then by Theorem (1.2.35) we have 𝑛1(𝑈
𝐿  ⨂𝑈�̅�)  =

  ∑ 𝑛𝐼(𝑈𝐷𝑗) 𝑖 + 𝑛𝐼(∫ 𝑈𝐷 𝑑𝑣(𝐷)
𝔇′

 ) where v is any admissible measure in 𝔇.  

Now 𝑛1(𝑈
𝐷) may be computed for all D just as it was in the proof of Theorem (1.2.20). Thus 

we are reduced to finding out how 𝑛𝐼(∫ 𝑈𝐷 𝑑𝑣(𝐷)
𝔇′

 ) depends upon  the 𝑛1(𝑈
𝐷).  

 Lemma (1.2.36)[11]: Let 𝑈 = ∫𝑦𝑈𝑑𝑣(𝑦)  be a direct integral of the representations 𝑦U of the 

separable locally compact group 𝔊. Let the Borel measure space 𝑌, 𝑣 be free  of atoms. Then 

the set of all y for which 𝑛1 (′𝑈)  >  0 is measurable. 

If this set is of measure zero then 𝑛1(𝑈)  =  0. If this set is of measure greater than zero  then 

𝑛1(𝑈) = ∞.  

Proof: We remark first that we need only consider the case in which all ℌ(′𝑈)  have the same 

dimension. Thus as in the proof of Theorem (1.2.27) we may suppose that all of the 𝑣U act in 

a fixed Hilbert space,ℌ0  say, and that ℌ(𝑈)  is the set of all square summable weakly 

measurable functions from Y to ℌ0. For each 𝑦 ∈  𝑌 let 𝔐𝑦 denote the maximal subspace of 

ℌ0 on which 𝑣U is the identity and let 𝑦E denote the projection on 𝔐𝑦. 

If we can show that (𝑦𝐸(𝑣), 𝑤) is measurable in y for all v and 𝑤 𝑖𝑛 ℌ0 the truth of the 

lemma will follow. Indeed let  𝜙1, 𝜙2, …be a complete orthonormal basis for ℌ0 and suppose 

that the measurability in question has been established. 

Then 𝑛1(′𝑈)  =  0 if and only if 𝑌𝐸  =  0 that is if and only if (𝑌𝐸(𝜙𝑖), 𝜙𝑖)   =  0 for all i 

and j. Thus the set where 𝑛𝑖(𝑌𝑈)   =  0 is the intersection of countably many measurable sets 

and hence is measurable itself. 

Suppose that the set where  𝑛1(′𝑈)  >  0 has measure zero. Let f be any member of the 

subspace of  ℌ(𝑈) on which U is the identity. Then  for each 𝑥 𝑖𝑛 𝔊, 𝑈𝑥(𝑓(𝑦))  =  𝑓(𝑦) for 

almost all y in Y. 

Using the separability of 𝔊  and the continuity of 𝑌𝑈𝑥 𝑖𝑛 𝑥  we see that for almost all 

𝑦, 𝑈𝑥(𝑓(𝑦))  =  𝑓(𝑦)   =  𝑓(𝑦)  for all x. Thus 𝐸(𝑓(𝑦))   = 𝑓(𝑦) for almost all y. But YE = 0 

for almost all y. Thus 𝑓(𝑦)   =   0 . for almost all y. Thus 𝑛1(𝑈)   =   0 . Suppose now 

that  𝑛1(𝑈) >  0 on a set of positive measure. Since Y is atom free and countably generated 

there  exist countably many disjoint measurable sets 𝑌1, 𝑌2, … each of positive measure and 

each consisting entirely of points y for which  𝑛1(𝑈) >  0. 𝐿𝑒𝑡
𝑦 𝐸𝑖 = 𝐸 for 𝑦 ∈  𝑌𝑖 and let 

𝐸𝑖  =  0 𝑓𝑜𝑟 𝑦 ∉  𝑌𝑖. Then 𝑓 →  𝑔 𝑤ℎ𝑒𝑟𝑒 𝑔(𝑦)  =  𝑣𝐸𝑖(𝑓(𝑦)) defines . a non zero projection 

𝐸𝑖 for each 𝑖 =  1, 2, ….   Since the ranges of these projections are linearly independent and 

since U is the identity on each it follows that  𝑛1(𝑈)  =  ∞. To show that (𝒚𝐸(𝑣),𝑤) is 

indeed measurable and thus complete the proof of The lemma we proceed as follows. First 

choose 𝑠1 , 𝑠2, …  𝑑𝑒𝑛𝑠𝑒 𝑖𝑛 𝔊. 

For each choice of 𝑦 ∈ 𝑌, 𝑣  and 𝑠j  it follows from the mean ergodic Theorem  that 

(𝑣 +𝒚 𝑈𝑠𝑗(𝑣) + 𝑈𝑠𝑗
2 (𝑣) + …𝒚 𝑈𝑠𝑗

𝑛 (𝑣))/(𝑛 +  1) converges with increasing  n to𝒚 E𝑠j(v)   

where𝒚 E𝑠j is the projection on the one space of the single operator  U𝑠j . It follows at once 

that (E𝑠j(𝑣),𝑤) is measurable in y for each j, v and w. Now it is easy to see  that𝒚E is for 

each y simply the projection on the intersection of the ranges of the E𝑠j  Let E𝑛  be the 
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projection of the of the intersection  ranges of E𝑠1, E𝑠1, … E𝑠n . It is clear that (𝒚𝐸𝑛(𝑣), 𝑤) 
tends to (𝐸(𝑣), 𝑤) as n tends to ∞. Thus we need only show that (𝐸𝑛(𝑣), 𝑤)is measurable for 

each n; or more generally that if 𝑦 → 𝐸1  and 𝑦 → 𝐸2 are families of projections such that 

(𝐸1(𝑣), 𝑤) and (𝐸2(𝑣),𝑤)are measurable in y then (𝒚𝐸(𝑣), 𝑤) is also measurable in y where 

for all 𝑦, 𝐸3 is the projection on the intersections of the ranges of    𝐸1, and ′𝐸2. To show 

This let 𝑣1, , 𝑣2, . ..  be a dense subset of ℌ0 . Then the range of'𝐸3  is the orthogonal 

complement of the sequence (𝐼 −  𝐸1)(𝑣1), (𝐼−
𝒚𝐸2)(𝑣1), (𝐼−

𝒚𝐸2)(𝑣2), (𝐼−
𝒚𝐸2)(𝑣2), . ..  

. Let 𝒚𝐹n   be the projection  of the orthogonal complement of the first n terms of this 

sequence. 

Then (𝒚𝐹𝑛(𝑣), 𝑤)  tends 𝑡𝑜 (𝐸3(𝑣),𝑤) as n tends to ∞ for all v and w in ℌ0. We need only 

show then that (𝒚𝐹𝑛(𝑣), 𝑤)  is measurable for each n. This however can easily be established 

by induction on n.   

As an immediate consequence of this lemma and the remarks preceding it we  have  [22]: 

 Theorem (1.2.37)[11]:  Let 𝐺1, 𝐺2, 𝔊,   L and M be as in Theorem (1.2.36). For each x and y 

in 𝔊 let J(L, M, x, y) be defined as in Theorem (1.2.36). Then J(L, M, x, y) depends only 

upon the double coset 𝐷 =  𝐷(𝑥, 𝑦)  =  𝐺1𝑥𝑦
−1𝐺2 to which 𝑥𝑦−1 belongs  So that we may 

write J(L, M, D). Moreover whether or not (𝑥−1𝐺1𝑥)  ∩ (𝑦
−1𝐺2𝑦)  is such that 𝔊/

((𝑥−1𝐺1𝑥)  ∩ (𝑦
−1𝐺2𝑦)) admits a finite invariant measure depends only on this double coset. 

Let 𝔇′′ be the set of all double cosets D such that (a) afinite  invariant measure does 

exist,  (b) J(L, M, D) > 0 (c) D is of measure zero. Let 𝐷1 , 𝐷2…  be the double cosets of 

positive measure for which a finite invariant measure does exist. Then if 𝔇′′  has Haar 

Measure different from zero we have 𝐽(𝑈𝐿, 𝑈𝑀)  . . .  ∞ and if 𝔇′′ is of Haar measure zero 

then 𝐽(𝑈𝐿, 𝑈𝑀) =  ∑ 𝐽(𝐿,𝑀, 𝐷𝑖)𝑖 . 
Let  𝐺1 and 𝐺2 be separable locally compact groups and let 𝐺1 be Abelian. Let  there be 

Given a homomorphism of 𝐺2 into the group of automorphisms of 𝐺1  and let us denote the 

map of 𝑥 𝑒  𝐺1  under the automorphism associated with 𝑦 ∈  𝐺2 𝑏𝑦 𝑦[𝑥]. We assume that 

𝑥, 𝑦 →  𝑦[𝑥] is continuous in both variables. Finally let 𝔊 be the set of all pairs x, y with 𝑥 ∈
 𝐺1, 𝑦 ∈  𝐺2  and let (𝑥1, 𝑦1)(𝑥2, 𝑦2)  =  (𝑥1𝑦1[𝑥2], 𝑦1𝑦2) . It may be verified without 

difficulty that 𝔊under this operation  and with the Cartesian product topology is a locally 

compact separable topological group. Following Malcev we call 𝔊 the semi direct product of 

𝐺1and 𝐺2 with respect to the given homomorphism. In  [28] we have applied the principal 

Theorem to give an analysis of the irreducible representations of   Such semi direct products. 

The discussion given there turns out to have been rather too concise and since it was further 

obscured by several confusing typo graphical errors it seems well to give a fuller version 

here. We shall proceed somewhat differently this time and make use of Theorem(1.2.34) .   

We remark first of all that the set of all 𝑥, 𝑒 where 𝑥 ∈  𝐺1 and e is the identity is a 

closed normal subgroup of 𝔊 and is isomorphic in a natural manner to 𝐺1.  Similarly the set 

of all e, y for 𝑦 ∈  𝐺2 is a closed subgroup of 𝔊 isomorphic in a natural manner to 𝐺2. We 

shall identify 𝐺1 and 𝐺2 with the corresponding subgroups. Since (𝑥, 𝑒)(𝑒, 𝑦)   =  (𝑥, 𝑦) for 

all  𝑥 ∈  𝐺1  and 𝑦 ∈  𝐺2 it follows at once that The representation 𝑥, 𝑦 →   𝑈𝑥,𝑦 𝑜𝑓 𝔊 . is 

determined by its restrictions to 𝐺1 and 𝐺2.  Indeed if 𝑉(𝑥 → 𝑉𝑥) and 𝑊(𝑦 → 𝑊𝑦) denote 

these restrictions then𝑈𝑥,𝑦 = 𝑉𝑥𝑊𝑦  Conversely if V and W are arbitrary representations of 

𝐺1 and 𝐺2 respectively which act in the same Hilbert space then an easy calculation shows 
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that 𝑥, 𝑦 →  𝑉𝑥𝑊𝑦  defines a representation of 𝔊 if and only if 𝑉𝑥𝑊𝑦𝑊𝑦−1 = 𝑉𝑦[𝑥]   for all 

𝑥, 𝑦 ∈  𝔊 . Now by the Stone-Neumark-Ambrose-Godement spectral resolution Theorem 

[40], [27], [12], [20].V is determined by a projection valued measure  𝐸 → 𝑃𝐸.defined  on 

theBoral subset of the character  group �̂�1 of 𝐺2. It is readily verified that V and W satisfy the 

above identity if and only if P and W  satisfy 𝑊𝑌𝑃𝐸𝑊𝑦−1  =   𝑃[(𝐵]𝑦  for all 𝑦 ∈ 𝐺2 and all 

Borel sets 𝐸 in �̂�1 . Here [𝑥]𝑦 is defined by the equation (𝑥, [𝑥]𝑦)  =  (𝑦[𝑥], 𝑥). We leave it 

to the reader to  verify that 𝑥, 𝑦 →  [𝑥]𝑦 has the to be expected elementary properties. In the  

terminology of [19] then P is a system of imprimitivity for W.  

Consider the action of 𝐺2 𝑜𝑛  �̂�1. If the projection valued measure P is concentrated in 

one of the orbits of 𝐺1 𝑢𝑛𝑑𝑒𝑟 𝐺2 let be any member of this orbit and let  𝐺𝑥0 be the subgroup 

of all 𝑦 ∈  𝐺2for which  [𝑥0]𝑦  = 𝑥0. 

Then 𝑦 → [𝑥0]𝑦  sets up a one-to-one Borel set preserving correspondence between the 

points of the orbit and the points of the homogeneous space 𝐺2/𝐺�̂�0. In this way P becomes a 

system of imprimitivity for W based on the homogeneous space 𝐺2/𝐺�̂�0and we may apply 

Theorem 2 of  [19] to conclude that W is of the form 𝐺2𝑈
𝐿  where L is a representation of 

𝐺𝑥0. 

Under certain often verifiable conditions it may be shown that U cannot be irreducible 

unless P is indeed concentrated in a single orbit. 

Specifically let us say that 𝔊 a regular semi direct product of 𝐺1and 𝐺2 if  �̂�1 contains 

a countable family 𝐸1 , 𝐸2, … of Borel sets each a union of orbits such that every orbit in �̂�1 is 

the intersection of the  𝐸𝑗  which contain  it. As indicated in  [28 ] it is easy to show that 

whenever𝔊 is a regular semi direct product of 𝐺1 and 𝐺2 then a necessary condition for the 

irreducibility of the representation associated with P and W Is that there exist an 

orbit𝔇 𝑜𝑓 �̂�1   under 𝐺2  such that 𝑃𝐸  =  0  whenever 𝐸 ∩  𝔇  =  0 . Combining these 

considerations with Theorem 2 of  [19 ] and the remarks about reducibility in ≠  6 of  [19 ]  we 

may conclude the truth of  

Theorem (1.2.38)[11]: Let 𝔊  be a regular semi direct product of the separable locally 

compact groups 𝐺1, and 𝐺2. Let𝐺1 be Abelian and let �̂�1 be its character group.  

From each orbit 𝔇 𝑜𝑓 �̂�1 under the action of 𝐺2 choose an element 𝑥0    and let 𝐺0  denote the 

set of all 𝑦 ∈  𝐺2  such that [𝑥0]𝑦  =  𝑥0. 𝐿𝑒𝑡 𝑈(𝑥, 𝑦 → 𝑈𝑥,𝑦 = 𝑉𝑥𝑊𝑦)  be an arbitrary 

irreducible representation of 𝔊. Then the projection valued measure defined by V in �̂�1 is 

concentrated in a single orbit𝔇 and W is the representation 𝑈𝐿 𝑜𝑓 𝐺2   induced by an 

irreducible 

Representation of 𝐺𝜊  . Every pair consisting of an orbit 𝔇  and an irreducible 

representation 𝐿 of 𝐺𝜊  arises from an irreducible representation 𝑈 𝑜𝑓 𝔊 in this way. 

Finally two irreducible representations of  𝔊  are unitary  equivalent if and only if the 

corresponding orbits are identical and the corresponding representations of 𝐺0 are unitary 

equivalent.  

We may also describe the representations of 𝔊 as follows.  

Theorem (1.2.39)[11]:  Conserving  the notation of Theorem(1.2.38)  let 𝔇 be an arbitrary 

orbit in  �̂�1and let L be an arbitrary irreducible representation of 𝐺0. Let 𝔊. be  the set of all 
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x, y with 𝑦 ∈  𝐺0 . Let M be the representation of 𝔊𝜊 defined by the equation  𝑀𝑥,𝑦(𝑥, 𝑥𝜊)𝐿𝑦. 

Then the representation 𝑈M of 𝔊 induced by the representation 𝑀 of 𝔊0 is irreducible and in 

the unitary equivalence class associated with 𝔇 and L.  

Proof: Let us apply Theorem(1.2.34)  to study the restrictions V and W of 𝑈M to 𝐺1 and 𝐺2 
respectively. We verify without difficulty that the 𝔊𝜊, 𝐺1 double cosets are in a natural one to 

one correspondence with the right 𝐺1/𝔊𝜊 D  cosets and that 𝔊𝜊 and 𝐺1 are regularly related. 

Moreover the representation of 𝐺1 associated with the right 𝐺1/𝐺𝜊, coset containing 𝑦 ∈  𝐺2 

is the one dimensional representation defined by the member [𝑥0]𝑦  of �̂�1. 

Thus V is adirect integral of characters belonging to the orbit 𝔇 and it follows easily 

that P is concentrated  in 𝔇. Proceeding now to W we observe that there is only one 𝔊𝜊: 𝑈2 

double coset. Since 𝔊𝜊 ∩ 𝑈2   =  𝐺0  it follows now from Theorem(1.2.34)  (actually from 

Theorem(1.2.18) that W is simply M. 

All statements of the Theorem now follow from the preceding discussion.  

Corollary (1.2.40)[11]:. If 𝐺2 is Abelian then every irreducible representation of the regular 

semi direct product 𝔊is monomial; that is, is of the form 𝑈M where M is a  one dimensional 

representation of a subgroup of 𝔊.  

Example (1.2.41)[11]:  Let 𝐺1,  be the additive group of all real numbers and let 𝐺2 be The 

multiplicative group of all positive real numbers. Let 𝑦[𝑥] =  𝑥 ∘  𝑦  where o  denotes 

ordinary real number multiplication. Then  𝔊 is the so called "ax + b group" of linear 

transformations of the line. 

�̂�1 is again the additive group of the real  numbers and there are just three orbits:𝔇1the set of 

all negatiye numbers 𝔇2 the origin, and 𝔇3 the set of all positive numbers. 𝐺∘1and G𝐺∘3   

consist of the identity alone; 𝐺∘2is the, whole of 𝐺2. 

Applying Theorems (1.2.38)and(1.2.39) we see that in addition to the obvious one 

dimensional representations there are just two other irreducible representations and that each 

is infinite dimensional. Let 𝐿1 be the one dimensional representation of 𝐺1 associated with  

any member of 𝔇1and let 𝐿2 be similarly defined with respect to𝔇3. Then the two infinite 

dimensional representations of 𝔊 are the monomial representations  𝑈𝐿1 and 𝑈𝐿2.  
Example(1.2.42)[11]:  Let 𝐺1 be the additive group of all complex numbers and let𝐺2 be the 

multiplicative group of complex numbers of modulus one. Let  𝑦[𝑥]  =  𝑥 ∘  𝑦  where o 

denotes ordinary multiplication of complex numbers. Then 𝔊  is group of all Euclidean 

motions of the plane. �̂�1 is again the additive group of complex numbers and G2 acts on �̂�1 
just as it does on  G1. Thus the orbits are the  circles with center at the origin. Let 𝔇𝑟 be the 

orbit of radius r. If 𝑟 >  0 then Gοr is theidentity. If r =  0 then Gοr   =  G2. 

Applying Theorems (1.2.38) and (1.2.39) we see that in addition to the obvious one 

dimensional representations there is a continuum of infinite dimensional irreducible 

representations one for each r > 0. 

These exhaust the irreducible representations of 𝔊. The irreducible representation associated 

with 𝑟 >  0 𝑖𝑠 𝑈𝐿𝑟  where L is a one dimensional representation of  𝐺1  associated with a 

member of �̂�1 of absolute value r. 

Example (1.2.43)[11]:   Let 𝐺1  be the additive group of the plane and let G2  be the 

multiplicative group of all two by two real matrices of the form (
𝑎 𝑏
𝜊 1\𝑎

)where 𝑎 >  0. 
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𝐼𝑓 𝑥 = 𝑥1, 𝑥2 and  𝑦 = (
𝑎 𝑏
𝜊 1\𝑎

)  𝑙𝑒𝑡  [𝑥] 𝑦 =   𝑥1𝑎 + 𝑥2𝑏, 𝑥2/𝑎 . Then  𝑦[𝑥]  is uniquely 

defined and 𝔈 is a subgroup of the group of area preserving homeomorphisms  of the plane. 

There are five orbits of �̂�1 under G2 ;  𝔇1, is the positive real axis, 𝔇2 is the negative real 

axis, 𝔇3 is the origin alone, 𝔇4 is the upper half plane and 𝔇5 is the lower half plane. 𝐺𝜊1 and 

𝐺𝜊2 are the subgroup of G2 defined by setting  𝑎 =  1. 𝐺𝜊3 is the whole of G2and 𝐺𝜊4 and 𝐺𝜊5  

are the identity. Noting that G2  is isomorphic to the group of Example (1.2.41) we conclude 

easily that𝔊 has a one parameter family of one dimensional representations and two infinite 

dimensional irreducible representations associated with the orbit 𝔇3 . Each of the orbits  𝔇1, 

and 𝔇2  has associated with it a one parameter family of irreducible infinite dimensional 

representations. 𝔇4 and 𝔇5 are associated with exactly one infinite dimensional irreducible 

representation each. 

Example (1.2.44)[11]:  Let G1 be as in Example (1.2.43) and let G2 be the additive group of 

integers. If y is an integer and x a complex number let y[x] be the product 𝑧𝑦𝑥 where z is 

some fixed complex number of modulus one no power of which is one. In this case there are 

continuum many orbits on each circle with center at the origin in �̂�2. On the other hand the 

only invariant Borel sets are essentially unions of circles. Thus 𝔊  is not regular and 

Theorems(1.2.38)  and (1.2.39) do not  apply. We shall study elsewhere the pathology 

presented by the representations of This group.   

A few remarks are in order concerning the connection between Theorems (1.2.38) and 

(1.2.39). For finite groups results somewhat more general than Theorems(1.2.38)  and(1.2.39) 

 are classical. See for example Seitz [39], Shoda and the earlier work of Frobenius and Schur. 

For infinite dimensional representations of non finite locally compact groups the only 

work we know of deals with particular groups. 

Wigner in  [8] shows that the study of the representations of the inhomogeneous 

Lorentz group may be reduced to the study of the representations of the homogeneous 

Lorentz group and certain of  its subgroups. 

In doing so he essentially shows Theorem (1.2.38)  and /or(1.2.39)  for  the special case 

in which G1is a vector group, G2 is the homogeneous Lorentz group and y[x] is the result of 

transforming the point 𝑥 𝑖𝑛 G1 by the Lorentz  transformation y. He also discusses Example 

(1.2.43) above. The representations of Example (1.2.41) above have been determined by 

Gelfand and Neumark [15] They assert that their method can be used to determine the 

representations of any solvable Lie group but do not formulate a general Theorem. 

Actually the analysis of the group of Example (1.2.41) is considerably simpler than 

that of the general regular semi direct product because of the fact that in this case every 𝐺𝜊 is 

either the identity or the whole of G2. Whenever this happens the representations may be 

deduced from Theorem 2 of [27] and there is no need for the more general Theorem 2 of [28]. 

It should also be pointed out that there exist solvable Lie groups which are irregular semi 

direct products. For these one can show that there are many more irreducible representations 

than those described in Theorems(1.2.38)  and(1.2.39)  . Moreover their nature is such that 

one can well despair of ever obtaining a classification for them as complete and satisfying as 

that available for regular semi direct products in general and the group of Example (1.2.41) in 

particular. In Wigner's section the "factor representations" as well as the irreducible 

representations are discussed. Here by a factor representation is meant a representation U 
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such that the weakly closed ring generated by the operators U𝑥  has only multiples of the 

identity in its center and hence is a "factor" in the sense of the definition of Murray and von 

Neumann. It has been pointed out to us by I. Kaplansky that our discussion of irreducible 

representations of regular semi direct products applies almost without change to factor 

representations. 

One still finds that the projection valued measure must be confined to a single orbit and that 

V is of the form 𝑈L . The only change lies in the fact that L need only be a factor 

representation itself and need not be irreducible. In particular it is  easy to show the following  

Theorem (1.2.45)[11]:  Let 𝔊? be a regular semi direct product of G1 and G2. Suppose that 

G2 and its closed subgroups have no factor representations except those of type I.  Then 𝔊 

has no factor representations that are not of type I. We applying Theorem (1.2.35)  to 

compute the Kronecker  products of the infinite dimensional irreducible representations in 

Examples (1.2.41) and (1.2.43). The computations themselves are straightforward and we 

shall content ourselves here with an enumeration of results.  

Example (1.2.46)[11]:  𝑈𝐿1⨂ 𝑈𝐿2  is a direct integral over G2 of replicas of 𝑈𝐿1 . 𝑈𝐿1  ⨂ 𝑈𝐿1 is 

a direct integral over G2 of replicas of 𝑈𝐿2 . 𝑈𝐿2⨂ 𝑈𝐿2 is the same as  𝑈𝐿1⨂ 𝑈𝐿1. The measure 

is Haar measure in G2. However this is really irrelevant. A direct integral of replicas of the 

same irreducible representation is always  unitary equivalent to a direct sum of finite or 

countably many such replicas.  

Example (1.2.47)[11]: Let us denote the irreducible representation associated with the orbit 

of radius 𝑟 by 𝑊𝑟. Then 𝑊𝑟1 ⨂ 𝑊𝑟2 is a direct integral with respect To Haar measure in the 

reals mod 2𝜋 of the representations 𝑊  √𝑟1
2 + 𝑟2

2 + 2𝑟1𝑟2𝑐0 𝑠
𝜃. Alternately  𝑊𝑟1 ⨂ 𝑊𝑟2  is 

the integral over the interval |𝑟1  −   𝑟2|   ≤  𝑟 ≤   𝑟1  +  𝑟2,     with respect to Lebesgue 

measure, of the direct sum of two replicas of 𝑊𝑟. 

We shall indicate some of the connections between the theory of induced 

representations and the analysis given by Gelfand and Neumark in [16] of the representations 

of the group 𝔊 of all two by two complex matrices of determinant one. Following Gelfand 

and Neumark let us denote by K the set  of all elements of 𝔊 of the form (
𝑎 𝑏
𝜊 1\𝑎

)where 

𝑎 ≠  0; by 𝑍 the set of all elements of K with a = 1 and by D the set of all elements in K with 

b = 0. Then  K, Z and D are all closed subgroups of 𝔊 Moreover Z is a normal subgroup of K 

and every element of K is uniquely of the form 𝑧𝑑 where 𝑧 ∈  𝑍 and d e D. Thus  K is a semi 

direct product of the two Abelian groups Z and D. The automorphism of Z induced by  

(
𝑎 𝑏
𝜊 1\𝑎

) in D is  (
1 𝑏
𝜊 1

) → (1 𝑎2𝑏
𝜊 1

). Let us denote the  one dimensional representations 

of D by L, L1,etc. and let us denote the one dimensional representations of Z by M,M1etc.  

Since D is isomorphic in a natural way to the quotient group K/Z each L defines a 

representation of K which we shall denote by 𝐿′. We shall be concerned with the induced 

representations   UL, UL
′
 and UM of 𝔊. The reader will have little difficulty in verifying that 

the representations 𝑈𝐿1  for variable 𝐿 in �̂� constitute precisely what Gelfand and Neumark 

call the "principal series" of irreducible representations of 𝔊 and that 𝑈 mwhen M is the 

trivial representation of Z is what Gelfand and Neumark call the quasi regular representation 
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of 𝔊. Among the results of Gelfand and Neumark on the principal series and the quasi regular 

representation are the following.  

I. Every member of the principal series is irreducible. 

II. 𝑈𝐿1
′
 and 𝑈2 are unitary equivalent if and only if either 𝐿1 = 𝐿2 𝑜𝑟 𝐿1 = �̅�2. 

III. The quasi regular representation is a direct integral over the character  group of D of the 

representations 𝑈L
′
.  

 IV. The regular representation of 𝔊 is a direct integral over the character group of D of 𝔊 

fold repetitions of 𝑈L
′
.  

We shall obtain I and III as consequences of our general theory and in addition certain results 

not obtained by Gelfand and Neumark. We hope to obtain II and IV as consequences of 

further general Theorems on induced representations, work upon which is now in progress.  

A. The representations 𝑈L
′
 are not only irreducible but restricted to the subgroup  K are 

irreducible representations of K.  

Proof: An easy calculation shows that there are only two K: K double cosets in𝔊. Since K 

itself has Haar measure zero there is effectively only one double  coset. 

Taking (
0 1
−1 0

) as the 𝑥 of Theorem (1.2.45) we find that 𝑥−1𝐾𝑥 ∩  𝐾 𝑖𝑠 𝐷  and that 𝜂 →

𝐿𝑥
′  𝜂𝑥−1is the representation �̅� of D. Thus 𝑈𝐿′ restricted to K  is the representation 𝐾𝑈

L̅
 of K 

induced by the representation �̅� 𝑜𝑓 𝐷. Applying Theorem(1.2.19)  again we find that 𝐾𝑈
L̅
 

restricted to Z is the representation of Z  induced by the one dimensional representation of the 

identity subgroup; that is the regular representation of Z. On the other hand there are in Z 

under D exactly two orbits; zero and everything else. The projection valued measure induced 

by the regular representation gives measure zero to the origin. Thus this measure is 

concentrated in a single orbit. Moreover the subgroup of D which leaves a point in this orbit 

fixed is the two element center C of 𝔊 . Applying Theorem (1.2.18)  a third time and 

observing that there is only one D: D double coset in K other than D itself and that D has 

measure zero we find that 𝐾𝑈
L
restricted to D is the representation of D induced by the 

restietion of  �̅� 𝑡𝑜 𝐶 . Thus 𝐾𝑈
L̅

 is one of the two infinite dimensional irreducible 

representations of  K associated with the non finite orbit in �̂�. 

B. (III above) If M is the identity representation of Z then 𝑈M is a direct integral over �̂� of  

the representations 𝑈𝐿
′
 the measure being  Haar measure in �̂�.  

Theorem (1.2.48)[11]: Let G1  ⊆  G2 be closed subgroups of the separable locally compact 

group𝔊. Let L be a representation of G1  and let M =  𝔊2 
𝑈 𝐿 . Then 𝔊 𝑈 

𝐿
 and 𝔊 𝑈 

𝑀
are  

unitary equivalent representations of 𝔊. 

When G1  is the subgroup of 𝔊 which contains only the identity and L is the  trivial one 

dimensional representation of G1  then as is easily seen 𝔊 𝑈 
𝐿
is the regular representation of 

𝔊. From this remark and Theorem (1.2.48) we deduce at once:  

Proof: 𝑈M is unitary equivalent to 𝑈𝑉 where 𝑉 =   𝐾𝑈
�̂�

 is  the representation of K induced 

by the representation M of Z. Since M is the identity the space of 𝐾𝑈
𝑀

 may be identified with 

𝔏2(𝐷). Thus M is the representation of K defined, via the natural homomorphism of K on D, 

by the regular representation of D. It follows from the theory of local compact Abelian 
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groups however that the regular representation of D is simply a direct integral with respect to 

Haar measure in D of the irreducible representations L of D. The representation V of K is 

correspondingly the direct integral of the 𝐿′. Finally then by Theorem (1.2.48), 𝑈𝑀  =  𝑈𝑉 is 

a direct integral of the 𝑈𝐿
′
 as stated.  

We saw in the proof of A that K has only two infinite dimensional irreducible 

representations. Let us denote the one associated with the identity representation of C by 

𝑊1 and the other by 𝑊2. Then we have  

(C) If M is any irreducible representation of Z other than the identity then 𝑈𝑀   is isomorphic 

to the direct sum of 𝑈𝑤1 and  𝑈𝑤2 . In particular 𝑈𝑀  (for M not the identity) is independent 

of M.. 

Proof. As in 𝐵 𝑈𝑀 is unitary equivalent to 𝑈V where 𝑉 =  𝐾𝑈
𝑀

. When M is not the identity 

it follows from Theorem (1.2.34)  that 𝐾𝑈
𝑀

 restricted to Z is a direct integral of all one 

dimensional representation of Z which are distinct from the identity. Thus the projection 

valued measure associated with 𝐾𝑈
𝑀,𝑍

 is concentrated in the orbit of �̂�  consisting of the 

complement of the origin. 

On the other hand 𝐾𝑈
𝑀

 restricted to D is the regular representation of D and hence the 

representation of D induced by the regular representation of C. 

Now the regular representation of C is of course simply the direct sum of its two irreducible 

representations. Thus 𝐾𝑈
𝑀

 is the direct sum of the two infinite dimensional irreducible 

representations 𝑊1 and 𝑊2 of K and the truth of our assertions follow.  

D. If L is a one dimensional representation of D then 𝔊𝑈
L
 is unitary equivalent to 𝑈𝑊1 if L 

restricted to C is the identity. Otherwise 𝔊𝑈
L
 is unitary equivalent to 𝑈𝑊2.  

Proof. It follows from Theorem (1.2.48)  that 𝔊𝑈
L
 is unitary equivalent to 𝑈V 

Where 𝑉 =  𝐾𝑈
L
. 𝐵𝑢𝑡 𝐾𝑈

L
 was identified in the proof of A as being 𝑊1𝑜𝑟 𝑊2  according to 

whether or not L on C reduces to the identity.  

E. The regular representation of 𝔊 is a direct sum of countably many replicas of 𝑈𝑊1  and 

countably many replicas of 𝑈𝑊2.  
Proof. By the Corollary to Theorem(1.2.27) the regular representation of 𝔊  is a direct 

integral with respect to Haar measure in �̂� of the 𝑈L. 

Thus we need only apply D above and remember that a direct integral of replicas of the same 

representations is equivalent to a discrete direct sum of the same replicas.  

F. Let 𝑈𝐿1
′
 and 𝑈𝐿 be any two members of the principal series of irreducible 

Representations of 𝔊. If 𝐿1 and 𝐿2  are the same when restricted to C then the Kronecker 

product 𝑈𝐿1  ⨂ 𝑈𝐿2  is unitary equivalent to 𝑈𝑊1 . If 𝐿1 and 𝐿2  are distinct on C then 

𝑈𝐿1  ⨂ 𝑈𝐿2 is unitary equivalent to 𝑈𝑊2.  
Proof. As we have already noted there are only two K:K double cosets and one has measure 

zero. Applying Theorem(1.2.19)  we find at once that 𝑈𝐿 ⨂ 𝑈𝐿2  is unitary equivalent to 

𝑈𝐿1�̅�2. We now need only apply D. 

In order to complete the considerations in a satisfactory manner  we should want to 

know more about the two representations 𝑈𝑊1 and 𝑈𝑊2.  If we knew how to decompose them 

as direct integrals of members of the principal series we would have a complete analysis of 

the Kronecker product of any two members of this series as well as of the induced 
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representations associated   with the various subgroups of 𝔊 that we have considered. E 

combined with result IV of Gelfand and Neumark suggest that thedirect sum of 𝑈𝑊1and 𝑈𝑊2  
is either the regular representation itself or a representation which differs from the regular 

representation only in the multiplicity of occurrence of its components Just what is the case 

we do not know at this writing. 

We remark that the Lorentz group is, as is well known, the quotient 𝔊/𝐶. Because of 

this it is easy to derive results about it from results about 𝔊. In particular one can show that 

any two members of the principal series of irreducible representations of the Lorentz group 

have the same Kronecker product as any other two members.  

Let 𝔊 be the group of all n by n complex matrices of determinant one and let  U be the 

subgroup of all unitary matrices in 𝔊. Gelfand and Neumark in [18] and [19] have discussed 

certain relationships between representations of 𝔊 and  representations of U. We shall show 

here that their principal results are corollaries of our Theorems (1.2.18)  and (1.2.23) .  

 Let K be the subgroup of 𝔊 consisting of all matrices which vanish below the main diagonal 

and let Z be the subgroup of K consisting of all matrices in K which are one on the main 

diagonal. Then Z is a normal subgroup of K whose quotient 𝐾/𝑍 is isomorphic in a natural 

manner to the group D of all diagonal matrices of 𝔊. Every one dimensional representation L 

of D thus defines a one dimensional Representation 𝐿′ 𝑜𝑓 𝐾 . We consider the induced 

representations  𝑈𝐿
′
 𝑜𝑓 𝔊. These are, just as in the two by two case, the members of what 

Gelfand  and Neumark call the principal series and have been shown by them in [17] to be 

irreducible. Three of the four principal results of [12] slightly reformulated are:  

  A necessary and sufficient condition that 𝑈𝐿
′
  restricted to 𝔘  contain the identity as a 

discrete direct summand is that L reduce to the identity on 𝔘 ⋂  𝐷 = Γ. If 𝑈𝐿
′
  does contain 

the identity it contains it exactly once. 

III. Let M be an irreducible representation of 𝔘. Then M is contained in  𝑈𝐿
′
  restricted to 𝔘 if 

and only if M restricted to Γ contains the restriction of  L to Γ. 

 IV. Let M be an irreducible representation of 𝔘 which is contained in 𝑈𝐿
′
   restricted to 𝔘. 

Then it is contained exactly as many times as M restricted to r contains the restriction of L to 

Γ.  Their result II gives an explicit formula for the generator of the subspace of ℌ(𝑈𝐿
′
  ) in 

Which 𝑈𝐿
′
  reduces to the identity on 𝔘.  In order to obtain proofs of I, III, and IV by our 

methods we note first that  they may be combined into the following single Theorem.  

Theorem (1.2.49)[11]:  Let M be an irreducible representation of 𝔘 . Let L be a one 

dimensional representation of D. Then the number of times that 𝑈𝐿
′
  restricted to U contains 

M as a discrete direct summand is equal to the number of times that M restricted to Γ contains 

L restricted to Γ.  

Proof: Observe that there is only one 𝐾: 𝔘 double coset. Indeed let X be any member of 𝔊 

and let 𝜑1, 𝜑2, . . . . . 𝜑𝑛. be the vectors 1, 0, 0…  0;  0, 1, 0, . . .  0,0… . ; 1 Let 𝜓1, 𝜓2, … , 𝜓𝑛be a 

set of orthonormal vectors such that for each 𝑖 = 1,2, . . .  𝑛;  𝜓1 . . . 𝜓𝑖 span the same space as 

𝑋−1(𝜑1)…  𝑋
−1(𝜑𝑖) and such that the unique unitary matrix Y such that 𝑌(𝜑𝑖) = 𝜓𝑖  has 

determinant one. Then  𝑋𝑌(𝜑𝑖)𝑋(𝜓𝑖) =   𝑋(𝑐1𝑋
−1(𝜑1) + ⋯𝑐𝑖𝑋

−1(𝜑𝑖)) =  𝑐1𝜑1… . 𝑐𝑖𝜑𝑖   . 
Thus 𝑋𝑌 ∈  𝐾 and since 𝑌 ∈  𝔘, 𝑋 ∈ 𝐾𝔘. Applying Theorem (1.2.18)  we conclude at once 
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that 𝑈𝐿
′
  restricted to 𝔘 is the Representation of U induced by the representation 𝐿′ restricted 

to 𝐾 ⋂𝔘. 

But 𝐾 ⋂ 𝔘 =  Γ and Γ ⊆  𝐷. Thus 𝑈𝐿
′
   restricted to 𝔘 is the representation of 𝔘 induced by 

L restricted to Γ .The truth of the Theorem is now an immediate consequence of 

Theorem(1.2.23) .  

Corollary (1.2.50)[260]:  For each 𝑥 ∈  𝔊 the vectors 𝑓𝑟−1(𝑥) 𝑓𝑜𝑟 𝑓𝑟−1  ∈ 𝐶𝐿𝑟−2
𝑟−1  form a 

dense linear sub- space of ℌ(𝐿𝑟−2).  
Proof: Note first that if  𝑓𝑟−1  ∈  𝐶𝐿𝑟−2

𝑟−1  and 𝑓𝑠
𝑟−2  is defined by the equation 𝑓𝑠

𝑟−2(𝑥)  =

𝑓𝑟−2(𝑥𝑠) for all 𝑥  and s in 𝔊 then (𝑓𝑟−1)𝑠(𝑥)   =  (𝑓𝑠)
𝑟−1(𝑥) so that for all 𝑓𝑟−2  and 𝑠, 

(𝑓𝑟−1)𝑠  ∈  𝐶𝐿𝑟−2
𝑟−1  . Thus the set of vectors  𝑓𝑟−1(𝑥)  for  𝑓𝑟−1  ∈  𝐶𝐿𝑟−2

𝑟−1  and 𝑥  fixed is 

independent of 𝑥. Let ℌ1 be the  orthogonal complement of this set of vectors. Then if 𝑣 ∈

ℌ1 we have (𝑓𝑟−1(𝑥), 𝑣)  =  0 for all 𝑓𝑟−1  and all 𝑥 . Thus (𝑓𝑟−1 ( 𝜉𝑥), 𝑣))  =
 (𝑓𝑟−1(𝑥), (𝐿𝑟−2)𝜉−1(𝑣)) is zero for all 𝑓𝑟−1  and 𝑥 and all 𝜉 ∈ 𝐺. 

Hence ℌ1is invariant under the representation 𝐿𝑟−2. Let 𝐿𝑟−2
′  be the component  of L in 

ℌ1. Suppose that there exists a non zero member 𝑓𝑟−1 of 𝐶𝐿𝑟−2
𝑟−1 . Then 𝑓𝑟−1  ∈  𝐶𝐿𝑟−2

𝑟−1   and we 

have a contradiction since the values of 𝑓𝑟−1are all in  ℌ1 . Thus in order to show that ℌ1  =
 0 and complete the proof of the lemma we need only show that when ℌ1  ≠ 0 there exists a 

non zero member 𝑓𝑟−2  of 𝐶𝐿𝑟−2
𝑟−1 . But if none existed then 

∫((𝐿𝑟−2
′ )𝜉−1

 (𝑓𝑟−2(𝜉𝑥)), 𝑣)  𝑑𝑣(𝜉)  would be zero for all 𝑥, all 𝑣 in ℌ(𝐿𝑟−2) and all 𝑓𝑟−2 in 

𝐶𝐿  This is readily seen to be impossible.  

Corollary (1.2.51)[260]: Let 𝐿𝑟−2  and 𝑀𝑟−2  be representations of the closed subgroups 

𝐺1 and 𝐺2  of the separable locally compact groups 𝔊𝑟  and 𝔊𝑟+1  respectively. Then the 

representations 𝔊𝑟 × 𝔊𝑟+1
𝑈𝐿𝑟−2×𝑀𝑟−2

 and  𝔊𝑟𝑈
𝐿𝑟−2 ×  𝔊𝑟+1  𝑈

𝑀𝑟−2   of 𝔊𝑟 ×𝔊𝑟+1  are unitary 

equivalent.  

Proof: Let 𝑇 be a member of ℌ(𝑈𝐿𝑟−2  × 𝑈𝑀𝑟−2) [that is an operator from ℌ(𝜇2U𝑀𝑟−2)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅  to 

ℌ(𝜇1𝑈
𝐿𝑟−2)] whose range is finite dimensional.Then there exist  𝑓1, 𝑓2, … 𝑓𝑛 ∈  𝐻(

𝜇1𝑈𝐿𝑟−2) 
and 𝑔1, 𝑔2… .𝑔𝑛  ∈   , ℌ(

𝜇2𝑈𝑀𝑟−2)  such that for each  𝑔 ∈   , ℌ(𝜇2𝑈𝑀𝑟−2)  we have  𝑇(𝑔∗) =
(𝑔1, 𝑔)𝑓1 +⋯+ (𝑔𝑛, 𝑔)𝑓𝑛. For each  𝑥, 𝑥 + 𝜖 ∈  𝔊𝑟  ×  𝔊𝑟+1   we may define an operator 

𝐴𝑇(𝑥, 𝑥 + 𝜖)  from ℌ(𝑀𝑟−2)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅  to ℌ(𝐿𝑟−2)  as follows. (𝐴𝑇(𝑥, 𝑥 + 𝜖)((𝑥 + 3𝜖)
∗) =

𝑓1(𝑥)(𝑔1(𝑥 + 𝜖), 𝑥 + 3𝜖) + ⋯+ 𝑓𝑛(𝑥)(𝑔𝑛(𝑥 + 𝜖), 𝑥 + 3𝜖).  We note at once that 

𝐴𝑇(𝜉𝑥, 𝜂(𝑥 + 𝜖))  =  (𝐿𝑟−2)𝜉𝐴𝑇(𝑥, 𝑥 + 𝜖)(𝑀𝑟−2)𝜂
∗  for all 𝑥, 𝑥 + 𝜖 ∈  𝔊𝑟 ×𝔊𝑟+1  and all 

𝜉, 𝑛 ∈ 𝐺1 × 𝐺2 .  Moreover  ‖|𝐴𝑇(𝑥, 𝑥 + 𝜖)|‖
2 = ∑ (𝑓𝑖(𝑥), 𝑓𝑗(𝑥)) (𝑔𝑖(𝑥 + 𝜖), 𝑔𝑖(𝑥 + 𝜖))𝑖𝑗   

and  

‖|𝑇|‖2 =∑(𝑓𝑖: 𝑓𝑗)(𝑔𝑗: 𝑔𝑖)

𝑖𝑗

=∑ (∫(𝑓𝑖(𝑥), 𝑓𝑗(𝑥))𝑑𝜇1(𝑥 + 2𝜖)) (∫(𝑔𝑗(𝑥 + 𝜖), 𝑔𝑖(𝑥 + 𝜖)𝑑𝜇2(𝑥 + 2𝜖))
𝑖𝑗

 

= ∫(∑ (𝑓𝑖(𝑥), 𝑓𝑗(𝑥)
𝑖,𝑗

) (𝑔𝑗(𝑥 + 𝜖), 𝑔𝑖(𝑥 + 𝜖))𝑑(𝜇1 × 𝜇2)(𝑥 + 2𝜖)

= ∫‖|𝐴𝑇(𝑥, 𝑥 + 𝜖)|‖
2 𝑑(𝜇1 × 𝜇2)(𝑥 + 2𝜖). 
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Corollary (1.2.52)[260]:  Let 𝑈  and 𝑈 + 𝜖  be representations of the separable locally 

compact group 𝔊. Then J(U, 𝑈 + 𝜖) (D(U)) =  I(0U,0𝑈 + 𝜖) and this  number is equal to the 

number of  times that 𝑈 ⨂ (𝑈 + 𝜖)̅̅ ̅̅ ̅̅ ̅̅ ̅̅  contains the identity representation as a discrete direct 

summand; that is the dimension of the subspace of ℌ(𝑈) in which all 𝑈𝑥2.act as the identity.  

Proof. If 𝑈𝑥2𝑇 =  𝑇(𝑈𝑥2 + 𝜖) then 𝑈𝑥2𝑇(𝑈𝑥2
 + 𝜖)

−1
 = 𝑇 which may be written 𝑈𝑥2𝑇𝑥2

∗ =

 𝑇 or (𝑈⨂(𝑈 + 𝜖)̃ )
𝑥2
(𝑇) = 𝑇. Since all steps are reversible the equality of J(U, 𝑈 + 𝜖) to the 

dimension of the identity component of 𝑈⨂(𝑈 + 𝜖)̃  is established. We now show  the 

equality of J(U, 𝑈 + 𝜖) and 𝐼(0𝑈,0𝑈 + 𝜖). Let T be any strong intertwining operator for U 

and 𝑈 + 𝜖. Let 𝑀1 be the orthogonal complement of the null space of T and let 𝑀1 be the 

closure of the range of T. Since T is an intertwining operator it follows that 𝑀1and 𝑀2 are 

invariant under U and 𝑈 + 𝜖  respectively. Let 𝐴(𝑣)   =  (𝑇∗(𝑇(𝑣)∗))
∗
. Then A is a self 

adjoint operator in ℌ(𝑈 + 𝜖)  which commutes with  all 𝑈𝑥2 + 𝜖  and is completely 

continuous. Because of the latter property it has a pure point spectrum and each non zero 

value occurs only a finite number of times. It follows that 𝑀2  is a direct sum of finite 

dimensional invariant subspaces and  a similar argument shows that the same is true of 𝑀1. 

Thus 𝑀2  ⊆ (ℌ(𝑈 + 𝜖))𝑓  and  𝑀2 ⊆ (&(U))f . Hence every strong intertwining operator 

carries (ℌ(𝑈 + 𝜖))𝑓  into  (ℌ(𝑈))𝑓 fand is zero on the orthogonal complement of (ℌ(𝑈 +

𝜖))𝑓  it follows at  once that 𝐽(0𝑈,0 𝑈 + 𝜖)  =  𝐽(𝑈;  𝑈 + 𝜖). Finally it is evident that 

both 𝐼(0𝑈,0 𝑈 + 𝜖) and 𝐽(0𝑈,0 𝑈 + 𝜖)are equal to ∑𝑤𝑛𝑤𝑚𝑤 where the sum is over all finite 

dimensional  irreducible representations of 𝔊  which appear as components of either 

𝑈 
0  𝑜𝑟 𝑈 + 𝜖 

0 , and where 𝑛𝑤 (𝑟𝑒𝑠𝑝.𝑚𝑤) is the multiplicity of occurrence of W in 𝑈 
0  (resp. 

𝑈 + 𝜖 
0 ).   
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Chapter 2 

Kadec Norms and Borel Sets 

We characterize the existence of Kadec type renormings in the spirit of the new results 

for LUR spaces by Molto, Orihuela and Troyanski. It is also shown that a non-coincidence of 

norm-Borel and weak-Borel sets in a function space does not simply that the duality map is 

non-Borel.   

Section (2.1): Borel Sets in a Banach Space 
(𝑋, ‖∙‖)  will denote a Banach space, 𝑋∗  its dual, 𝑤   and 𝑤∗  the weak and weak∗ 

topologies respectively, 𝐵𝑋(𝑟𝑒𝑠𝑝.  𝐵𝑋∗) denotes the unit ball of X (𝑟𝑒𝑠𝑝.  𝑋∗).    𝑆𝑋 will be the 

unit sphere of X. We shall also consider topologies on X of convergence on some subsets of 

the dual space. A subset of 𝐵𝑋∗  is said to be norming (resp. quasi-norming) if its 𝑤∗ −
𝑐𝑙𝑜𝑠𝑒𝑑  convex envelope is 𝐵𝑋∗ (resp. if the envelope contains an open ball centered at the 

origin). 

 A norm ‖∙‖  on X is said to have the Kadec property when the weak and norm 

topologies coincide on the unit sphere. A norm is said to be locallyuniformly rotund (LUR) if 

for every sequence (𝓍𝑛)in the unit sphere and for every point 𝓍 in the unit sphere such that 

lim𝑛‖𝓍𝑛 + 𝓍‖ = 2 the sequence (𝓍𝑛) converges to 𝓍  in norm. LUR norms have the Kadec 

property. For the proof of this fact other properties of Banach spaces having an equivalent 

LUR norm see [47]. There exist Banach space shaving a Kadec norm and admitting no 

equivalent LUR norm [54]. 

 Edgar [48] showd that in a Banach space which admits an equivalent Kadec norm the 

Borel 𝜎 −algebras generated by the weak and norm topologies coincide. He also noted that 

an analogous result also holds when the Kadec property holds for the weak∗ topology.  

Schachermayer [49] showd that a Banach space X that has an equivalent Kadec norm is a 

Borel set in (𝑋∗∗, 𝑤∗). Talagrand [69] showed that the previous two results are not true for 

general Banach spaces, but he showd [68] that for subspaces of weakly compactly generated 

spaces the Borel sets for the topology of point wise convergence on a quasi-norming subset of 

the dual space and the norm Borel sets are the same.  

 Jayne, Namioka and Rogers [58] introduced the nation of a countable cover by sets of 

small local d-diameter (SLD) (see Definition (2.1.3)) for a topological space with respect to 

some metric d and they noted that if a Banach space X has an equivalent Kadec norm then 
(𝑋,𝑤) has SLD with respect to the norm, which implies the coincidence of the Borel sets for 

the norm and weak topologies. In fact, property SLD implies the coincidence of the Borel sets 

for the original topology and the metric in a wider topological context .Oncina [65] has made 

adeep study of property SLD showing that a Banach space with SLD for the weak topology 

with respect to the norm is Borel set in its bidual . Another approach to the coineidence of the 

Borel set and related properties has been given by Hansel [53] using the nation of descriptive 

topological space. In the context of a Banach space endowed with its weak topology, 

Hansell's nation of descriptive space is equivalent to property SLD, as pointed out by Molto, 

Orihuela, Troyanski and Valdivia [53].  

Molto, Orihuela, and Troyanski[62] have characterized the Banach spaces which admit 

an equivalent LUR norm as those spaces X such that (𝑋,𝑤) satisfies a special case of norm 

SLD: X has an equivalent LUR norm if and only if  (𝑋, 𝑤) satisfies Definition (2.1.3) below 
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and the weak neighborhood there is s slice (the intersection with an open half space). See also 

the comments after Theorem (2.1.14).  

 We show that all the above mentioned positive results on coincidence of Borel 𝜎-

algerbras and the Borel nature of a Banach space in its bidual stem from a common 

topological principle which can be used to characterize the existence of Kadec type norms in 

a Banach space. 

 We introduce a useful condition Definition (2.1.1) for a couple of topologies that gives 

a natural approach to the study of Borel sets Proposition (2.1.5). When one of the topologies 

is given by a metric, our property is equivalent to property SLD Definition (2.1.3), 

Proposition (2.1.4). 

 We use the framework of topological vector spaces to study the relation between 

property SLD and the existence of Kadec type equivalent norms. We show that if X is a 

Banach space such that (𝑋,𝑤) has SLD then the weak and norm topologies coincide on the 

level sets of some positive homogeneous function Theorem (2.1.13). We also characterize the 

existence of an equivalent Kadec Theorem (2.1.14) in the spirit of the recents results on LUR 

norms by Molto, Orihuela and Troyanski [61] 

  We apply the previous results to WCD Banach spaces taking advantage of the 

existence of a LUR norm to build Kadec norms for topologies weaker than the topology 

Theorem (2.1.15) and to show the coincidence of Borel sets improving a result by Talagrand. 

As an application to nonmetric topologies we finish by showing that if K is a Radon-

Nikodym compact set then 𝐶(𝐾) has an equivalent norm such that the weak and pointwise 

topologies coincide on the unit sphere (Theorem (2.1.18). 

 Parts of the results have been announced in [66] 

Actually the idea is implicit in [68]. We recall that a network for some topology is a 

family of sets not necessarily opens such that every open set can be written as a union of sets 

in the family. 

Definition (2.1.1)[43]:  Let X be a set, and 𝜏1and 𝜏2 two topologies on X. A subset 𝐴 ⊂ 𝑋 is 

said to have property 𝑃(𝜏1, 𝜏2) if there exists a sequence (𝐴𝑛) of subsets of X such that the 

family (𝐴𝑛 ∩ 𝑈)  where 𝑛 ∈ ℕ and 𝑈 ∈ 𝜏2is a network for 𝜏1, that is, for every 𝒳 ∈ 𝐴 and 

every 𝑉 ∈ 𝜏1 with 𝒳 ∈ 𝑉 there exist 𝑛 ∈ ℕ and 𝑈 ∈ 𝜏2 that 𝒳 ∈ 𝐴𝑛 ∩ 𝑈 ⊂ 𝑉.  
 Evidently, if 𝜏1 ⊂ 𝜏2 then 𝑋 has 𝑃(𝜏1, 𝜏2), but this case is not interesting. The relevant 

case happens when 𝜏2 ⊂ 𝜏1, for instance, in applications to Banach spaces 𝜏1 and 𝜏2 will be 

the norm and the weak topology respectively. If 𝜏1 has a countable basis (𝑉𝑛) then X has 

𝑃(𝜏1, 𝜏2) for any 𝜏2, because we can take 𝐴𝑛 = 𝑉𝑛.this happens in particular when (𝑋, 𝜏1) is 

metrizable and separable. In fact, we shall use the property introduced in Definition (2.1.1) to 

extend results valid for separable spaces to no separable spaces. 

 If we take the sequence (𝐴𝑛 ∩ 𝐴) we can always suppose that 𝐴𝑛 ⊂ 𝐴. That means that 

property 𝑃(𝜏1, 𝜏2) only depends on A equipped with the relative topologies. 

 To check 𝑃(𝜏1, 𝜏2) for a given A it is enough to verify the above set inclusion for all 

the V,s belonging to a sub-basis of 𝜏1, because then A will have 𝑃(𝜏1, 𝜏2) with the countable 

family of the finite intersections of sets of the sequence (𝐴𝑛).  
 The following proposition contains some other elementary consequences of Definition 

(2.1.1).  
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Proposition (2.1.2)[43]: Let X be v a set, 𝜏1, 𝜏2  𝑎𝑛𝑑 𝜏3topologies  on X, and A a subset of 

X. Then:  

 (i) If A has 𝑃(𝜏1, 𝜏2) and 𝐵 ⊂ 𝐴 then 𝐵 has 𝑃(𝜏1, 𝜏2). 
 (ii) If A has 𝑃(𝜏1, 𝜏2) and 𝑃(𝜏2, 𝜏3) then 𝐴 has 𝑃(𝜏1, 𝜏3). 
 (iii) If every point of 𝐴 has a 𝜏1 −basis of neighbourhoods which is made up of  𝜏2-

closed sets then the sequence (𝐴𝑛)  in Definition(2.1.1)   can be taken to consist of 𝜏2- closed 

sets. 

(iv) If every set 𝐴𝑛 of Definition (2.1.1)is 𝜏2-Borel then for every 𝑉 ∈ 𝜏1 such that 𝐴 ⊂ 𝑉, 
there is a 𝜏2 −Borel set B satisfying 𝐴 ⊂ 𝐵 ⊂ 𝑉. In particular, if 𝐴 is 𝜏1 −open , or more 

generally, if A is a 𝐺𝛿 −set for the 𝜏1 −topology, then 𝐴 is 𝜏2 −Borel. 

Proof: (i) Use the same sequence(𝐴𝑛). 
(ii) If (𝐵𝑚) is a sequencefor 𝑃(𝜏2, 𝜏3) then it is easy to check that (𝐴𝑛 ∩ 𝐵𝑚) satisfies the 

condition of Definition(2.1.1) for 𝑃(𝜏1, 𝜏3). 

(iii) Fix 𝒳 ∈ 𝐴. Take  𝑉 ∈ 𝜏 with 𝒳 ∈ 𝑉. Take 𝑉0 ∈ 𝜏1 such that 𝒳 ∈ 𝑉0 and �̅�0
𝜏2 ⊂ 𝑉. There 

exist 𝐴𝑛  and 𝑈 ∈ 𝜏2  such that 𝒳 ∈ 𝐴𝑛 ∩ 𝑈 ⊂ 𝑉0. Thus  

𝒳 ∈ �̅�𝜏1
𝜏2 ∩ 𝑈 ⊂ 𝐴𝑛 ∩ 𝑈̅̅ ̅̅ ̅̅ ̅̅ ̅𝜏2 ⊂ 𝑉. 

(iv) For every 𝒳 ∈ 𝐴  there exist 𝑛𝒳 ∈ ℕ and 𝑈𝒳 ∈ 𝜏2  such that 𝒳 ∈ 𝐴𝑛𝒳 ∩ 𝑈𝒳 ⊂ 𝑉. Now 

we have  

𝐴 = ⋃{𝒳} ⊂ ⋃𝐴𝑛𝒳 ∩ 𝑈𝒳 =⋃(𝐴𝑛 ∩ ⋃ 𝑈𝒳
𝑛𝒳=𝑛

) = 𝐵 ⊂ 𝑉

∞

𝑛=1𝒳∈𝐴𝒳∈𝐴

 

Where B is clearly in Borel (𝑋, 𝜏2 ). 
 

If 𝐴 = ⋂ 𝑉𝑛
∞
𝑛=1  where 𝑉𝑛  ∈ 𝜏1we can take 𝜏2 −Borel sets (𝐵𝑛)such that 𝐴 ⊂ 𝐵𝑛 ⊂ 𝑉𝑛 .  Then 

𝐴 = ⋂ 𝐵𝑛.  
∞
𝑛=1  

 A particularly interesting case occurs when 𝜏1is metrizable. In this case the property 

introduced in Definition(2.1.1) agrees with the following one given by Jayne, Namioka and 

Rogers in [58], which is a special case of their 𝜎 − fragmentability. 
Definition (2.1.3)[43]:    Let (𝑋, 𝜏)be topological space and let d be a metric on X.T hen X 

has a countable cover by sets of small local diameter (SLD) if for every 휀 > 0 there exists a 

decomposition 

𝑋 =⋂𝑋𝑛
𝑒

∞

𝑛=1

 

such that for each 𝑛 ∈ ℕ every point of 𝑋𝑛
𝑒 has a relative 𝜏 − neighbourhoodof diameter less 

than 휀. 
 A Banach space X is said to have countable Szlenk index if for every 휀 > 0, there is a 

decreasing transfinite countable sequence (𝐶𝛼) of  

subsets such that 𝐵𝑋 = 𝑈𝛼(𝐶𝛼 ∖ 𝐶𝛼+1) and every point of  𝐶𝛼 ∖ 𝐶𝛼+1  has a relative weak 

neighbourhood in 𝐶𝛼 of diameter less than 휀, These spaces have been considered by Lancien 

[61] Clearly, if X has countable Szlenk index, then (𝑋, 𝑤)  has ‖⋅‖ - SLD. However, a 

separable Banach space X without the Point of Continuity Property does not have countable 

Szlenk index but (𝑋,𝑤) has ‖⋅‖- SLD. 
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Proposition (2.1.4)[43]: Let (𝑋, 𝜏)be a topological space and d a metric on X. Then X has a 

countable cover by sets of small local diameter if and only if X has 𝑃(𝑑, 𝜏). Moreover, if the 

closed d-balls are 𝜏 -closed then the stets 𝑋𝑛
𝑒  in Definition (2.1.3) can be taken to be 

differences of 𝜏-closed sets. 

Proof: If 𝑋𝑛
𝑒 are the sets of Definition (2.1.3) it is easy to check that the sets(𝐴𝑛) obtained by 

arranging (𝑋𝑛
1/𝑚
)
𝑛,𝑚

 into a sequence by a diagonal process satisfy the condition of 

Definition (2.1.1). 

 For the other implication, given 휀 > 0  just define 
 

𝑋𝑛
𝑒 = {𝒳 ∈ 𝐴𝑛: ∃𝑈 ∈ 𝜏,𝒳 ∈ 𝑈, 𝑑𝑖𝑎𝑚 (𝐴𝑛 ∩ 𝑈) < 휀}. 

The "moreover" part is a consequence of Proposition (2.1.2) (iii). 

The following result shows the good Borel behavior of a topological space 
(𝑋, 𝜏) 𝑡ℎ𝑎𝑡 ℎ𝑎𝑠 𝑃(𝑑, 𝜏) for some appropriate metric d. The statement (a) has already been 

noted by Jayne, Namioka and Rogers in [64] and [66], in terms of property SLD.  

Proposition (2.1.5)[43]:    Let (𝑌, 𝜏)be a topological space and d a metric on Y stronger than 

𝜏 and such that closed d-balls are 𝜏-closed. Let X be a subset of Y having 𝑃(𝑑, 𝜏).  
(a) Considering X with the inherited topologies we have 

𝐵𝑜𝑟𝑒𝑙(𝑋, 𝜏) = 𝐵𝑜𝑟𝑒𝑙(𝑋, 𝑑).  
(b) If X is d-closed in Y then 𝑋 ∈ 𝐵𝑜𝑟𝑒𝑙(𝑌, 𝜏). 
Proof: (a) Evidently every 𝜏-Borel set is a d-Borel set. Conversely, if 𝑉 ⊂ 𝑋 is a d-open set 

then it has 𝑃(𝑑, 𝜏). as closed d-balls are 𝜏-closed we can apply Proposition (2.1.2) (iii), (iv) to 

conclude that V is 𝜏-Borel. 

(b) Since X is a 𝐺𝛿-set in (Y, d), the result follows from Proposition (2.1.2) (ii), (iv). 

 The next corollary embraces the applications of property SLD to Banach spaces by 

Jayne, Namioka and Rogers [58], Oncina [65] and Hansell [59] (this last using the notion of 

descriptive space) that imshow preceding ones by Edgar [48] and Schachermayer [49] on 

Banach spaces admitting Kadec norms. We shall show later that Banach spaces having 

𝑃(‖∙‖, 𝜏) are not very different from Banach spaces that admit an equivalent Kadec norm 

(Theorem (2.1.13). 

Corollary (2.1.6)[43]:  let X be a Banach space and 𝜏 a vector topology weaker than the 

norm topology and such that �̅�𝑋
𝜏  is bounded. 

(a) If X has 𝑃(‖∙‖, 𝜏), 𝑡ℎ𝑒𝑛 𝐵𝑜𝑟𝑒𝑙 (𝑋, ‖∙‖) = 𝐵𝑜𝑟𝑒𝑙(𝑋, 𝜏).  
(b) If X has 𝑃(‖∙‖,𝑤), 𝑡ℎ𝑒𝑛 𝑋 ∈ 𝐵𝑜𝑟𝑒𝑙 (𝑋∗∗, 𝑤∗). 
Proof: Note that �̅�𝑋

𝜏  is the unit ball of an equivalent norm on X whose closed balls are 𝜏-
closed. Then apply Proposition(2.1.5) . 

Let us remark that �̅�𝑋
𝜏  is bounded, for instance, when 𝜏 is the topology of convergence on a 

norming or a quasi-norming subset of 𝑋∗. 
We now give an application of Proposition (2.1.5) to descriptive topology. 

Following Fremlin (see [59]), a completely regular topological space X is �̃�𝑒𝑐ℎ-analytic if 

for every finite sequence s of positive integers there is a set A(s) open or closed in the �̃�𝑒𝑐ℎ-

Stone compactification of X such that  
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𝑋 = ⋃ ⋂𝐴(𝜎 ∖ 𝑛)

∞

𝑛=1𝜎∈ℕℕ

 

where 𝜎 ∖ 𝑛 denotes the finite sequence made up from the first n terms of the sequence 𝜎. 
The notion of �̃�𝑒𝑐ℎ -analytic space has some interest of nonseparable and nonnetrizable 

topological spaces (e. g. a Banach space endowed with its weak topology), where the 

classical descriptive set theory is not applicable in general. See [59] and [53] for more 

information about �̃�𝑒𝑐ℎ-analytic spaces and their applications to Banach spaces.  

Corollary (2.1.7)[43]:  Let (𝑋, 𝜏) be a topological space. Suppose that there is a set T such 

that X can be identified as a subspace of ℝ𝑇 with the pointwise topology which is made up of 

bounded functions and is complete for the metric d on X of uniform convergence on T. If X 

has 𝑃(𝑋, 𝜏), then X is a Borel subset of ℝ𝑇 , in fact a pointwise (𝐹 ∩ 𝐺)𝜎𝛿 , as �̃�𝑒𝑐ℎ-analytic. 

Proof: We can assume that d is defined on ℝ𝑇  and it is stronger than the pointwise topology 

with pointwise d-closed balls. As complete for d, it is d-closed in ℝ𝑇  and we finish by 

applying the proofs of Propositions (2.1.2)  and (2.1.5). 

According to [59] a sufficient condition for (𝑋, 𝜏)  to be �̃�𝑒𝑐ℎ -analytic is being 

homeomorphic to a Borel subset of some compact space. The reasoning above shows that 

𝑋 ∩ [−𝑛, 𝑛]𝑇  is Borel in [−𝑛, 𝑛]𝑇 ,  so it is Borel in ℝ̅𝑇  where ℝ̅  is the two-point 

compactification of ℝ Now, as 𝑋 = ⋃ 𝑋 ∩ [−𝑛, 𝑛]𝑇∞
𝑛=1  it is a Borel set in the compact ℝ̅𝑇 . 

 Hansell [59] shows that a descriptive topological space is always    

�̃�𝑒𝑐ℎ-analytic, in particular, every Banach space X such that (𝑋, 𝑤) has ‖∙‖-SLD is �̃�𝑒𝑐ℎ-

analytic (see [63]). Corollary (2.1.7) contains more information about the structure of X in 

that particular case.  

Under the hypothesis of Corollary (2.1.7), it is easy to show that every d-Borel subset of X is 

pointwise Borel in ℝ𝑇 and analogously �̃�𝑒𝑐ℎ-analytic. 

         It is convenient for our purposes to give a more general definition of Kadec norms 

involving topologies different from the weak topology.  

Definition (2.1.8)[43]: Let X be a Banach space and 𝜏 a vector topology weaker than the 

norm topology. An equivalent norm ‖∙‖ is said to be 𝜏-Kadec if the norm topology and 𝜏 
coincide on the unit sphere of ‖∙‖. 
 The next result appears in [44] . 

Proposition (2.1.9)[43]:  A 𝜏-Kadec norm  ‖∙‖is 𝜏-lower semi continuous, that is, its unit ball 

is always 𝜏 − closed. 
Proof: Suppose that ‖∙‖is not 𝜏-Isc. Then there is a net (𝒳𝑤) on the unit sphere 𝑆𝑋  and a 

point 𝒳  outside the unit ball 𝐵𝑋  such that 𝜏- lim𝑤𝒳𝑤 = 𝒳  take numbers 𝑡𝑤 > 1  such that 

‖𝒳 + 𝑡𝑤(𝒳𝑤 −𝒳)‖ = ‖𝒳‖.  Let 𝒴𝑤 = 𝒳 + 𝑡𝑤(𝒳𝑤 −𝒳) . Note that {𝑡𝑤}  is bounded 

because𝑖𝑛𝑓𝑤‖𝒳𝑤 −𝒳‖ > 0.We deduce that 𝜏-lim𝑤𝒴𝑤 = 𝒳 . Since ‖𝒴𝑤‖ = ‖𝒳‖  we should 

have lim𝑤‖𝒴𝑤 −𝒳‖ = 0, but this is impossible because ‖𝒴𝑤 −𝒳‖ ≥ ‖𝒳𝑤 −𝒳‖.  

As mentioned, LUR norms provide examples of norms with the Kadec property. In 

fact, it is not difficult to show that a 𝜏-lower semicontinuous LUR norm is 𝜏-Kadec. At this 

point important to remark that if the unit ball of a Banach space is 𝜏-closed for some vector 

topology 𝜏, then the new unit ball after a renorming is not necessarily 𝜏-closed. For example, 
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there exists a dual Banach space that admits an equivalent LUR norm but no equivalent dual 

LUR norm (see the remark after Theorem (2.1.15). 

 Given two topologies  𝜏1 and 𝜏2 on X and a family Σ of subsets of X we shall say that 

Σ  is good at 𝒳 ∈ 𝑋 𝑖𝑓 𝑓𝑜𝑟 𝑒𝑣𝑒𝑟𝑦 𝑉 ∈ 𝜏1 𝑤𝑖𝑡ℎ  𝒳 ∈ 𝜏1  there exist 𝑆 ∈ Σ  𝑎𝑛𝑑 𝑈 ∈ 𝜏2  such 

that 𝒳 ∈ 𝑆 ∩ 𝑈 ⊂ 𝑉. A good family means a family good at every point of X. It is easy to see 

that a family  Σ covering X such that on every 𝑆 ∈ Σ the topologies 𝜏1 𝑎𝑛𝑑 𝜏2  coincide is 

good and property 𝑃(𝜏1 , 𝜏2) is equivalent to the existence of a countable good family of " 

thick" sets from a good one made up of " thin" sets.  

Lemma (2.1.10)[43]:  Let X be a vector space, 𝜏2 ⊂ 𝜏1  vector topologies on X and Σ a 

family good at some 𝒳 ∈ 𝑋. Then the family 

{𝑆 +𝑊: 𝑆 ∈ Σ, 0 ∈ 𝑊 ∈ 𝜏1} 
is good at 𝒳. Thus, if Σ and II are families of subsets of X such that for every 𝑆 ∈ Σ and every 

𝑊 ∈ 𝜏1 with  0 ∈ 𝑊 there exists 𝑃 ∈ II such that 

𝑆 ⊂ 𝑃 ⊂ 𝑆 +W 

then II is good if and only if Σ is. 

Proof: Given 𝑉 ∈ 𝜏1   𝑤𝑖𝑡ℎ 𝒳 ∈ 𝑉 we shall find 𝑆 ∈ Σ, 0 ∈ W ∈ 𝜏1 and 𝑈 ∈ 𝜏2such that  

𝒳 ∈ (𝑆 +𝑊) ∩ 𝑈 ⊂ 𝑣, 
as 0 +𝒳 ∈ 𝑉  we can take 𝑊1, 𝑉

1 ∈ 𝜏1  with 0 ∈ 𝑊1, 𝒳 ∈ 𝑉
1  and 𝑊1, +𝑉

1 ⊂ 𝑉.  Since Σ  is 

good at 𝒳  there are 𝑆 ∈ Σ    𝑎𝑛𝑑 𝑈1 ∈ 𝜏1 such that 𝒳 ∈ 𝑆 ∩ ′ ⊂ 𝑉′. 𝐴𝑠  0 + 𝒳 ∈ 𝑈′  we can 

find 𝑊2, 𝑈 ∈ 𝜏1 with and 0 ∈ 𝑊2, 𝑥 ∈ 𝑈and 𝑊2 + 𝑈 ⊂ 𝑈
′. Now take𝑊 = 𝑊1 ∩ (−𝑊2) ∈ 𝜏1. 

We show that U and W satisfy the above set inclusion. If 𝒴 ∈ (𝑆 +𝑊) ∩ 𝑈 then there is  𝒵 ∈
𝑆  𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝒴 − 𝒵 ∈ 𝑊 ⊂ −𝑊2  𝑠𝑜 𝒵 = (𝒵 − 𝒴) + 𝒴 ∈ 𝑈

1 Thus 

𝒵 ∈ 𝑆 ∩ 𝑈1 ⊂ 𝑉1. 
Now as  𝒴 − 𝒵 ∈ 𝑊 ⊂ 𝑊1 we have 𝒴 = (𝒴 − 𝒵) +  𝒵 ∈ 𝑉. 
The applications of Kadec type norms to the results developed are contained in the following 

lemma. 

Lemma (2.1.11)[43]:   Let (𝑋, ‖∙‖)  be a normed vector space, and  𝜏2 ⊂ 𝜏1  be vector 

topologies on X weaker than the norm topology. Suppose that there exists a positive 

homogeneous function 𝐹 on X such that:  

(a) 𝐹(𝒳) ≥ 𝑐‖𝒳‖ for some  𝑐 > 0. 
(b) 𝜏1 𝑎𝑛𝑑 𝜏2 coincide on the set  𝑆{𝒳 ∈ 𝑋: 𝐹(𝒳) = 1}. 
Then X has 𝑃(𝜏1 , 𝜏2). In particular, if X is a Banach space that admits an equivalent 𝜏-Kadec 

norm for some weaker vector topology 𝜏 then X has 𝑃(‖∙‖, 𝜏). 
Proof: Consider the following families of sets: Σ = {𝑆(𝑡): 𝑡 ∈ [0,∞)} and the countable one 

Π = {𝐴(𝜏, 𝑠): 𝜏, 𝑠 ∈ ℚ, 0 ≤ 𝓇 ≤ 𝑠} where  

𝑆(𝑡) = {𝒳 ∈ 𝑋: 𝐹(𝒳) = 𝑡},    𝐴(𝓇, 𝑠) = {𝒳 ∈ 𝑋:𝓇 ≤ 𝐹(𝒳) ≤ 𝑠}. 
If 𝑊 ∈ 𝜏1 is a neighbourhood of 0 then it contains some ball 𝐵[0, 𝛿]. It is  

easy to see that for 𝛿 small enough 

𝑆(𝑡) ⊂ 𝐴(𝑡 − 𝑐𝛿) ⊂ 𝑆(𝑡) +𝑊. 
The result follows from Lemma (2.1.10).  

 Combining Proposition (2.1.2), Corollary (2.1.6) and the previous lemma we easily 

obtain the theorems of Edgar and Schachermayer. Note that a more direct proof of Edgar's 

theorem just needs a special case of Lemma (2.1.10) and the idea of point (iv) of Proposition 

(2.1.2). Schachermayer's theorem moreover needs Proposition (2.1.2). 
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Corollary (2.1.12)[43]:  Let X be a Banach space that admits an equivalent Kadec norm. 

Then Borel (𝑋, ‖∙‖) =Borel(𝑋,𝑤) and 𝑋 ∈Borel (𝑋∗∗, 𝑤∗). 
A partial similar result has been showd by Lancin [61] 

Theorem (2.1.13)[43]:   Let X be a Banach space and 𝜏 a vector topology coarser than the 

norm topology such that �̅�𝑋
′  is bounded. Then the following are equivalent:  

(i) X has 𝑃(‖⋅‖, 𝜏)(𝑒𝑞𝑢𝑖𝑣𝑎𝑙𝑒𝑛𝑡, (𝑋, 𝜏)ℎ𝑎𝑠 ‖⋅‖ − 𝑆𝐿𝐷). 
(ii) There exists a nonnegative symmetric homogeneous 𝜏-lower semi continuous function F 

on X with ‖⋅‖ ≤ 𝐹 ≤ 3‖⋅‖ such that the norm   topology and 𝜏  coincide on the set 𝑆 =
{𝒳 ∈ 𝑋: 𝐹(𝒳) = 1}. 
Proof: (ii) ⇒ (i). This is in fact Lemma(2.1.11) .  

(i) ⇒ (ii).  Assume that X is endowed with a 𝜏 -lower semicontinuous equivalent norm 

‖⋅‖, 𝐵(0, 𝑎) and 𝐵[0, 𝑎] are the open and closed balls of center 0 and radius a. As usual 𝐵𝑋 =
𝐵[0, 1]. 
Suppose that X has 𝑃(‖⋅‖, 𝜏) with a sequence (𝐴𝑛).We can suppose every 𝐴𝑛 is star shaded 

with respect to 0 and norm open. To see that, we are going to modify the sequence in several 

steps.  

STEP 1: take 𝐴𝑛
′ = 𝐴𝑛 ∩ 𝐵𝑋. 

STEP 2: Take  

𝐴𝑛
′′ = {𝑡𝒳: 0 ≤ 𝑡 ≤ 1,𝒳 ∈ 𝐴𝑛

′ }. 
We now check that (𝐴𝑛

′′) is good for the points of the unit sphere 𝑆𝑋. Let 𝒳 ∈ 𝑆𝑋  𝑎𝑛𝑑  휀 > 0. 
Applying Lemma(2.1.10)  we can find 𝑈 ∈ 𝜏, 𝑛 ∈ ℕ  and 𝛿 > 0  such that 𝒳 ∈ 𝐴𝑛

′ ∩ 𝑈  and  

diam((𝐴𝑛
′ + 𝐵(0, 𝛿)) ∩ 𝑈) < 휀. Now it is clear that  

𝐴𝑛
′′ ∩ (𝑈 ∖ 𝐵[0, 1 − 𝛿]) ⊂ (𝐴𝑛

′ + 𝐵(0, 𝛿)) ∩ 𝑈. 
Thus 𝑈′ = 𝑈 ∖ 𝐵[0, 1 − 𝛿] ∈ 𝜏 satisfies 𝒳 ∈ 𝐴𝑛

′′ ∩ 𝑈′ and diam(𝐴𝑛
′′ ∩ 𝑈′) < 휀. 

STEP 3: The family 

{𝑟𝐴𝑛
′′ + 𝐵(0, 𝛿): 𝑛 ∈ ℕ, 𝑟 ≥ 0, 𝛿 > 0, 𝑟, 𝛿 ∈ ℚ} 

is good for X by Lemma (2.1.10). Renumbering this family yields the desired (𝐴𝑛). 
Clearly the sets 𝐴𝑛

′̅̅̅̅  are star shaped with respect to 0.  Let 𝑓𝑛 be the Minkowski functional of 

𝐴𝑛
′̅̅̅̅ .  𝑆𝑖𝑛𝑐𝑒 𝐴𝑛

′̅̅̅̅ = {𝑓𝑛 ≤ 1} the function 𝑓𝑛  is 𝜏 -lower semi continuous. Let ‖𝑓𝑛‖  be the 

supremum of |𝑓𝑛(𝒳)| with 𝒳 ∈ 𝐵𝑋.The function F given by the formula  

𝐹(𝒳) = ‖𝒳‖ +∑
1

2𝑛
.
𝑓𝑛(𝒳)

‖𝑓𝑛‖
+∑

1

2𝑛
.
𝑓𝑛(−𝒳)

‖𝑓𝑛‖

∞

𝑛=1

∞

𝑛=1

 

is𝜏-lower semicontinuous and symmetric.  

Let (𝒳𝑤) ⊂ 𝑆 be a net 𝜏-converging to some 𝒳 ∈ 𝑆. From the 𝜏-lower semi continuity of 

‖∙‖  𝑎𝑛𝑑  𝑓𝑛 we have  

‖𝒳‖ ≤ lim𝑤 𝑖𝑛𝑓‖𝒳𝑤, ‖ 

𝑓𝑛(𝒳) ≤ lim𝑤 inf 𝑓𝑛 (𝒳𝑤), 
𝑓𝑛(−𝒳) ≤ lim𝑤 inf 𝑓𝑛 (−𝒳𝑤), 

On the other hand, it is not difficult to see that 

1 ≥ lim𝑤 inf‖𝒳𝑤, ‖ +∑
1

2𝑛‖𝑓𝑛‖

∞

𝑛=1

lim𝑤 inf 𝑓𝑛(𝒳𝑤) +∑
1

2𝑛‖𝑓𝑛‖
lim𝑤inf 𝑓𝑛(−𝒳𝑤)

∞

𝑛=1
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Since F(𝒳 )=1, a simple reasoning with lim sup gives the following equalities and the 

existence of its left members: 

lim
𝑤
‖𝒳𝑤‖ = ‖𝒳‖, 

lim
𝑤
𝑓𝑛(𝒳𝑤) = 𝑓𝑛(𝒳), 

lim
𝑤
𝑓𝑛(−𝒳𝑤) = 𝑓𝑛(−𝒳), 

for every 𝑛 ∈ ℕ. 
Fix 휀 > 0. By the proof of Proposition (2.1.2) (iii) there exist 𝑛 ∈ ℕ and 𝑈 ∈ 𝜏 such that 𝒳 ∈
𝐴𝑛 ∩ 𝑈and diam (𝐴𝑛

′̅̅̅̅ ∩ 𝑈) ≤ 휀. In particular, as 𝐴𝑛is norm open then 𝑓𝑛(𝒳) < 1 so for 𝑤-

large enough 𝑓𝑛(𝒳𝑤) < 1 and thus 𝒳𝑤 ∈ 𝐴𝑛
′̅̅̅̅ . 

 Since for 𝑤-large enough we have 𝒳𝑤 ∈ 𝑈 we obtain ‖𝒳𝑤 −𝒳‖ ≤ 휀.This shows that the 

net (𝒳𝑤) converges to 𝒳 in norms, so the norm topology and 𝜏 coincide on S. 

 Clearly the in statement (ii) of the preceding theorem can be replaced by any constant 

greater 1. In fact every function of the form ‖∙‖ + 𝑎𝐹 with 𝑎 > 0 has the same property.  This 

also shows that the norm can be approximated uniformly by functions with the kadec 

property provided at least one such function exists.  

Note that S is a norm 𝐺𝛿 -set in 𝐵 = {𝒳 ∈ 𝑋: 𝐹(𝒳) ≤ 1}, 𝑡ℎ𝑢𝑠 (𝑆, 𝜏)  is completely 

metrizable. 

A remarkable theorem of Kadec (see [45]) shows that every separable Banach space has an 

equivalent 𝜏-Kadec norm for the topology 𝜏 of convergence on a fixed quasi-norming subset 

of its dual space. The following result extending Kadec's theorem.   

Theorem (2.1.14)[43]:  Let X be a Banach space and 𝜏 a weaker topology such that �̅�𝑋
′  is 

bounded. Then X has an equivalent 𝜏-Kadec norm if and only if X has 𝑃(‖∙‖, 𝜏 ) where the 

sets (𝐴𝑛) in Definition (2.1.1) are convex, in other words, if there exist convex, sets 𝐴𝑛 ⊂ 𝑋 

such that for every 𝒳 ∈ 𝑋  and every 휀 > 0there are 𝑛 ∈ ℕ  and  𝑈 ∈ 𝜏  such that 𝒳 ∈ 𝐴𝑛 ∩
𝑈  and diam(𝐴𝑛 ∩ 𝑈) < 휀. 
Proof: If we begin with (𝐴𝑛) convex in the proof of Theorem(2.1.13) it is easily checked that 

all the families of sets built there are still convex. Thus F is subadditive and so it is an 

equivalent 𝜏-Kadec norm.  

For the converse assume that the norm of X is 𝜏-Kadec. The proof of Lemma (2.1.11) shows 

that X has 𝑃(‖∙‖, 𝜏) with a sequence of differences of closed balls centered at 0. As the closed 

balls are 𝜏-closed we deduce that the sequence of closed balls with rational radii satisfies 

what is required. 

We do not know if property 𝑃(‖∙‖, 𝑤) implies the existence of  anequivalent Kadec norm.  

Molto, Orihela and Troyanski [62] have given a characterization of the existence of an 

equivalent LUR norm in a Banach space using a variant of Definition (2.1.3). Their result can 

be reformulated in similar terms to those of Definition(2.1.1) as follows: a Banach space X 

admits a LUR norm if and only if there exists a sequence of sets 𝐴𝑛 ⊂ 𝑋 such that for every 

𝒳 ∈ 𝑋 and every 휀 > 0 there is 𝑛 ∈ ℕ and an open semispace U such that 𝒳 ∈ 𝐴𝑛 ∩ 𝑈  and 

diam(𝐴𝑛 ∩ 𝑈) < 휀. Note that the topological counterpart of this result is Theorem(2.1.13) 

applied to the weak topology but to deduce that the function F is in fact a Kadec norm we did 

need a geometric assumption about the sets 𝐴𝑛. 
A Banach space X is said to be weakly countably determined (WCD) if there exists a 

sequence (𝐾𝑛) of 𝑤∗-compact subset of 𝑋∗∗ such that for every 𝑥 ∈ 𝑋 and every 𝒴 ∈ 𝑋∗∗ ∖ 𝑋 
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there is 𝑛 ∈ ℕ   𝑤𝑖𝑡ℎ  𝒳 ∈ 𝐾𝑛  𝑎𝑛𝑑 𝒴 ∉ 𝐾𝑛. WCD Banach spaces generalize in a natural way 

the weakly compactly generated Banach spaces (WCG), that is, the spaces containing a total 

weakly compact set. A WCD Banach space admits a LUR norm [71] 

The coincidence of Borel families in the following theorem imshows one by Talagrand [68] 

for subspaces of WCG Banach spaces.  

Theorem (2.1.15)[43]: Let X be a WCD Banach space and let 𝜏 be a Hausdorff  vector 

topology weaker than the weak topology of X. Then X has 𝑃(‖∙‖, 𝜏). Moreover, if �̅�𝑋
𝜏  is 

bounded then X also admits a 𝜏-Kadec norm topology and  

Borel(𝑋, ‖∙‖) = Borel(𝑋, 𝜏). 
Proof: We can assume without loss of generality that the sequence (𝐾𝑛) is closed under finite 

intersections. We claim that the sequence of 𝑤∗-closed convex hulls {𝑐𝑜(𝐾𝑛)
𝑤∗̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ } also satisfies 

the above definition. Indeed, fix 𝒳 ∈ 𝑋 and 𝒴 ∈ 𝑋∗∗ ∖ 𝑋. The set 𝐾 = ⋂ 𝐾𝑛𝒳∈𝐾𝑛  is a weakly 

compact set of X containing 𝒳.  Now, since 𝑐𝑜(𝐾)̅̅ ̅̅ ̅̅ ̅̅ 𝑤  is a weak∗ -compact convex set not 

containing 𝒴,  there is a weak∗ -open half space H such that 𝒳 ∈ 𝐻  and 𝒴 ∉ �̅�𝑤
∗
.  By 

compactness,  there is 𝑛 ∈ ℕ such that 𝒳 ∈ 𝐾𝑛 ⊂ 𝐻. As 𝑐𝑜(𝐾𝑛)̅̅ ̅̅ ̅̅ ̅̅ ̅𝑤∗ ⊂ �̅�𝑤
∗
 we see that 𝒳 ∈

𝑐𝑜(𝐾𝑛)̅̅ ̅̅ ̅̅ ̅̅ ̅𝑤∗ and 𝒴 ∉ 𝑐𝑜(𝐾𝑛)̅̅ ̅̅ ̅̅ ̅̅ ̅𝑤∗ . This ends the proof of the claim. 

 First we check that X has 𝑃(𝑤, 𝜏). For every 𝒳 ∈ 𝑋 define    
 

𝑆𝒳 = ⋂ 𝐾𝑛
𝐾𝑛∋𝒳

 

By definition of WCD it is clear that 𝑆𝒳 is a weakly compact subset of 𝑋. 

If we take {𝑆𝒳} as Σ and the traces on 𝑋 of finite intersections of 𝐾𝑛
   ,𝑠 as a countable 

family 𝛱, then the conditions in Lemma (2.1.10)  are satisfied. Indeed, Σ covers 𝑋, and 𝜏 and 

𝑤  coincide on every 𝑆𝒳  by compactness, so Σ  is good for (𝑤, 𝜏).  Now let 𝑊  be a weak 

neighborhood of 0 and let 𝑊1 be a weak∗ neighborhood of 0 in 𝑋∗∗ such that 𝑊 = 𝑋 ∩𝑊1. 

For some increasing sequence (𝑛𝑗) of integers we have 𝑆𝒳 = ⋂ 𝐾𝑛𝑗.𝑗  By compactness there 

are a finite number of 𝐾𝑛𝑗
   ,𝑠 whose intersection is contained in 𝑆𝒳 +𝑊

1. So X has convex 

𝑃(𝑤, 𝜏). 
      Since a WCD Banach space admits a Kadec norm, it has convex  𝑃(‖∙‖,𝑤). Now X has 

𝑃(‖∙‖, 𝜏) by Proposition (2.1.2) (ii) with convex sets. 

The existence of a 𝜏 -Kadec equivalent norm follows from Theorem (2.1.14), and the 

coincidence of Borel sets follows from Corollary (2.1.6). 

 Using the general definition of a countably determined topological space (𝑋, 𝜏1) in 

terms of use maps one can show that X has 𝑃(𝜏1, 𝜏2) for every weaker Hausdorff topology 

𝜏2,  but it is not clear if that implies the coincidence of Borel sets. For example, in the 

preceding theorem, if we want to show the coincidence of Borel sets for 𝜏 and the weak 

topology directly from the fact that X has 𝑃(𝑤, 𝜏) we have to check that 𝑋 ∩ 𝐾𝑛 is  

𝜏-Borel, which is not evident except in the case of a WCG space. Roughly speaking that was 

the argument of Talagrand [68], but WCD spaces were introduced some years later. 

 In the particular case of a dual WCD space, when 𝜏 is the weak∗ topology it is known 

that the space admits an equivalent dual LUR norm   
[8]. Without the hypothesis of WCD the result may not be true: the space 𝐽(𝑤1) is a dual with 

the Radon-Nikodym property, so it admits an equivalent LUR norm [45] , but Borel 
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(𝐽(𝑤1), 𝑤
∗)is a proper sub set of Borel (𝐽(𝑤1),𝑤) = Borel (𝐽(𝑤1), ‖∙‖) (see [50]). A natural 

generalization of dual WCD is the dual spaces 𝑋∗ such that (𝐵𝑋∗∗ , 𝑤
∗) is a Corson compact 

set but in this case there may be no dual LUR norm [55]. 

 The next corollary is inspired by a result of [48] for WCG spaces. 

Corollary (2.1.16)[43]:  let Y be a Banach space and 𝜏 a vector topology weaker than the 

weak topology of Y such that the unit ball �̅�𝑌
𝜏  is bounded. If X is a WCD norm closed 

subspace of Y then X is a 𝜏-Borel set in Y. 

Proof: Note that 𝜏 is Hausdorff. We deduce from Theorem (2.1.15)  that X has 𝑃(‖∙‖, 𝜏).Now 

apply Proposition (2.1.5) (b). 

It is not difficult to see that under the conditions of Corollary (2.1.12)  if X is 

𝐾𝜎𝛿   𝑖𝑛 (𝑋
∗∗, 𝑤∗) (for example if X is WCG) then it is an 𝐹𝜎𝛿  in (𝑌, 𝜏) while the proof of 

Corollary(2.1.16)  shows that X is an(𝐹 ∩ 𝐺)𝜎𝛿. It is not known if a WCD Banach space is 

always a 𝐾𝜎𝛿 in (𝑋∗∗, 𝑤∗)(see [47]).  

It is known that K-analytic topological spaces are Cech-analytic for every Hausdorff weaker 

topology. The same result is not true in general for WCD topological spaces. The next 

corollary gives a positive answer in the particular case of Banach spaces and "reasonable" 

topologies. 

Corollary (2.1.17)[43]: Let X be a WCD Banach space and 𝜏 the topology of convergence 

on a quasi-norming subset of 𝑋∗. Then (𝑋, 𝜏) is �̃�ech-analytic. 

Proof: Using an equivalent norm we can suppose that 𝜏 s given by a norming subset. Then 

apply Corollary (2.1.7). 

Let us mention here that it is a consequence of Proposition (2.1.4)  and 

Theorem(2.1.15) that under the hypothesis of Corollary (2.1.17) ,(𝑋, 𝜏) is 𝜎-fragmentable 

and, in particular, the 𝜏-compact subsets of X are fragmentable (see [46]). 

A typical situation is the case of 𝐶(𝐾) spaces with the pointwise topology. There is a 

huge family of compact spaces 𝐾 called Valdivia compact sets such that 𝐶(𝐾) admits a LUR 

norm which makes the unit ball pointwise closed [70]. So the results above are applicable, in 

particular the Borel sets for the norm and pointwise topologies coincide. Recently Haydon, 

Jayne, Namioka and Rogers [56] have shown that if 𝐾 is a totally ordered set that is compact 

in its order topology then 𝐶(𝐾) admits a norm with the Kadec property for the pointwise 

topology so the same coincidence of Borel sets holds.  

A different class of compact spaces where we can check directly the coincidence of 

Borel sets in 𝐶(𝐾) for the weak and pointwise topologies is the class of Radon-Nikodym 

compact spaces. Originally, a compact space is called Radon-Nikodym when it is 

homeomorphic to a 𝑤∗ -compact subset of a dual with the Radon-Nikodym property. 

Equivalently a compact set K is Radon-Nikodym if and only if there exists a stronger lower 

semicontinuous metric d on K such that every Radon measure on K is the restriction of a 

Radon measure on (K, d) [64] and [57]. 

Theorem (2.1.18)[43]:  Let K be a Radon-Nikodym compact space. Then C(K) has an 

equivalent point wise lower semi continuous norm such that on its unit sphere the weak and 

point wise topologies coincide, C(K) has 𝑃(𝑤, 𝑡𝑃(𝐾))and 

Borel(𝐶(𝐾),𝑤) = Borel(𝐶(𝐾), 𝑡𝑃(𝐾)). 
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Proof: A continuous function on K is d-uniformly continuous. Indeed, suppose not. Then we 

can take sequence (𝒳𝑛)  and (𝒴𝑛)  in K such that lim𝑛 𝑑(𝒳𝑛, 𝒴𝑛) = 0 while|𝑓(𝒳𝑛) −
𝑓 (𝒴𝑛)| ≥ 𝛿  𝑓𝑜𝑟 some 𝛿 > 0. By taking an ultrafilter we make the sequences converge to 

the limits 𝒳 and 𝒴 respectively. But by the lower semicontinuity of d we have 𝑑(𝒳,𝒴) =
0 𝑠𝑜 𝒳 = 𝒴 and this contradicts the continuity of f.  

Fix a d-dense set (𝒳𝑛)𝛼∈Γ. Now we define the seminorms 𝑂𝑛 as follows:  

𝑂𝑛(𝑓) = sup 
𝛼
sup{|𝑓(𝒳) − 𝑓(𝒳𝛼)|: 𝑑(𝒳,𝒳𝛼) ≤ 1/𝑛}. 

Clearly 𝑂𝑛  is pointwise lower semicontinuous and since every 𝑓 ∈ 𝐶(𝐾)  is d-uniformly 

continuous, for every 𝛿 > 0 there exists 𝑛 ∈ ℕ such that 𝑂𝑛(𝑓) < 𝛿. 
Define a new norm by the formula 

|‖𝑓‖| = ‖𝑓‖ +∑
1

2𝑛
𝑂𝑛(𝑓).

∞

𝑛=1

 

Evidently ‖∙‖ ≤ |‖∙‖| ≤ 3‖∙‖. Thus |‖∙‖| is an equivalent norm in C(K). 

It is also not hard to check the unit ball of |‖ . ‖| is pointwise closed. 

We now check that the weak and pointwise topologies coincide on 𝑆 = {𝑓 ∈
𝐶(𝐾): |‖𝑓‖| = 1}. 𝐿𝑒𝑡 (𝑓𝑤)  be a net in S pointwise converging to 𝑓 ∈ 𝑆.  Take a Radon 

measure 𝜇 with ‖𝜇‖ ≤ 1 that we suppose already defined on Borel(K, d) and take 휀 > 0. 
From the pointwise lower semicontinuity of ‖∙‖  and 𝑂𝑛,  reasoning as in Theorem 

(2.1.13) we deduce that lim𝑤 𝑂𝑛(𝑓𝑤) = 𝑂𝑛(𝑓) for every 𝑛 ∈ ℕ. 
Now fix 𝑛 ∈ ℕ such that 𝑂𝑛(𝑓) ≤ 휀/8. Then for 𝑤 large enough 𝑂𝑛(𝑓𝑤) ≤ 휀/6. Since 

𝜇 has a 𝑑-separable 𝑑-support we can fix 𝐹 ⊂ Γ finite such that  

|𝜇| (⋃𝐵[𝒳𝛼11/𝑛]

𝛼∈𝐹

) > |𝜇|(𝐾) −
휀

4
. 

If 𝜔 is large enough then |𝑓𝜔(𝒳𝛼) − 𝑓(𝒳𝛼)| ≤ 휀/6 for α ∈ F. So |𝑓𝜔(𝒳) − 𝑓(𝒳)| ≤ 휀/2 for 

every ∈ ⋃ 𝐵(𝒳𝛼 , 1/𝑛)𝛼∈𝐹  . 

If we have in mind that ‖𝑓‖  and ‖𝑓𝜔‖ are bounded by 1, an easy calculus gives 

|𝜇(𝑓𝜔 − 𝑓)| ≤ ∫|𝑓𝜔 − 𝑓|𝑑|𝜇| ≤ 휀, 

which implies that (𝑓𝜔) converges weakly to f. 

Now apply Lemma (2.1.11)  to deduce that C(K) has 𝑃(𝑤, 𝑡𝑃(𝐾)). Since the unit ball 

is pointwise closed the weak and pointwise topologies have the same Borel sets by 

Proposition (2.1.2)(iv); moreover, every weakly open set is a countable union of differences 

of pointwise closed sets. 

Clearly Theorem (2.1.15)  is still true for a continuous image of a Radon-Nikodym 

compactum. We know no example of a compact space with different Borel sets for the weak 

and pointwise topologies. 

Note that if K is Radon-Nikodym compact and (𝐶(𝐾),𝑤)  has ‖∙‖ -SLD, then 

(𝐶(𝐾), 𝑡𝑃(𝐾)) has ‖∙‖-SLD. In particular, K has Namioka property (see [58].) 
Corollary (2.1.19)[260]:  A 𝜏2-Kadec norm  ‖∙‖is 𝜏2-lower semi continuous, that is, its unit 

ball is always 𝜏2-closed. 
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Proof: Suppose that ‖∙‖is not 𝜏2-Isc. Then there is a net (𝒳𝑤2) on the unit sphere 𝑆𝑋 and a 

point 𝒳 outside the unit ball 𝐵𝑋 such that 𝜏2-lim𝑤2 𝒳𝑤2 = 𝒳 take numbers 𝑡𝑤2 > 1 such that 

‖𝒳 + 𝑡𝑤2(𝒳𝑤2 −𝒳)‖ = ‖𝒳‖. Let 𝒴𝑤2 = 𝒳 + 𝑡𝑤2(𝒳𝑤2 −𝒳). Note that {𝑡𝑤2} is bounded 

because inf𝑤2‖𝒳𝑤2 −𝒳‖ > 0.  We deduce that 𝜏2 - lim𝑤2𝒴𝑤2 = 𝒳 . Since ‖𝒴𝑤2‖ = ‖𝒳‖  we 

should have lim𝑤2‖𝒴𝑤2 −𝒳‖ = 0, but this is impossible because ‖𝒴𝑤2 −𝒳‖ ≥ ‖𝒳𝑤2 −𝒳‖. 

Section (2.2):  Function Spaces with Weak Topology 

One of the main results is that the duality 〈ℓ∞, (ℓ∞)∗〉 is not Borel;  see Corollary 

(2.2.2) for a precise statement.  

 We shall derive this fact from the more general Theorem (2.2.1) concerning the 

Banach spaces C(K) of real-valued continuous functions on compact F-spaces. A compact 

space K is an F-space if any continuous map 𝑐: 𝑈 → [0, 1] defined on an open 𝜎 −compact 

set in K can be continuously extended over K: cf, [77] .We shall write 𝐶𝑤(𝐾)  when 

considering the function space with the weak topology. The result we are just about to state 

involves C-measurability, a notion essentially weaker than Borel measurability. The C-sets in 

a topological space are the elements of the smallest 𝜎 − 𝑎𝑙𝑔𝑒𝑏𝑟𝑎 containing all open sets and 

closed under the Souslin operation  𝒜; 𝑐𝑓. [82]. A function  𝑓: 𝑋 → 𝑌  is C-measurable 

if 𝑓−1(𝑈) is  a C-set in X provided that U is open in Y.  

Theorem (2.2.1)[72]: For each infinite compact F-space K, the evaluation map 𝑒: 𝐾 ×
𝐶𝑤(𝐾) → ℝ, 𝑒(𝑥, 𝑓) = 𝑓(𝑥),  is not C-measurable.  

Corollary(2.2.2)[72]: The duality map 〈, 〉: (ℓ∞, weak) × ((ℓ∞)∗, weak∗) → 𝑅, 〈𝑥, 𝑥∗〉 =
𝑥∗(𝑥),is not C-measurable. To derive this result from Theorem (2.2.1). Let us identify ℓ∞ 

with 𝐶(𝛽Ν), 𝛽Ν being the Čech-Stone compactification of the natural numbers N. then upon 

identification of 𝑥 ∈ 𝛽Ν with the probability measure supported by {𝑥}, one can consider 𝛽Ν 

as the subspace of  ((ℓ∞)∗, weak∗),  and the evaluation map 𝐶(𝛽Ν) × 𝛽Ν → ℝ  is the 

restriction of the duality map 〈, 〉. 
It is worth noticing that a theorem of Rosenthal [89] asserts that under the continuum 

hypothesis, ℓ∞ embeds in C(K) for any infinite F-space K. In fact, assuming the continuum 

hypothesis. Theorem (2.2.1).and Corollary (2.2.2) are closely related to each other; cf. [75]. 

Page (2): 

 We shall prove a slightly more refined version of Theorem (2.2.1) , considering a 

topology 𝜏 in C(K) which, on norm-bounded sets in C(K), is between the weak and norm 

topologies (the topology will play an essential role .The idea of the proof of Theorem (2.2.1) 

is closely related to the reasoning by Jayne. Namioka and Rogers [80] (cf, also [81], to the 

effect that the spaces C(K) in Theorem (2.2.1) are not 𝜎 −fragementable. They proved a 

stronger theorem that "tree-complete" spaces K have function spaces which are not 𝜎 −
fragementable. The idea of Jayne, Namioka and Rogers can also be adapted in our case, by  

a refinement of the proof of Theorem(2.2.1) applied to a tree-complete compact space K 

defined by Haydon and Zizler [79], it yields C(K) without any subspace isomorphic to ℓ∞ 

and non-Borel evaluation map 𝑒: 𝐾 × 𝐶(𝐾) → ℝ.  
 Talagrand [69] proved that Borel 𝜎 − algebras inℓ∞ associated with the weak and the 

norm topologies differ, that is, Borel (ℓ∞, weak) ≠Borel(ℓ∞, norm); cf [90]. However, using 

a certain result oHaydon [78] concerning function spaces on trees, one can define a compact 
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(scattered) space K with Borel(C(K), weak), ≠ Borel (C(K), norm) and the evaluation map 

𝑒: 𝐾 × 𝐶𝑤(𝐾) → ℝ Borel-measurable; cf.  

 The reader is referred for some links between the topics discussed in the paper and 

interesting recent work by Burke [73], and Kendrov , Kortezov and Moors [83], [84]. 

 Let c(K) be the function space on a compact non-scattered space K. Let us fix an 

irreducible continuous ∅: 𝑍 → [0, 1] from a compact subset 𝑍 ⊆ 𝐾. (Since K is not scattered, 

there is acontinuous surjection 𝑢 ∶ 𝐾 → [0,1]; let 𝑍 be a minimal compact set mapped bu 𝑢 

onto [0, 1]𝑎𝑛𝑑 ∅ = 𝑢|𝑧∙) Let 𝔗 be the collection of all sets of the form 𝐴 ∪
∅−1(𝐵), 𝑤ℎ𝑒𝑟𝑒 𝐴 ⊆ 𝐾, 𝑍  is compact, B is closed in [0, 1] and ∅−1(𝐵) has relatively empty 

interior in Z. We shall consider in C(K) a topology 𝜏 associated with ∅, generated by basic 

sets. 

𝑁(𝑓, 𝐶) = {g ∈ 𝐶(𝐾): g|𝑐 = 𝑓|𝑐},       𝐶 ∈ 𝔗.              (1) 

Let 𝐶𝜏(𝐾) be the function space C(K) equipped with the topology 𝜏. 
 

𝑐: 𝑈 → [0, 1],where U=dom c is open and 𝜎 − compact.             (2) 

We shall consider ℘ with the discrete topology, and let  ℘ℕ be the countable product of ℘. 

Let  

ℳ = {(𝑐1, 𝑐2,∙ ∙ ∙ ) ∈ ℘
ℕ : 𝑑𝑜𝑚𝑐𝑖̅̅ ̅̅ ̅̅ ̅̅ ⊆ 𝑑𝑜𝑚 𝑐𝑖+1, 𝑐𝑖+1|𝑑𝑜𝑚𝑐𝑖 = 𝑐𝑖}.      (3) 

Let 

𝒴 ⊆ 𝑍 × 𝐶𝜏(𝐾) ×ℳ    (4) 

Be the subspace of the product consisting of all sequences 

𝑦 = (𝑥, 𝑓, 𝑐1, 𝑐2,∙ ∙ ∙)    (5) 

Such that (cf. (3)) 

𝑥 ∈ 𝑍 ∖⋃𝑑𝑜𝑚𝑐𝑖 ,       0 ≤ 𝑓 ≤ 1,

∞

𝑖=1

                   (6) 

 
(𝑐1, 𝑐2,∙ ∙ ∙) ∈ ℳ  𝑎𝑛𝑑 𝑓|𝑑𝑜𝑚𝑐𝑖       𝑓𝑜𝑟 𝑎𝑙𝑙 𝑖 ∈ 𝑁.              (7) 

Lemma (2.2.3)[72]:Let ℊ1, ℊ2,∙ ∙ ∙ be open sets in 𝓎,  dense in a nonempty open set 𝒰  in 

𝓎. Then there are points 𝑦1 = (𝑥𝑖 , 𝑓, 𝑐1, 𝑐2,∙ ∙ ∙) ∈∩𝑛, 𝓀𝑛, 𝑖 = 0, 1 , such that 𝑓(𝑥0) = 0 , 

𝑓(𝑥1) = 1. 
Proof: To begin, let us introduce convenient nation for basic open sets in the space 𝒴. For 

every finite sequence (𝑐1, 𝑐2,∙ ∙ ∙ , 𝑐𝑟) with 𝑑𝑜𝑚𝑐𝑖̅̅ ̅̅ ̅̅ ̅̅ ⊆ 𝑑𝑜𝑚 𝑐𝑖+1, 𝑐𝑖+1|𝑑𝑜𝑚𝑐𝑖 = 𝑐𝑖 (cf. (3)), let  

𝑁(𝑐1,∙ ∙ ∙ , 𝑐𝑟) = {(𝑐1,∙ ∙ ∙ , 𝑐𝑟 , 𝑐𝑟+1,∙ ∙ ∙): (𝑐1, 𝑐2,∙ ∙ ∙) ∈ ℳ}.       (8) 

Then basic open sets in 𝓎are of the form. 

𝑁(𝑈, 𝑓, 𝐶, 𝑐1,∙ ∙ ∙ , 𝑐𝑟) = [𝑈 × 𝑁(𝑓, 𝐶) × 𝑁(𝑐1,∙ ∙ ∙ , 𝑐𝑟)] ∩ 𝓎,      (9)  

Where N(f, C) and 𝑁(𝑐1,∙ ∙ ∙ , 𝑐𝑟) are defined in (1) and (8),  

𝑈 ⊆ 𝐾 is open and    U ∩ dom𝑐𝑟 = 𝜙.                      (10) 

Note that the set in (9) is nonempty if and only if (cf. (4) and (7)) 

𝑈 ∩ 𝑍, 𝑑𝑜𝑚𝑐𝑟̅̅ ̅̅ ̅̅ ̅̅ ̅ ≠ 𝜙  𝑎𝑛𝑑 𝑓|dom𝑐𝑟 = 𝑐𝑟.                     (11) 

Now, in 𝒴, find a nonempty basic open set  

𝒰0 = 𝑁(𝑈0, 𝑓0, 𝐶0, 𝑐1,∙ ∙ ∙ , 𝑐𝑟0) ⊆ ℊ0.               (12) 

We shall choose inductively basic open sets. 

𝜙 ≠ 𝒰𝑛 = 𝑁(𝑈𝑛, 𝑓𝑛, 𝐶𝑛, 𝑐1,∙ ∙ ∙ , 𝑐𝑟𝑛) ⊆ 𝒰𝑛−1 ∩ ℊ𝑛, 𝑛 − 1,2,∙∙∙    (13) 
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Such that  

𝑈𝑛+1̅̅ ̅̅ ̅̅ ⊆ 𝑈𝑛,     𝐶𝑛 ⊆ 𝐶𝑛+1,                             (14) 

𝐶𝑛 ⊆ dom𝑐𝑟𝑛,        𝑛 ≥ 1,                              (15) 

and there are points  

𝑎𝑛, 𝑏𝑛 ∈ 𝑑𝑜𝑚𝑐𝑟𝑛⋂𝑈𝑛−1,     𝑐𝑟𝑛(𝑎𝑛) = 0,    𝑐𝑟𝑛(𝑏𝑛) = 1,   𝑛 ≥ 1     (16) 

To this end, let 𝒰0 be as in (12) and assume that 𝒰𝑛 has already defined Since 𝒰𝑛⋂ℊ𝑛+1 ≠
𝜙, there is a basic open set in 𝒴 such that : 

𝜙 ≠ 𝑁(𝑈, 𝑓, 𝐶, 𝑐1,∙∙∙, 𝑐𝑟𝑛 , 𝑐𝑟𝑛+1,∙∙∙, 𝑐𝑟) ⊆ 𝒰𝑛⋂ℊ𝑛∗1.          (17) 

One can assume that 𝑈 ⊆ 𝑈𝑛   𝑎𝑛𝑑 𝐶𝑛 ⊆ 𝐶. 
 We set 𝐶𝑛+1 = 𝐶. Since 𝑈 ∩ 𝑍 ≠ 𝜙 (cf. (11)), and 𝐶 ∩ 𝑍 is nowhere dense in Z (cf, the 

definition of 𝔗 ), there is an open set W in K with 𝑊 ∩ 𝑍 ≠ 𝜙, and �̅� ⊆ 𝑈\ 𝐶. Let 𝑊0,𝑊1 be 

disjoint nonempty open set in K, 𝑊0 ∪𝑊1̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ ⊆ 𝑊,𝑊 ∩ 𝑍\ (𝑊0 ∪𝑊1̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅) ≠ 𝜙, 𝑎𝑛𝑑 𝑙𝑒𝑡 𝑎𝑛+1 ∈
𝑊0, 𝑏𝑛+1 ∈ 𝑊1. 𝐿𝑒𝑡 𝑓𝑛+1: 𝐾 → [0, 1]be a continuous function which coincides with f on 

(𝐾,𝑊), 𝑓𝑛+1(𝑎𝑛+1) = 0, 𝑓𝑛+1(𝑏𝑛+1) = 1.  Finally, let H be an open 𝜎 −
compact set containing(K \ W) ∪ (𝑊0 ∪𝑊1̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅)   with 𝑍 \�̅� ≠  𝜙 , and  let us set 𝑈𝑛+1 =
  𝑘 / �̅� , 𝑟𝑛+1 = 𝑟 + 1,  and declare 𝑐𝑟𝑛+1 to be the restriction of 𝑓𝑛+1 to H.  

 Having defined the sets 𝒰𝑛  in (13), let us consider a continuous function 𝑓:𝐾 → [0, 1] 
extending all 𝑐𝑟. Since K is an F-sp ace, (2) and (3) guarantee the existence of such an 

extension. Next, using (16) and (14), let us pick. 

𝑥0 ∈⋂𝑈𝑛⋂{𝑎𝑛: 𝑛 ∈ 𝑁},̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ 𝑥1     ∈ ⋂𝑈𝑛⋂{𝑏𝑛: 𝑛 ∈ 𝑁},̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ 

𝑛𝑛

        (18) 

We claim that  

𝑦𝑖 = (𝑥𝑖 , 𝑓, 𝑐1, 𝑐1,∙∙∙) ∈⋂ℊ𝑛,         𝑖 = 0, 1.            (19)

𝑛

 

To this end , we shall make sure that 𝑦0, 𝑦1 ∈ 𝒰𝑛 for every n ;cf. (13). Indeed, 𝑥𝑖∈𝒰𝑛 (cf. (16) 

and (20)), and (𝑐1, 𝑐2,∙ ∙ ∙) extends (𝑐1,∙ ∙ ∙ , 𝑐𝑟𝑛+1). Finally, f and 𝑓𝑛 coincide on 𝐶𝑛 (cf. (15) and 

(11)). In effect, 𝑓 ∈ 𝑁(𝑓𝑛, 𝐶𝑛)(𝑐𝑓. (1)) ,  and hence  𝑦𝑖 ∈ 𝒰𝑛 (cf (9)). Moreover, 𝑓(𝑎𝑛) =
0, 𝑓(𝑏𝑛) = 1  𝑓𝑜𝑟 𝑛 ∈ 𝑁 (cf. (16)), and therefore, by (20), 𝑓(𝑥𝑖) = 𝑖, 𝑖 = 0, 1.That concludes 

the proof of the lemma.  

Proposition (2.2.4)[72]:  Let K be an infinite  F-space and let 𝜏 be the topology in C(K) 

generated by basic sets (1). Then the evaluation map 𝑒: 𝐾 × 𝐶𝜏(𝐾) → ℝ  is not C-measurable.  

 To see that Theorem(2.2.1)  follows from Proposition(2.2.4), let us make the following 

observation.  

We devoted to a proof of Proposition (2.2.4). Let ℘  be the collection of continuous 

functions. 

Proof:  We will now derive Proposition (2.2.4) from Lemma(2.2.3) let  

𝐻 = {(𝑥, 𝑓) ∈ 𝑍 × 𝐶𝜏(𝐾): 𝑓(𝑥) > 0}.                   (20) 

Let 𝑛:𝓎 → 𝑍 × 𝐶𝜏(𝐾) be the restriction to 𝓎 of the projection parallel to ℳ, and let  

ℋ = 𝜋−1(𝐻) = {(𝑥, 𝑓, 𝑐1, 𝑐2,∙ ∙ ∙) ∈ 𝓎: 𝑓(𝑥) > 0}.          (21) 

 Aiming at a contradiction, assume that ℋ is a C-set in 𝓎; hence it is open modulo 

meager sets in 𝓎; cf. [82], [29], [83] Lemma (2.2.3) shows, in particular, that 𝓎 is a Baire 

space, hence either ℋ or 𝓎\ ℋ  is nonmeager in 𝓎 . In effect, there is a 𝐺𝛿 − 𝑠𝑒𝑡  ℘ in 𝓎, 
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dense in some nonempty open set in 𝓎 such that either ℘ ⊆ ℋ  𝑜𝑟 ℘ ∩ℋ = 𝜙.  However, 

using Lemma(2.2.3)  again, we conclude that ℘ interests both ℋ  and its complement; cf. 

(20). This contradiction ends the proof of the proposition.   

Lemma (2.2.6)[72]: Let 𝜙: 𝑆 → 𝐶𝑤(𝐾)  be a continuous map from a choquet space S of 

weight 2𝑁0  to the function space endowed with the weak topology such that 𝜙  takes 

nonempty open sets to sets of norm-diameter 1. Then there is a non-C-set in 𝐶𝑤(𝐾) which is 

norm-discrete.  

Proof: The Choquet property of S provides a function 𝜎 associating to each finite sequence 

𝑈1,∙∙∙, 𝑈𝑛 of nonempty open in snonempty open set 𝜎(𝑈1,∙∙∙, 𝑈𝑛) ⊆ 𝑈𝑛 such that  

⋂𝑈𝑛 ≠ 𝜙, whenever 𝑈𝑛+1 ⊆ 𝜎(𝑈1,∙∙∙, 𝒰𝑛), 𝑛 = 1, 2,∙∙∙

𝑛

   (22) 

Let us fix a base ℜ for S of cardinality 2𝑁0 , and let ⋀ be the collection of dyadic systems 

𝔇 = {𝑇𝑡: 𝑡 ∈ 2
𝑁0}, 𝜙 ≠ 𝑈1 ∈ ℜ,                      (23) 

where𝑈𝑡′ ⊆ 𝑈𝑡′′if𝑡
′ extends 𝑡′′ and 𝑈𝑡′ ∩ 𝑈𝑡′′ = 𝜙   𝑖𝑓 𝑡

′, 𝑡′′ ∈ 2𝑛, 𝑡′ ≠ 𝑡′′,   and the 

following conditions are satisfied.  

𝑈𝑡 ⊆ 𝜎 (𝑈𝑡
1
, 𝑈𝑡
2
,∙∙∙, 𝒰𝑡

𝑛
−1
) ,           𝑡 ∈ 2𝑛,                 (24) 

‖𝜙(𝑢) − 𝜙(𝑣)‖ >
1

2
,whenever 𝑢 ∈ 𝑈𝑡′ , 𝑣 ∈ 𝑈𝑡′′,𝑡

′, 𝑡′′ ∈ 2𝑛, 𝑡′ ≠ 𝑡′′(25) 

Page (6): 

For each 𝔇 ∈∧ and 𝑡 ∈ 2𝑁 we pick 𝑃𝔇(𝑡) ∈ ⋂ 𝑈𝑡/𝑛𝑛  and let 

𝐴(𝔇) = 𝜙({𝑃𝔇(𝑡): 𝑡 ∈ 2
𝑁}).                        (26) 

Then, by(22), (24) and (25),  

|𝐴(𝔇)| = 2𝑁0and‖𝑓 − g‖ ≥
1

2
  for distinct 𝑓, g ∈ 𝐴(ℊ).      (27) 

Since |𝔅| = 2𝑁0  𝑤𝑒 𝑠𝑒𝑒 |∧| = 2𝑁0 ,  and we can list the elements of ∧ 𝑎𝑠 {𝔅𝛼: 𝛼 < 2
𝑁0}. 

Then, by (27), one can pick, by transfinite induction, pairwise distinct 𝑓𝛼 , g𝛼 ∈ 𝐴(𝔇𝛼) such 

that ‖𝑓𝛼 − 𝑓𝛽‖ ≥
1

4
for 𝛼 > 𝛽. Letting B = {𝑓𝛼: 𝛼 < 2

𝑁0},we have . 

𝐵 ∩ 𝐴(𝔇𝛼) ≠ 𝜙 ≠ 𝐴(𝔇𝛼)\𝐵,   𝛼 < 2
𝑁0 .             (28) 

Since B is norm-discrete it is  enough to make sure that B is not  a C-set in𝐶𝑤(𝐾). Assume 

the contrary. Then 𝜙−1(𝐵) is a C-set, and hence it is open modulo meager sets in the Baire 

space 𝓎.Therefore are nonempty open sets 𝐺 = ⋂ 𝐺𝑖
∞
𝑖=1  is contained in either 𝜙−1(𝐵) or its 

complement.  

 Notice that if ‖𝑓 − g‖ >
1

2
, 𝑓, g ∈ 𝐶(𝐾), 𝑡ℎ𝑒𝑟𝑒 𝑖𝑠 𝑎 ∈ 𝐾 𝑤𝑖𝑡ℎ |𝑓(𝑎) − g(𝑎)| >

1

2
 and 

hence there are neighborhoods U, V of f and g in 𝐶𝑤(𝐾) such that ‖𝑓′ − g′‖ >
1

2
  whenever 

𝑓′ ∈ 𝑈, g′ ∈ 𝑉.  Using this fact and the assumption that 𝜙 takes nonempty open sets to sets 

with norm-diameter 1, one readily constructs a dyadic system 𝔇 (cf. (23)) satisfying (24)and 

(25) and 𝑈1 ⊆ 𝐺𝑛for t ∈ 2
𝑛. Then (cf. (26)) 𝐴(𝔇) is either contained in B or disjoint from B. 

However ,𝔇 = 𝔇𝛼 , for some α, and we have reached a contradiction with (36). 

Theorem (2.2.5)[72]:for any infinite compact F-space K there is a norm-discrete set in C(K) 

which is not a 𝐶-set with respect to the weak topology.  
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 We shall derive this theorem from a lemma, closely related to Fremlin's theorem 7J in 

[76]. We refer to Kechris [82] for the notion of Choquet spaces (or in the terminology of [76], 

weakly-𝛼-favorable spaces). 

Proof. We first prove the theorem for F-spaces of weight 2𝑁0, and then we reduce the general 

case to the case for weight 2𝑁0 . Let us recall that any infinite compact F-space contains a 

copy of 𝛽𝑁 and hence it has weight at least 2𝑁0 . 
(A) Let K be a compact F-space of weight 2𝑁0 ., we shall consider 𝐶𝜏(𝐾), the function space 

C(K) with the topology 𝜏 determined by basic sets. 

𝑁(𝑓, 𝐶) = {g ∈ 𝐶(𝐾): g|𝑐 = 𝑓|𝑐},       𝐶 ∈ 𝔗                 (29) 

Since Z is the intersection of at most 2𝑁0 open sets, 𝜏 has a base of cardinality 2𝑁0  . Let ℳ 

be the space defined in (3), and let S be the projection of the space 𝓎 defined parallel to the 

Z-coordinate, that is, let 

𝑆 ⊆ 𝐶𝜏(𝐾) ×ℳ                                    (30) 

consist of all sequences 

𝜎 = (𝑓, 𝑐1, 𝑐2,∙∙∙)                                   (31) 

such that  

𝑍 ∖⋃𝑑𝑜𝑚𝑐𝑖 ≠ 𝜙,         0 ≤ 𝑓 ≤ 1.

∞

𝑖=1

                             (32) 

 
(𝑐1, 𝑐2,∙∙∙) ∈ ℳ,                  𝑓|𝑑𝑜𝑚𝑐𝑖 = 𝑐𝑖 .                  (33) 

We shall apply Lemma(2.2.6)  to the map 

Φ: 𝑆 → 𝐶𝑤(𝐾),      Φ(𝑓, 𝑐1, 𝑐2,∙∙∙) = 𝑓.                     (34) 

The map Φ is continuous, 𝜏 being stronger than the weak topology on the unit ball Basic 

open sets in S are of the form.  

𝑁(𝑓, 𝐶, 𝑐1,∙∙∙, 𝑐𝑟) = [𝑁(𝑓, 𝐶) × 𝑁(𝑐1,∙∙∙, 𝑐𝑟)] ∩ 𝑆                       (35) 

(cf. (1) and (8). The set in (28) is nonempty if and only  if (cf. (25) and (26)) 

𝑍, 𝑑𝑜𝑚𝑐𝑟̅̅ ̅̅ ̅̅ ̅̅ ̅ ≠ ∅ and 𝑓|𝑑𝑜𝑚𝑐𝑟.                                          (36) 

Since, for a 𝐶 ∈ 𝔉, 𝐶 ∩ 𝑍 has empty interior relative to Z, (36) yields that 𝑍, (𝐶 ∪ 𝑑𝑜𝑚𝑐𝑟̅̅ ̅̅ ̅̅ ̅̅ ̅) ≠
∅, and since Z has no isolated points, the image of the set in (28) under Φ has norm-diameter 

1. Therefore, to apply Lemma(2.2.6).it is enough to make sure that the space S is Choquet. 

Playing the choquet game in S, (𝛼)  𝑎𝑛𝑑  (𝛽)  may restrict their moves to basic sets given in 

(28), and a winning strategy for (𝛼) is to respond to a move 𝑁(𝑓𝑛, 𝐶𝑛, 𝑐𝑟𝑛)𝑜𝑓 (𝛽), n even, in 

the following way. By the observation following (29),𝑍\(𝐶𝑟 ∪ 𝑑𝑜𝑚𝑐𝑟̅̅ ̅̅ ̅̅ ̅̅ ̅) ≠ ∅, and (α) picks 

an open 𝜎 -compact 𝑈 ⊆ 𝐾  containing 𝐶𝑟 ∪ 𝑑𝑜𝑚𝑐𝑟̅̅ ̅̅ ̅̅ ̅̅ ̅  with 𝑍\�̅� ≠ ∅ , sets 𝑟𝑛+1 = 𝑟𝑛 +
1, 𝑐𝑟𝑛+1 = 𝑓𝑛|𝑈, 𝑓𝑛+1 = 𝑓𝑛, 𝐶𝑛+1 = 𝐶𝑛, and plays with 𝑁(𝑓𝑛+1, 𝐶𝑛+1, 𝑐1,∙∙∙, 𝑐𝑟𝑛+1 ). Since 𝐾  is 

an 𝐹-space, there is 𝑓 ∈ C(K), 0 ≤ f ≤ 1,  coinciding with every 𝑐𝑖on its domain. For each 

even 𝑛, 𝐶𝑛 ⊆ 𝑑𝑜𝑚 𝑐𝑟𝑛+1  𝑎𝑛𝑑 𝑐𝑟𝑛+1  coincides with 𝑓𝑛on𝐶𝑛; ℎ𝑒𝑛𝑐𝑒 𝑓 ∈ 𝑁(𝑓𝑛, 𝐶𝑛) and in effect 

𝑓 ∈ ⋂ 𝑁(𝑓𝑘, 𝐶𝑘).
∞
𝑘=1  Moreover, 𝑍 ∖ 𝑑𝑜𝑚 𝑐𝑘 ≠ ∅ for each k, and hence 𝑍 ∖ ⋂ 𝑑𝑜𝑚 𝑐𝑘 ≠

∞
𝑘=1

∅. It follows that (𝑓, 𝑐1, 𝑐2,∙∙∙) ∈ ⋃ 𝑁(𝑓𝑛, 𝐶𝑛, 𝑐1,∙∙∙, 𝑐𝑟𝑛)
∞
𝐾=0 ,  that is, (𝑥 ) indeed wins in the 

game.  

 An application of Lemma (2.2.6) now completes part (A) of the proof.  
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(B) Let K be an arbitrary infinite compact F-space. Let us fix a uniformly Closed sub-algebra 

𝒜0of C (K) containing the unit, with infinite linear dimension and  |𝒜0| ≤ 2
𝑁0 , and let us 

define, by transfinite induction, uniformly closed sub-algebras of C(K) 

𝒜0 ⊆ 𝒜1 ⊆⋅⋅⋅ 𝒜𝛼 ⊆∙∙∙ ,        𝛼 < 𝜔1, |𝒜𝛼| ≤ 2
𝑁0 .              (37) 

such that for any 𝑓 ∈ 𝒜𝛼 there is 𝑓 ∈ 𝒜𝛼+1 with 𝑓(𝑥) = 0  𝑖𝑓 𝐹(𝑥) < 0 and  

𝑓(𝑥) = 1 𝑖𝑓 𝑓(𝑥) > 0.     (38) 

If𝒜𝛼 is defined, and 𝑓 ∈ 𝒜𝛼 , we have {𝑥: 𝑓(𝑥) < 0}̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ ∩ {𝑥: 𝑓(𝑥) > 0} = ∅̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅,  

K being an F-space; let us fix 𝑓 ∈ 𝐶(𝐾) as in (38). Then 𝒜𝛼+1 is the uniformly closed sub-

algebra of C(K) generated by the set 𝒜𝛼 ∪ {𝑓: 𝑓 ∈ 𝒜𝛼}.  

 The algebra 𝒜 = ⋃ 𝒜𝛼𝛼<𝜔1  is uniformly closed in C(K). Let 𝑞:𝐾 → 𝐿 be the question 

map identifying the points in K which are not separated by any function in 𝒜.The adjoint 

map 𝑞∗: 𝐶(𝐿) → 𝒜,   𝑞∗(𝑢) = 𝑢°𝑞, identifies the algebras. The compact space L is infinite 

(𝒜0being infinite-dimensional), and the weight of L is not greater than 2𝑁0 , as |𝒜| ≤
2𝑁0;  cf. (37). Let us check that L is an F-space. By [77], it is enough to show that for any pair 

U, V of disjoint open 𝜎 − compact sets in L, �̅� ∩ �̅� = ∅. 𝐿𝑒𝑡 𝑢: 𝐿 → [−1, 1] be a continuous 

map with 𝑢(𝑥) < 0 for 𝑥 ∈ 𝑈, 𝑢(𝑥) > 0 for 𝑥 ∈ 𝑉.  Then 𝑓 = 𝑞∗(𝑢) ∈ 𝒜, and hence 𝑓 ∈ 𝒜𝛼 

for some 𝛼; let 𝑓 ∈ 𝒜𝛼+1 be as in (38). Let𝑓 = 𝑞∗(𝑣). Then 𝑣: 𝐿 → [0, 1] is zero on 𝑈 and  1 

on 𝑉. and  �̅� ∩ �̅� = ∅. 
 Now, by part (A), there is a norm-discrete set E in C(L) which is not C-set in the weak 

topology, and the set 𝑞∗(𝐸) has corresponding properties in C(K). Function space C(K) with 

different norm-Borel and weak-Borel sets and the Borel duality map for any compact 

scattered space K, the space 𝐶(𝐾)∗ dual to C(K) can be identified with the space ℓ1(𝐾) of 

functions. 

 

𝜆:𝐾 → ℝ,              ∑|𝜆(𝑥)| < ∞.

𝑥∈𝐾

                          (39) 

where the duality map is defined by 

 

〈𝑓, 𝜆〉 = ∑𝑓(𝑥).      

𝑥∈𝐾

𝜆(𝑥).                          (40) 

Example (2.2.7)[72]:There exists a compact scattered space K such that the duality map 
〈, 〉: 𝐶𝑤(𝐾) × (ℓ1(𝐾),weak

∗) → ℝ is Borel, while Borel (C(K), weak) ≠ Borel (C(K), norm). 

 The space K in Example(2.2.7) , the one-point compactification of a standard tree, was 

considered by Haydon [54] in his work on reforming in function spaces. We shall begin with 

explaining some notions concerning the trees, following Deville, Godefroy and Zizler [74] 

 A tree T is a set with a partial order ≺ such that the segments {𝑠: 𝑠 ≺ 𝑡}are well-

ordered. We assume that if  {𝑠: 𝑠 ≺ 𝑡1} = {𝑠: 𝑠 ≺ 𝑡2} 
and the segments have a limit ordinaltype, then 𝑡1 = 𝑡2.  We assume also that T has the 

least element〈𝜙〉, the roof. The topology of T is generated by the base consisting of the 

intervals (𝑠, 𝑡] = {𝑢: 𝑠 ≺ 𝑢 ≼ 𝑡} and the root is isolated. Let T̂ = T ∪ {∞} be the  one-point 

compactification of T. The intervals [𝑠, 𝑡] =  (𝑠, 𝑡] ∪ {𝑠},where s is a  successor in 𝑇 , are 

open and closed in T̂. We shall denote by Succ(t) the set of immediate successors of 𝑡.  
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 We shall first establish the following.  

Proposition (2.2.8)[72]:  For any tree T. the duality map 〈, 〉: 𝐶𝑤(�̂�) × (ℓ1(T̂),weak
∗) → ℝ 

is Borel measurable.  

Given a compact scattered space K and a finite set D ⊆ ℝ containing 0, we set 

𝐶(𝐾, 𝐷) = {𝑓 ∈ 𝐶(𝐾): 𝑓(𝐾) ⊆ D}.                             (41) 

In the proof of Proposition (2.2.10), we shall use the following discretization lemma, proved 

(in a slightly different form) in [54], [78], [86]. 

Proof: We shall verify the assertion in a few steps, the sky being Claim A, given below. Let 

us begin with some preliminary observations. Given 𝒜 ⊆ 𝐶(�̂�)  or Γ ⊆ ℓ1(�̂�),  we shall 

denote by (𝒜,𝑤)or (Γ, 𝑤∗) the subspaces of (𝐶(�̂�), weak), or (ℓ1(�̂�),weak
∗), respectively. 

For any 𝒜 ⊆ �̂�  𝑎𝑛𝑑 𝜆 ∈ ℓ1(�̂�),  we write. 

|𝜆|(𝐴)∑|𝜆(𝑡)|,     ‖𝜆‖

𝑡∈𝐴

= |𝜆|(�̂�).                                    (42) 

For each open 𝑊 ⊆ �̂� and 𝑟 ≥ 0, the set 

{𝜆 ∈ ℓ1(�̂�): |𝜆|(𝑊) > 𝑟}is open in (ℓ1(�̂�),𝑊
∗),                  (43) 

and the map 

𝜆 → 𝜆(∞) is Borel on (ℓ1(�̂�),𝑊
∗).                         (44)   

(For the reader's convenience, more details on property (44).) Let 

𝐶0 (�̂̂�) {𝑓 ∈ 𝐶(�̂�): 𝑓(∞) = 0},   ∑ = {𝜆 ∈ ℓ1(�̂�): ‖𝜆‖ = 1, 𝜆(∞) = 0}.           (45) 

The assertion of Proposition (2.2.8) follows easily, as soon as it is established that the duality 

map. 

〈, 〉: (𝐶0(�̂�),𝑊) × (∑,𝑊
∗) → ℝ is Borel.                 (46) 

Indeed, let 𝛿∞ be the Driac measure concentrated at ∞ and let ℝ𝛿∞ be the line spanned by 𝛿∞ 

. Let 𝜎(𝜆) = 𝜆 − 𝜆(∞), 𝛿∞. By (42)-(44), the mappings 𝜆 ⟼ 𝜎(𝜆), 𝜆 ⟼ ‖𝜎(𝜆)‖ are Borel, 

and so is 𝜆 ⟼ 𝜎(𝜆)/‖𝜎(𝜆)‖ ∈ ∑, defined for 𝜆 ∉ ℝ𝛿∞. 
Therefore  (cf.(44)) yields that the duality map 

〈𝑓, 𝜆〉 = ‖𝜎(𝜆)‖. 〈𝑓 − 𝑓(∞),
𝜎(𝜆)

‖𝜎(𝜆)‖
〉 + 〈𝑓(∞), 𝜆〉 

is Borel on (𝐶𝑤(�̂�),weak) × (ℓ1(�̂�) ∖ ℝ𝛿∞, 𝑤
∗) and of course it is also Borel on 𝐶(�̂�) ×

ℝ𝛿∞. We may consult for some details omitted in this reasoning.  

 The rest of the proof will be devoted to a verification of (46). 

(A) Let 𝐷 ⊆ ℝ be a finite set, 0 ∈ 𝐷, and let (cf. (41) and (45))  

𝐶0(�̂�, 𝐷) = {𝑓 ∈ 𝐶0(�̂�, 𝐷): 𝑓(∞) = 0}.                  (47) 

Claim A. There are Borel sets ℋ𝑛 in (𝐶0(�̂�, 𝐷),𝑤)covering𝐶0(�̂�, 𝐷)such that for every 𝑓 ∈
ℋ𝑛 and finite, 𝐹 ⊆ 𝕋 there is aneighborhood 𝓇 of 𝑓 in (ℋ𝑛, 𝑤) and a neighborhood W of F 

in Twith g/w for any g ∈ 𝓇. 

Proof. We shall prove first the claim for D = {0, 1}. Let 

휀 = 𝐶0(�̂�, {0, 1}),                                         (48) 

where휀 is equipped with the weak topology. For 𝑓 ∈ 휀, we let  

𝑆(𝑓) = {𝑡 ∈ 𝑇: 𝑓(𝑡) = 1 and either 𝑡 = 〈𝜙〉 or there is s ∈ T with 

𝑡 ∈ 𝑆𝑢𝑐𝑐(𝑠)𝑎𝑛𝑑 𝑓(𝑠) = 0 }  .                                               (49) 
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Let 𝑓 ∈ 휀   and  𝐴𝑓 ⊆ T × T be the finite set of pairs (s, t) with 𝑡 ∈ 𝑆𝑢𝑐𝑐(𝑠), 𝑓(𝑠) = 0 } and 

𝑓(𝑡) = 1. Then  

𝒰𝑓 = {g ∈ 휀: g(𝑠) = 0, g(𝑡) = 1 𝑓𝑜𝑟 (𝑠, 𝑡) ∈ 𝒜𝑓 andg(〈𝜙〉) = f(〈𝜙〉)}.  (50) 

is a neighborhood of  f  in 휀 such that  

𝑆(𝑓) ⊆ 𝑆(g)       𝑓𝑜𝑟  𝑎𝑛𝑦  g ∈ 𝒰𝑓 .                      (51)   

It follows from (51) that each set {𝑓 ∈ 휀: |𝑆(𝑓)| ≥ 𝑛} is open in 휀, and therefore each set. 

휀𝑛 = {𝑓 ∈ 휀: |𝑆(𝑓)| = 𝑛}is Borel in 휀 .               (52) 

 We shall check that the sets ℋ𝑛 = 휀𝑛 satisfy the assertion of Claim A.Let 𝑓 ∈ 휀𝑛 and 

let 𝐹 ⊆ 𝑇  be finite. For each 𝑡 ∈ 𝐹,we choose𝑡∗ = 𝑡, if t is isolated in 𝑇,  and 𝑡∗ ≺ 𝑡  such 

that 𝑡∗  is a successor and f  is constant on [𝑡∗, 𝑡], , if t is not isolated. Let 𝐹∗ = {𝑡∗: 𝑡 ∈ 𝐹}. 
We set 𝓇 = {  g ∈ 휀𝑛: gcoincides with 𝑓 on F ∪ 𝐹

∗ ∪ {〈𝜙〉} } ∩𝒰𝑓( cf. (52) ). and  𝑊 =

⋃{[𝑡∗, 𝑡]: 𝑡 ∈ 𝐹}.  Notice that (50) and (52) imply that 𝑆(𝑓) = 𝑆(g).  We shall check that 

any  g ∈ 𝓇 coincides with f on W. Let 𝑤 ∈ [𝑡∗, 𝑡], 𝑡 ∈ 𝐹. Assume that 𝑓(𝑡) = 1. Then take 

value 1 on [𝑡∗, 𝑡] and g(𝑡∗) = g(𝑡) = 1. Let 𝑡∗ ≺ 𝑡. 
If g(𝑤) = 0, let 𝑠 be the maximal element of [𝑡∗, 𝑡] with g(𝑠) = 0. 
Then, for 𝑢 ∈ 𝑆𝑢𝑐𝑐(𝑠) ∩ [𝑡∗, 𝑡], 𝑢 ∈ 𝑆(g) ∖ 𝑆(f), which is impossible.  

Similarly, if 𝑓(𝑡) = 0, and hence f takes value 0 on [𝑡∗, 𝑡], we infer that g(𝑤) = 0 for 

𝑤 ∈ [𝑡∗, 𝑡]. 

We shall now consider the general case, D = {0, 𝑑1, 𝑑2,⋅⋅⋅, 𝑑𝑝} ⊆ ℝ.  

Let 𝑟𝑖: 𝐷 → {0, 1}  take 𝑑1  to 1 and other elements of D to 0, and let 

𝜎𝑖: (𝐶0(�̂�, 𝐷), 𝑤) → (휀, 𝑤)  be defined by 𝜎𝑖(𝑓) = 𝑟𝑖°𝑓; 𝑐𝑓. (49) .  Then. arranging the sets 

⋂ 𝜎𝑖
−1(휀𝑛𝑖), 𝑛𝑖 ∈ 𝑁,

𝑃
𝑖=1  into a sequence ℋ1,ℋ2,∙∙∙, we get Borel sets satisfying the assertion 

of Claim A.  

(B) With Σand 𝐶0(�̂�, 𝐷) defined by (45) and (42), we shall check the following claim. 

Claim B. The duality map 〈, 〉: (𝐶0(�̂�, 𝐷), 𝑤) × (Σ,𝑤
∗) → ℝ is Borel. 

Lemma(2.2.9)[72]:Let K be a compact scattered space. For 𝑖 ∈ ℕ,  there are Borel sets 

𝒟𝑖  𝑖𝑛 𝐶𝑤(𝐾), finite sets𝐷𝑖 ⊆ ℝ, 0 ∈ 𝐷𝑖 ,  real numbers 𝛿(𝑖) > 0  and continuous maps 

Φ𝑖: (𝒟I, weak) → (C(K,DI),weak) such that the following hold. 

(i) ‖𝑓 − Φ𝑖(𝑓)‖ < 𝛿(𝑖) andΦ𝑖(𝑓)(𝑥) = 0 when 𝑓(𝑥) = 0. 
(ii) For any 𝑓 ∈ 𝐶(𝐾)𝑎𝑛𝑑 휀 ≫ 0, there is i with 𝑓 ∈ 𝒟𝑖  𝑎𝑛𝑑 𝛿(𝑖) < 휀. 
Proof: To this end, let us consider the sets ℋ𝑛 defined in Claim A, and for 𝑀 > 0, 𝑟 ∈ ℝ, let 

us set. 

ℋ(𝑛,𝑀, 𝑟) = {(𝑓, 𝜆) ∈ ℋ𝑛 × Σ: ‖𝑓‖ ≤ 𝑀 𝑎𝑛𝑑 〈f, λ〉 > 𝑟}           (53) 

To get Claim B it is enough to verify that the sets ℋ(𝑛,𝑀, 𝑟) are Borel. In fact, we shall see 

that ℋ(𝑛,𝑀, 𝑟) is relatively open in the Borel set {(𝑓, 𝜆) ∈ ℋ𝑛 × Σ: ‖𝑓‖ ≤ 𝑀}. 𝐿𝑒𝑡 (𝑓, 𝜆) ∈
ℋ(𝑛,𝑀, 𝑟). 𝑇ℎ𝑒𝑛 〈𝑓, 𝜆〉 > 𝑟 + 휀 𝑓𝑜𝑟 𝑠𝑜𝑚𝑒 휀 > 0;  let F be a finite set with |𝜆|(𝐹) > 1 −
휀/2𝑀(cf.(44)).  

Let 𝐹 be a neighborhood of f and W a neighborhood of  , given by Claim A. Then  

𝒲 = {𝑣 ∈ Σ: 〈f, λ〉 > 𝑟 + 휀, |𝑣|(𝑊) > 1 − 휀/2𝑀} 
is a neighborhood of  𝜆 𝑖𝑛 (Σ,𝑤∗); 𝑐𝑓. (4.5). 𝐿𝑒𝑡 (g , 𝑣) ∈ 𝒱 ×𝒲, ‖g‖ ≤ 𝑀.By Claim A. 

g|𝑤 = 𝑓|𝑤; ℎ𝑒𝑛𝑐𝑒 |〈𝑓, 𝑣〉 − (g , 𝑣)| ≤ 2𝑀. |𝑣|(𝑇,𝑊) < 2𝑀.  휀/2𝑀 =휀 . Since 〈𝑓, 𝑣〉 > 𝑟 +
휀, we get(g , 𝑣) > 𝑟, 𝑡ℎ𝑎𝑡 𝑖𝑠, (g , 𝑣) ∈ ℋ(𝑛,𝑀, 𝑟). 
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(C) We shall now use Lemma (2.2.9) for 𝐾 = �̂�  to complete the proof of (46). Let us 

consider the unit ball (cf. (45)) 

ℜ = {𝑓 ∈ 𝐶0(�̂�): ‖𝑓‖ ≤ 1}.                            (54) 

It is enough to check that the duality map 〈, 〉(𝔙,𝑤) × (Σ,𝑤∗) → ℝ is Borel, that is that for 

any 𝑟 ∈ 𝑅, the set  

𝒜(𝑟) = {(𝑓, 𝜆) ∈ ℜ × Σ: (𝑓, 𝜆) > 𝑟}is Borel in (𝔙,𝑤) × (Σ,𝑤∗).   (55)             

Let us adapt the notation from Lemma(2.2.9)  and consider 

ℜ𝑖 = ℜ ∩𝔇𝑖 ,       Φ𝑖: ℜ𝑖 → 𝐶0(T̂, 𝐷𝑖). 
Let (cf. Lemma (2.3.9)) 

𝒜(𝑟, 𝑖, 𝑘) = {(𝑓, 𝜆) ∈ ℜ𝑖 × Σ: δ(𝑖) < 1/𝑘  𝑎𝑛𝑑 〈Φ𝑖(𝑓), 𝜆〉 > 𝑟 + 1/𝑘}. (56) 
Since the map Φ𝑖 is continuous with respect to the weak topology, claim B yields that the sets 

𝒜(𝑟, 𝑖, 𝑘) are Borel in (ℜ𝑖 , 𝑤) × (Σ,𝑤
∗). Therefore, to prove (55), and hence to complete the 

proof of Proposition(2.2.8) , it is enough to show that 

𝒜(𝑟) =⋃𝒜(𝑟, 𝑖, 𝑘).

𝑖,𝑘

                                                (57) 

Let (𝑓, 𝜆) ∈ 𝒜(𝑟, 𝑖, 𝑘).  Then 〈Φ𝑖(𝑓), 𝜆〉 > 𝑟 + 1/𝑘  (cf. (56)), and ‖𝑓 − Φ𝑖(𝑓)‖ < δ(𝑖) <
1/𝑘, by Lemma (2.2.9). Since ‖𝜆‖ = 1,  we get 〈𝑓, 𝜆〉 > 𝑟,  that is (𝑓, 𝜆) ∈ 𝒜(𝑟);cf. (55).  

Conversely, let (𝑓, 𝜆) ∈ 𝒜(𝑟), and let k be such that  〈𝑓, 𝜆〉 > 𝑟 +2 / k. By Lemma (2.2.9), 

there is I with 𝑓 ∈ 𝔇𝑖    and  δ(𝑖) < 1/𝑘.  Then  𝑓 ∈ ℜ𝑖 , ‖𝑓 − Φ𝑖(𝑓)‖ < δ(𝑖) < 1/𝑘,   and in 

effect 〈Φ𝑖(𝑓), 𝜆〉 > 𝑟 + 2 / 𝑘 − 1 / 𝑘, that is,  (𝑓, 𝜆) ∈ 𝒜(𝑟, 𝑖, 𝑘). 
Let (cf. [74]) T be the set of all injective maps 𝑡: 𝛼 → 𝑁 defined on countable ordinals 

such that 𝑁 ∖ 𝑡(𝛼) is infinite, equipped with the order 𝑡 ≼ 𝑡′⟺ 𝑑𝑜𝑚 𝑡 ⊆ 𝑑𝑜𝑚 𝑡′ , and 𝑡′ 
extends t. Haydon [54]   proved that there is a Choquet space S and a continuous injective 

function Φ: 𝑆 → (𝐶(�̂�), weak)  with Φ(𝑆)  norm-discrete. Moreover, the space S has no 

isolated points and has weight 2𝑁0 , and by a theorem of Fremlin [76].  S contains a non-Borel 

set A(cf. also Lemma (2.2.6)). Then Φ(𝐴) is not Borel in (𝐶(�̂�),weak), being norm-discrete. 

On the other hand, Proposition (2.2.8), shows that the duality map is Borel measurable.  

In the proof of Proposition (2.2.8), We have omitted some standard, but not quite 

trivial, details concerning Borel measurability of the maps in the proof. 

(A) Let K be a compact space, and let M(K) be the space of Radon measures on K, endowed 

with the 𝑤∗ -topology. Then , for any point 𝑝 ∈ 𝐾,  the function 𝜇 ⟼ 𝜇({𝑝})  is Borel 

measurable on M(K). 

To begin, let us recall that for any compact 𝐹 ⊆ 𝐾, the map 𝜇 ⟼ |𝜇|(𝐹) (and hence 𝜇 ⟼
|𝜇|(𝐾 ∖ 𝐹)) is Borel on M(K). In particular, the set 𝐵 = {𝜇 ∈ 𝑀(𝐾): |𝜇|(𝐾) = 1} is Borel. 

We claim that𝐶 = {𝜇 ∈ 𝐵: 𝜇({𝑝}) > 0} is Borel in M(K). To that end, let S be the set of all 

pairs (a, b) of rational numbers with 0 < 𝑎 < 𝑏 ≤ 1, 𝑏 − 𝑎 < 𝑎 < 𝑎/2.  Then each set  

𝐵(𝑎, 𝑏) = {𝜇 ∈ 𝐵: 𝜇({𝑝}) ∈ (𝑎, 𝑏)}Is Borel.  

and 

⋃{𝐵(𝑎, 𝑏): (𝑎, 𝑏) ∈ 𝑆} = 𝐵 ∖ {𝛿{𝑝}, −𝛿{𝑝}}. 

Therefore, to check that C is Borel it is enough to make sure that: 

𝐶(𝑎, 𝑏) = 𝐶 ∩ 𝐵(𝑎, 𝑏)is relatively open in 𝐵(𝑎, 𝑏), for (𝑎, 𝑏) ∈ 𝑆. 
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Let 𝜇 ∈ (𝑎, 𝑏). Then |𝜇|(𝐾 ∖ {𝑝}) = 1 − 𝜇({𝑝}) > 1 − 𝑏, and hence there is a continuous fon 

K with −1 ≤ 𝑓 ≤ 1, 𝑝 ∉ supp f and∫ 𝑓𝑑𝜇 > 1 − 𝑏, Since 𝜇({𝑝}) > 𝑎. 𝑎𝑛𝑑 𝜇 ∈ 𝐶, 𝜇({𝑝}) >
𝑎 and there is continuous g on K with 0 ≤ g ≤ 1, sup g ∩ supp𝑓 = ∅ and 𝑔𝑑𝜇 > 𝑎. 
Let  

𝑉 = {𝑣 ∈ 𝐵(𝑎, 𝑏):∫𝑓𝑑𝜇 > 1 − 𝑏,∫g𝑑𝑣 > 𝑎.} 

Then V is a neighborhood of 𝜇 in 𝐵(𝑎, 𝑏). Let us check that V ⊆ 𝐶(𝑎, 𝑏). If 𝑣 ∈ 𝑉, then 

∫𝑓𝑑𝜇 > 1 − 𝑏  implies that |𝑣|(supp g) < 𝑏 ,and since |𝑣|({𝑝}) > 𝑎 ,  we get |𝑣|(supp g ∖
{𝑝}) < 𝑏 − 𝑎 < 𝑎/2. On the other hand, ∫ g𝑑𝑣 > 𝑎, and hence 𝑣({𝑝}) > 𝑎/2 > 0, that is 𝑣 ∈
𝐶. 
 Now, {𝜇: 𝜇({𝑝}) > 0} = {𝜇: 𝜇/|𝜇|(𝐾) ∈ 𝐶} is Borel, since the map 𝜇 ⟼ 𝜇/|𝜇|(𝐾) is 

Borel; hence, for any 𝑟 > 0, the set 

{𝜇: 𝜇({𝑝}) > 𝑟} = {𝜇: |𝜇|({𝑝}) > 𝑟} ∩ {𝜇: 𝜇({𝑝}) > 0} 
is Borel, which ends a justification of (A). 

(B) Now let us explain the Borel measurability of the map 

(𝑓, 𝜆) ⟼ 𝑓 − 𝑓(∞),
𝜎(𝜆)

‖𝜎(𝜆)‖
                                   (∗) 

Used in the proof of Proposition (2.2.8) . 

We appeal to the following.  

Indeed, let {𝐵1, 𝐵2,∙∙∙} be a countable base in Z. Then an open set in𝑌 × 𝑍 is of the form 𝑈 =

⋃ (𝑉𝑖 × 𝐵𝑖),𝑖  with each 𝑉𝑖 open in Y , and therefore 𝑤−1(𝑈) = ⋃ (𝑢−1(𝑉𝑖) ∩ 𝑣
−1(𝐵𝑖))𝑖  is a 

Borel set. 

Now, the remark implies that the map.  

(𝑓, 𝜆) ⟼ ((𝑓 − 𝑓(∞), 𝜆), 𝜆(∞). 𝛿∞) = (𝑓 − 𝑓(∞), (𝜆, 𝜆(∞). 𝛿∞)) 
is Borel, and since (𝜆, 𝑟𝛿∞) ⟼ 𝜆 − 𝑟𝛿∞ is continuous, the map.  

(𝑓, 𝜆) ⟼ ((𝑓 − 𝑓(∞), 𝜆) − 𝜆(∞). 𝛿∞) = (𝑓 − 𝑓(∞), 𝜎(𝜆)) 
is Borel.  

The remark also yields the fact that (𝑓, 𝜆) ⟼ ((𝑓, 𝜆), 1/‖𝛾‖) = (𝑓, (𝜆, 1/‖𝜆‖)) is Borel, and 

since (𝜆, 𝑟) ⟼ 𝑟, 𝜆 is continuous, the map (𝑓, 𝜆) ⟼ ((𝑓, 𝜆)/‖𝛾‖) is Borel . 

In effect, the composition 

(𝑓, 𝜆) ⟼ (𝑓 − 𝑓(∞), 𝜎(𝜆)) ⟼ (𝑓 − 𝑓(∞),
𝜎(𝜆)

‖𝜎(𝜆)‖
), 

that is, the map (∗), is Borel. Following Hansell [6], we call a Banach space E descriptive if 

there is a collection 휀 = ⋃ 휀𝑛𝑛  of subsets of E, where each 휀𝑛 is a relatively discrete cover of 

(⋃ 휀𝑛, weak)  and for any 𝑥 ∈ 𝐸 𝑎𝑛𝑑  휀 > 0 𝑡ℎ𝑒𝑟𝑒 𝑖𝑠 𝐴 ∈ 휀  𝑤𝑖𝑡ℎ 𝑥 ∈ 𝐴and norm-diameter 

(𝐴) < 휀. 
 One can easily check that for any descriptive Banach space E, the duality map 
〈, 〉: (𝐸, weak) × (𝐸∗, weak∗) → ℝ is Borel-measurable and Borel (E, weak)=Borel(E, norm); 

cf. [73], [53]. See [73], [74], [53], [56] for some important classes of compact spaces K 

whose functions spaces C(K) are descriptive, No example is known of a Banach space E with 

Borel (E, weak) = Borel (E, norm) that is not desriptive; cf. Oncina [88]. In all examples of 

function spaces C(K) with Borel (C(K), weak)≠Borel (C(K), norm) that we are aware of, 
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there is a norm-discrete set in C(K) which is not Borel with respect to the weak topology. The 

' discretization' argument used shows that this is always true for compact scattered spaces K, 

but we do not know if this is true in general.  

Burke [73] addresses the problem of for which spaces X it is true that if Y is any space 

and 𝑒: 𝑋 × 𝑌 → ℝ  is separately continuous, then e is Borel measurable. Theorem (2.2.1) 

shows that none of the infinite compact F-spaces X have this property. This partially answers 

[73] Another related result is the following observation. Let X be a Baire p-space (that is, all 

𝐺𝛿 − sets in 𝑋 are open) without isolated points, let Y be the space of real-valued continuous 

functions on X with the pointwise topology, and let 𝑒: 𝑋 × 𝑌 → ℝ be the evaluation map. 

Then e is not C-measurable (being separately continuous). 

Kenderov, Kortezov and Moors [84] constructed a continuous map  ∅: 𝐸 →
(ℓ∞, weak),defined on a compactly regularChoquet space which is not norm continuous at 

any point of E. The construction is based on some special games discussed. The approach 

used of yields a more direct construction, providing for any function space C(K) on an 

infinite  compact F-space K such a map ∅: 𝐸 → 𝐶𝑤(𝐾), where E in addition has weight 2𝑁0. 
(The weight of the domain of the map in [84] is greater than 2𝑁0). 
The reasoning can also be used to the following effect. 

Proposition (2.2.10)[72]: Let K be a compact scattered space such that, for some 𝑝 ∈ 𝐾, 𝐾 ∖
{𝑝}  has a continuous injection into a separable metrizable space.Then the evaluation 

map〈, 〉: (𝐶(𝐾), weak) × (ℓ1(𝐾),weak
∗) → ℝ is Borel.  

A variety of such compact spaces were constructed by van Douwen [91] and, under the 

continuum hypothesis. By Kunen (cf. [87]). In particular, for Kunen's space K (the continuum 

hypothesis is assumed), 𝐶𝑤(𝐾) is hereditarily Lindelof, has weight ℵ1, and hence ℵ1Borel 

sets. On the other hand, C(K)   has a norm-discrete set of cardinality ℵ1;  hence there are 2𝑁1 
norm-discrete sets in C(K) .  

It follows that Borel (C(K), weak)≠Borel (C(K), norm).  
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Chapter 3 

Problem of R.V. Kadison and Maximal Injective Subalgebras 

 

We exhibit the first concrete examples of maximal injective von Neumann subalgebras 

in type II, factors. We solve two old problems of R. V. Kadison on the embeddings of the 

hyperfinite factor R. 

Section (3.1): Maximal Abelian *-Subalgebras in Factors 

For 𝑀 be a factor von Neumann algebra and let N ⊂ M be a subfactor. If M is the 

algebra of all bounded operators on a Hilbert space ℋ, M = 𝔅(𝒜), then by the well known 

theorem of von Neumann the bicommutant of  N in M is equal to  N. But if M is a continuous 

factor then in general the bicommutant of N in M is not equal to N (see [98]). Actually it 

seems that the typical and more interesting type of imbedding of N as a subfactor of a 

continuous factor M is such that the commutant of N in M is trivial, i.e. N′ ∩ M = C. For 

example, let 𝛂: G →  Aut (N) be a properly outer action of the discrete group G on N. Then N 

is naturally imbedded in the crossed product algebra N ×, G and by the relative commutant 

theorem we have N′ ∩ (N ×α  G) =  ℂ. 

A sufficient condition for a subfactor N of the factor M to have trivial relative 

commutant is that there exist an abelian *-subalgebra A ⊂ N which is maximal abelian in M. 

(Indeed, because then N′ ∩ M ⊂ A′ ∩ M = A ⊂ N, so that N′ ∩ M =  ℂ,N being a factor). 

We show that under certain conditions Kadison's problem has an affirmative answer. 

The main result is the following. Let M be a separable factor and let N ⊂ M be a semifinite 

subfactor such that N′ ∩ M = ℂ and such that there exists a normal conditional expectation of 

M onto N. 

Then there exists an abelian ,*-subalgebra A in N which is maximal abelian in M and 

which is semiregular in N (i.e. the normalizer of A in N generates a factor). In particular if M 

is a separable type II1  factor then there exist normal conditional expectations onto all its 

weakly closed∗ subalgebras, so that if N is a subfactor in M with N′ ∩ M = ℂ then there 

exists a semiregular maximal abelian subalgebra of N which is also maximal abelian in M. 

We also show by a counterexample that the hypothesis of separability is essential: if Mω  is 

the algebra defined as in [96], [101], for a non Γ type II1  factor M and for a free 

ultrafilterω on ℕ, then by a theorem of A. Connes M′ ∩ Mω = ℂ, but no maximal abelian 

subalgebra of M is maximal abelian in Mω. 

We show some technical results concerning the algebraic condition N′ ∩ M ⊂ N, which 

is the natural generalization of the condition N′ ∩ M =  ℂ for the case when N is not a factor. 

We mention some consequences of the main theorem and we give the counter example 

for the nonseparable case. 

In what follows M will always denote a von Neumann algebra of countable type. All 

the subalgebras of M that we shall consider here will be selfadjoint, weakly closed and will 

contain the unit of M. 

Let φ be a fixed normal faithful positive form on M. For x ∈ M  we denote by ‖x‖φ =

φ(x∗x)1/2  the Hilbert norm on M given by the scalar product (x, y) ↦ φ(y∗ x). Denote by 

ℋφthe Hilbert space obtained by the completion of M in the norm ∥    ∥φ. 
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Let B ⊂ M be a subalgebra and E: M ⟶ B a normal conditional expectation on B, with 

φoE = φ.  Then for x ∈ M and y ∈ B  we have φ(xy) = φ(E(xy)) = φ(E(x)y),  so that 

φ((x − E(x))y) = 0. Thus x − E(x) is orthogonal to B in the Hilbert spac ℋφ and E(x) ∈

B is the orthogonal projection of x on the closureB̅φ of B in ℋφ" In particular it follows that 

the conditional expectation E is uniquely determined by the condition φ o E = φ. 
Definition (3.1.1)[92]:A subalgebra B ⊂ M is φ compatible with M if there exists a normal  

φ preserving conditional expectation of M onto B. By the above remarks this conditional 

expectation is unique and will be denoted by EB
φ

. 

If B ⊂ M is φ compatible with M then EB
φ
(x) ∈ B is the orthogonal projection of x on 

B̅φ  ⊂ ℋφ , so that if B2 ⊂ B1  ⊂  M areφ  compatible with M then EB2
φ
∘ EB1

φ
= EB2

φ
 and 

‖EB2
φ
(x)‖

φ
≦ ‖EB1

φ
(x)‖

φ
for all x ∈ m. If in addition A1 ⊂ A2 ⊂ B2  are also φ compatible 

with M, then 

‖EB2
φ (x) − EA2

φ
(x)(x)‖

φ
≦ ‖EB1

φ (x) − EA1
φ
(x)(x)‖

φ
. 

As usual Mφ = {y ∈ M|φ(xy) = φ(yx) for all x ∈ M} will denote the centralizer of φ in M. 

By the Pedersen-Takesaki theorem Mφ may be also characterized as the fixed point algebra 

of the modular automorphism group σt
φ
, t ∈ ℝ, associated to φ(see [103], Chap. 2). 

Recall that by the Takesaki theorem on the existence of conditional expectations, B ⊂ M is φ 

compatible with M if and only if B is invariant under the modular automorphism group of M 

associated with φ, i. e. σt
φ
(B) = B, t ∈ ℝ  (see [103], Chap. i0). Since σt

φ
(x) = x for x ∈

Mφ , t ∈ ℝ, it follows that any subalgebra B ⊂  Mφ is φ compatible with M. Moreover if y e 

M commutes with B, then  σt
φ
(y)  commutes with σt

φ
(B) = B  so that σt

φ
(B′ ∩ M) = B′ ∩

M, t ∈ ℝ. Using again Takesaki's theorem it follows that B′ ∩ M is φ compatible with M. 

The following lemma gives a criterion for commutative subalgebras in Mφ r to be maximal 

abelian in M. The proof may be easily deduced from [94]. However we give here a complete 

proof for the sake of completeness. 

Lemma (3.1.2)[92]:Let {Ai}i∈I  be an increasing net of finite dimensional .-subalgebras in 

Mφ . Then A = ⋃ A𝔦
w

𝔦
̅̅ ̅̅ ̅̅ ̅  is maximal abelian in M if and only if ‖E

A1
′∩M

φ
(X) − EAt

φ
, (x)‖

φ
→

0 , for all x ∈ M. 

Proof: Since A ⊂ Mφ  it follows that A and A′ ∩ M are φ compatible with M. Note first that 

⋂ (Ai
′ ∩ M) = (⋃ Aii  )′ ∩ M = A′ ∩ Mi  and since {Ai}i∈I , is increasing and {Ai

′ ∩M}i∈I  is 

decreasing, it follows that the nets {EAi
φ
(X)}i∈I and {E

Al
′∩M

φ
(x)}i∈I are Cauchy nets in ℋφ. We 

show that 

(i) ‖EAt
φ (x) − EA

φ(x)‖
φ
→ 0, x ∈ M. 

(ii) ‖E
At
′∩M

φ (x) − E
A′∩M

φ (x)‖
φ
→ 0, x ∈ M. 

Since EAt
φ (x) is the orthogonal projection of EA

φ(X)on Ai = A̅i
φ
, it follows that 

‖EA
φ(X) − EAt

φ (x)‖
φ
 =  inf {‖EA

φ
(x)  −  y‖

φ
 |y ∈ Ai}. 

By the Kaplansky density theorem we get: 
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0 = inf{‖EA
φ
(x)  −  y‖

φ
 |y ∈⋃Ai

i

}  =  inf  inf 
i

{‖EA
φ
(x)  −  y‖

φ
 |y ∈ Ai} = ‖EA

φ
(X)− EAt

φ
(x)‖

φ
 

= lim
i
‖EA
φ
(x)− EAl

φ
(x)‖

φ
, 

and the proof of (i) is completed. 

To prove (ii) remark that the net {E
Al
′∩M

φ
(x)}i∈I is bounded in the uniform norm, so that 

it has limit points in the weak topology on M. Moreover since the weakly closed algebras 

Ai
′ ∩M decrease to A′ ∩ M, any weak limit point of this net is in A′ ∩ M. Let yo ∈ A′ ∩ M be a 

w-limit point of {E
Al
′∩M

φ
(x)}i∈I In particular it follows that the net {φ((x − y0)

∗(E
Al
′∩M

φ
(x) −

y0}i∈I has 0 as a limit point. Since φoE
Al
′∩M

φ
= φ) we obtain that 

φ(E
At
′∩M

φ
((x − y

0
)∗ (E

Al
′∩M

φ
(x) − y

0
))) 

=  φ(E
At
′∩M

φ
((x − y

0
)∗ (E

Al
′∩M

φ
(x) − y

0
)) =  ‖E

Al
′∩M

φ
(x) − y

0
‖
φ

2
 

has 0 as a limit point and since it is Cauchy it follows that ‖E
Al
′∩M

φ
(x) − y

0
‖
φ
→ 0 and finally 

‖E
Al
′∩M

φ
(x) − E

A′∩M

φ (x)‖ I ≦  ‖E
Al
′∩M

φ
(x) − y

0
‖
φ
→ 0 

The statement follows now easily since A ⊂ M is maximal abelian if and only if A′ ∩ M = A, 

or equivalently EA
φ
= E

A′∩M

φ
. 

We point out that by the normality of the conditional expectations E
A′∩M

φ
 and 

EA
φ
, ifE

A′∩M

φ
(x) = EA

φ
(X) for all x in a total subset of M then E

A′∩M

φ
 = EA

φ
 , so that to decide 

that A is maximal abelian in M it is enough to have ‖E
Al
′∩M

φ
(x) − EA1

φ
(X) ‖

φ
→ 0, for x in a 

total subset of M. 

Remark that for Ao = M
φ , finite dimensional and abelian, EA0

φ
, E
Aο
′ ∩M

φ
are given in the 

following way: if e1, e2, . . . , en, ∈ Ao  are the minimal projections of A0  and x ∈ M, then 

EAo
φ
(x) =  ∑

φ(eixei)

φ(ei)
ei

n

i=1

 

E
Aο
′ ∩M

φ x) =  ∑ eixei.

n

i=1

 

Note also that any abelian von Neumann algebra A may be obtained as the closure of an 

increasing net of finite dimensional ,*subalgebras. If A is separable then A is single generated 

and it can be obtained as the closure of an increasing sequence of finite dimensional abelian ,-

subalgebras. 

Let 𝑀  be a yon Neumann algebra of countable type and let cp be a fixed normal 

faithful positive form on M. We shall prove some characterizations of the property N′ ∩ M ⊂
N, in the case N ⊂ Mφ . Since the condition N′ ∩ M ⊂ N is equivalent to N′ ∩ M = 𝔉(N), the 

center of N, it follows that if  N is a factor and N′ ∩ M ⊂ N then M is a factor and N′ ∩M =
ℂ. 
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We point out that Mφ  is a finite algebra, since the restriction of φ to Mφ  is a faithful 

trace. Thus N ⊂  Mφ is necessary finite. 

First we show that the condition N′ ∩ M ⊂ N  can be localized by reduction with 

projections in N. Recall that if e is a projection of the von Neumann algebra M ⊂ 𝔅(ℋ, then 

the reduced von Neumann algebra of M with respect to e is the algebra Me ≝ eMe ⊂ 𝔅(eℋ). 
The commutant of Me in 𝔅(eℋ) is M′ e ⊂ 𝔅(eℋ). 
Lemma (3.1.3)[92]: If N ⊂ M and e ∈ N is a projection, then (Ne)′ ∩ Me = (N′ ∩ M)e . In 

particular if N and M are factors and N′ ∩ M = ℂ, then (Ne)′ C ∩ Me =  ℂ. 

Proof. The inclusion (N′ ∩ M)e ⊂ (Ne)′c ∩ Me is trivial. For the opposite inclusion le z(e) 
be the central support of e in N and let x ∈ (Ne)′ ∩ Me. Since (Ne)′ = N′e, there exists x′ ∈
N′ such that x′e = ex′e = x ∈ eMe. We show that 𝓍𝓏(e) ∈ M. 

Let f ∈ N  be a projection, maximal with the properties that e ≦ f ≦ z(e)  and x′f ∈
M. If z(e) − f ≠ O, then (z(e) − f)Ne ≠ O and it follows that there exists a partial isometry 

v ∈ N such that v ∗ v ≦ e and vv ∗≦ z(e) − f We have M ∋ v(ex′e) v ∗=  vx′v∗  = x′vv∗, so 

that x′(vv∗ + f) ∈ M, which contradicts the maximality of  f It follows that f = z(e), so that 

x′z(e) ∈ M and x = ex′e = e(x′ z(e))e ∈ e(N′ ∩ M)e. 
Lemma (3.1.4)[92]:Let N ⊂ Mφ  be such that N′ ∩ M ⊂ N . Given ε > 0  and x ∈ M, x ≠

O, x φ-orthogonal to N (i.e. such that EN
φ
(x) = 0), there exists a unitary u ∈ N such that 

‖uxu∗ − x‖φ
2 > (2 − 휀) ‖x‖φ

2 , 

Proof :Denote by Kx  = co̅̅̅
w  {vxv∗ |v unitary in N}. First we show that 0 ∈ Kx. 

Since Kx is a weakly compact convex subset of M, by the inferior semicontinuity of the norm 

∥    ∥φ it follows that there exists an element y0 ∈ Kx such that 

‖y0‖φ  = inf{‖y‖φ|y ∈ Kx}. 

Since ∥    ∥φ is a Hilbert norm and Kx is convex, it follows that y0 is the unique element in Kx 

with this property. But v Kxv
∗ ⊂ Kx for all unitaries v in N. In particular vy0v

∗eKx. Since v ∈
Mφ  we have ‖vy0v

∗‖φ = ‖y0‖φ, so that v y0v
∗ = y0 for all unitaries v in N. Consequently 

y0 ∈ N′ ∩ M ⊂ N. By the hypothesis, N ⊂  Mφ  and x is orthogonal to N, so that φ(vxv∗y) =
 φ(xv∗ y v) =  0 for all y, v ∈ N. It follows that all elements in Kx  are orthogonal to N. Thus 

y0 ∈ N and y0 is orthogonal to N, that is y0 =  0. 

Suppose now that ‖vxv∗ − x‖φ
2 ≦ (2 − ε)‖x‖φ

2  for all unitaries v in N. We obtain that 

‖vxv∗‖φ
2 + ‖x‖φ

2 − 2 Reφ(x∗vxv∗) ≦ (2 − ε)‖x‖φ
2  so that 2 Reφ(x∗vxv∗) ≧ ε‖x‖φ

2  for all 

unitaries v in N. Thus we get 2Reφ(x∗y) ≧ ε, ‖x‖φ
2  for every y ∈ Kx  and in particular 0 ≧

ε‖x‖φ
2  , which is a contradiction. 

Lemma (3.1.5)[92]: Let N ⊂ Mφ  be such that N′ ∩ M ⊂ N. If ε > 0 and x1 . . . . . xn ∈ M, xi ≠
0, are φ-orthogonal to N, then there exists a finite dimensional abelian ∗ -subalgebra A0 ⊂  N 

such that 

‖E
A0
′ ∩M

φ
(xi)‖

φ
< 휀 ‖xi‖φ 1 ≦ i ≦ n. 

Proof: Consider first one element x ∈ M, x orthogonal to N. By the preceding lemma there 

exists a unitary u ∈ N  such that ‖uxu∗ − x‖φ > ‖x‖φ . Choose e1 , e2 , . . . , es ∈ N  to be 

spectral projections of u, such that e1 + e2+. . . +es = 1 and such that for suitable scalars 

λ1 , . . . , λ2 , |λi|  =  1, we have ‖∑ λiei
s
i=1 − u‖small enough to ensure that 
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‖(∑λiei

s

i=1

)x(‖∑λ̅jej − u

s

j=1

‖) − x‖

φ

≧ ‖x‖φ 

Since ei ∈ M
φ , the elements {eixej}1≦i,j≦s are orthogonal in ℋφ and by the inequalities 2 ≧

| λiλ̅j −  1|, we get: 

4‖x‖φ
2 − 4 ‖∑eixei

i

‖

φ

2

 =  4 ‖∑eixej
i≠j

‖

φ

2

 

≧ ‖∑(λiλ̅j −  1)eixej
i≠j

‖

φ

2

= ‖(∑λiei

s

i=1

)x(∑λ̅jej

s

j=1

) − x‖

φ

≧ ‖x‖φ
2  

From the first and the last terms of the inequalities we get: 

‖∑eixei
i

‖

φ

2

≦ (3/4)‖x‖φ
2  

For the general case, suppose that m ≧ l is such that (3/4)m < ε2 . Let e1 , . . . , es ∈ N be 

mutually orthogonal projections and l ≦ k ≦ n, p < 𝑚 be such that: 

‖∑eixjei

s

i=1

‖

φ

2

≦ (3/4)m‖xj‖φ
2
, for j < 𝑘, 

‖∑eixkei

s

i=1

‖

φ

2

≦ (3/4)p‖xk‖φ
2  

Applying Lemma (3.1.3)  ,and the first part of the proof for each pair of algebras Nei ⊂

(Mei)
φei , and the element eixkei ∈ eiMei, which is φei, orthogonal to eiNei   we get a set of 

pairwise orthogonal projections  f1, . . . . , ft, ∈ N, refining ei, . . . , es  and such that: 

‖∑fixkfi

t

i=1

‖

φ

2

≦ (3/4)∑‖eixkei‖φ
2

s

i=1

 

= (3/4)∑‖eixkei‖φ
2

s

i=1

≦ (3/4)p+1‖xk‖φ
2  

Since each ei is the sum of some fi we also have for j < 𝑘: 

‖∑fixjfi

t

i=1

‖

φ

2

≦ ‖∑eixjei

s

i=1

‖

φ

2

≦ (3/4)m‖xj‖φ
2

 

By induction, we get a finite set of projections g1, . . . , gt in N, mutually orthogonal, such that: 
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‖∑gixjgi

i

i=1

‖

φ

2

≦ (3/4)m‖xj‖φ
2
< ε2‖xj‖φ

2
, for all l ≦ j ≦ n. 

Taking A0  to be the algebra generated by {gi}1≦i≦l the statement follows. 

 Theorem(3.1.6)[92]: Let M be a von Neumann algebra of countable type with a faithful 

normal positive form φ. Let N ⊂ Mφ  be such that N′ ∩ M ⊂ N. If x1  . . . . , xn  ∈ M and ε >
0, then there exists a finite dimensional abelian  *-subalgebra A ⊂ N, such that 

‖E
A′∩M

φ (xi) − EA
φ(xi)‖

φ
< 휀 , 𝑖 = 1,… , 𝑛. 

Moreover, if M and N are factors and N′ ∩ M = ℂ, then A can be chosen such that its 

minimal projections are equivalent in N. 

Proof: Denote by ε′ = ε(1 + ∑ ‖xi‖φ
n
i=1 )

−1
 . Let xi

′ = EN
φ
(xi), xi

′′   = xi − xi
′, i = 1, . . , n. 

By Lemma (3.1.5) we get a finite dimensional, abelian ∗-subalgebra AocN such that 

‖E
A0
′∩M

φ (xi
′′)‖

φ
≦ (ε′ /2) ‖xi

′′‖φ, i = 1 , . . . , n. 

Let {ei}i ⊂ A0  be the minimal projections of A0. 

Consider the algebra Nei , and take a maximal abelian ,-subalgebra in Nei  (there is one by 

Zorn's lemma). Apply Lemma (3.1.2) for Nei and this maximal abelian subalgebra to obtain a 

finite dimensional abelian ,*subalgebra Ai ⊂ Nei, such that: 

‖E
A0
′∩M

φ
(eixj

′ei) − EAl
φei(eixj

′ei)‖
φei

≦ (ε′ /2) ‖eixj
′ei‖φ

, j = 1 , . . . , n. 

If we let A = ∑ Aii , then A ⊂ N. Since xj
′) are also in N we get: 

‖E
A′∩M

φ
(xj
′) − EA

φ
(xj
′)‖

φ

2
=, ‖E

A′∩N

φ
(xj
′) − EA

φ
(xj
′)‖

φ

2
 

=∑‖E
Al∩Nei

φei (eixj
′ei) − EAl

φei(eixj
′ei)‖

φei

2

𝐢

 

≦ (ε′2 /4)∑‖eixj
′ei‖φei

2
≦ (ε′2 /4)‖xj

′‖
φ

2

𝐢

 

Finally we get: 

‖E
A′∩M

φ
(xj) − EA

φ
(xj)‖φ

 

≦ ‖E
A′∩M

φ
(xj) − EA

φ
(xj)‖φ

+ ‖E
A′∩M

φ
(xj
′′) − EA

φ
(xj
′′)‖

φ
 

≦ ( ε′/2) ‖xj
′‖
φ
 + ‖E

A0
′∩M

φ
(xj
′′) − EA0

φ
(xj
′′)‖

φ
 

≦ ( ε′/2) ‖xj
′‖
φ
 + ‖xj

′′‖
φ
) ≦ ε′‖xj‖φ

 < 휀,   1 ≦ 𝑗 ≦ 𝑛. 

It is not hard to see that if N is a factor then we can modify a such that its minimal projections 

have rational trace in N and such that the above inequalities still hold. 

Taking an appropriate refinement of A the last part of the statement follows easily. 

For the results M will allways denote a separable von Neumann algebra (i.e. with 

separable predual). 

The next definition was first introduced by J. Dixmier (see [97]). 
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Definition(3.1.7)[92]: Let M be a factor and let A ⊂ M be a maximal abelian *-subalgebra of 

M. Denote by .𝒩(A) = {u ∈ M|u unitary, uAu∗ = A} the normalize of A in M and by 𝒩(A) 
the weakly closed .-subalgebra generated by 𝒩(A) in M (in fact N(A) = span̅̅ ̅̅ ̅̅ w𝒩(A)). If 
N(A)=M then A is called regular. If N(A) is a subfactor of M then A is called semiregular. 

Theorem(3.1.8)[92]: Let M be a separable factor and let N ⊂ M be a semifinite subfactor of 

M. Suppose that N′ ∩ M = ℂ and that there exist a normal conditional expectation of M onto 

N. Then there exists a maximal abelian *-subalgebra A in N which is maximal abelian in M 

and which is semiregular in N. 

If in addition N is hyperfinite then A may be chosen to be regular in N. 

Proof: Let E: M → N be the normal conditional expectation. By a result of A. Connes, E is 

unique and faithful (see [103], Prop. 10.17). 

Note that if N is a type I factor and N′ ∩ M = ℂ, then N=M and the statement is trivial. Thus, 

we have to prove only the case N is of type II.Suppose N is of type II1 and let {xn}n≧l be a 

total sequence in M. If τ isthe trace on N, then let φ =  τ ° E. Since  τ and E are faithful, φ is 

faithful, and clearly N ⊂ Mφ . Using Theorem (3.1.6) we construct recursively an increasing 

sequence of matrix subalgebras {Nn}n≧l  of N, each of them with a set of matrix units 

{eij
n}1≦i ,j≦kn such that: 

(i)∑eii
n

kn

i=1

 =  1, 

(ii) every eij
p
, for p ≦ n, is the sum of some ekl

n , 

(iii) if  An denotes the diagonal algebra generated by {eii
n}1≦ 𝑖≦knthen 

‖E
An
′ ∩M

φ
(xj) − EAn

φ
(xj)‖

φ
≦ 2−n , 1 ≦ j ≦ n. 

Suppose this construction is done for 1 ≦ n ≦ m. 

Let e = e11
m ∈ Am ⊂ Nm ⊂ N be a minimal projection in Am. Since (Ne)′ ∩ Me  = ℂ, 

we can apply Theorem (3.1.6) to obtain a finite dimensional abelian ,*-subalgebra A0  in Ne 
such that 

‖E
An
′ ∩Me

φe (eli
mxkeil

m) − EA0
φe(eli

mxkeil
m)‖

φe
 ≦ km

−12−(m+1) 

k =  1, 2, . . . , m +  1, i = 1,2 . . . . , km  . 
Suppose all the minimal projections of A0  are equivalent and let {esk

′ }1<=𝑠,𝑘≦𝑝  be matrix 

units in Ne(which is a factor) such that {ekk
′ }1≦ k ≦p generates A0. Take Nm+1 ⊂ N to be the 

matrix algebra generated by the matrix units 

{eij
m + 1}

1≦i,j≦km+1
 ≝   {esk

′ eij
m}1≦j,j≦km

1≦s,k≦p

 , 

as is easily seen we have 

span{ejj
m+1}

1≦ j≦ km+1
 =  Am + 1  =  ∑eil

mA0eli
m

km

i=1

, 

and for x ∈ M we have 
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‖E
Am+1
′ ∩M

φ (x) − EAm+1
φ (x)‖

φ

2
=.∑‖E

A0
′∩Me

φe (e1i
mxkeil

m) − EA0
φe(eli

mxkeil
m)‖

φe

2
km

i=1

 

By the inequalities (*) we get: 

‖E
Am+1
′ ∩M

φ
(xj) − EAm+1

φ
(xj)‖

φ
≦ km. km

−1. 2−(m+1) = 2−(m+1) , j = 1, . . . , m + 1 . 

Thus, if A =  ⋃ An
w

n≧1
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ , R = ⋃ Nn

w
n≧1
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅,  then R ⊂ N, A is a maximal abelian ,*sub-algebra in 

M by Lemma(3.1.2) and clearly A is regular in R. 

Consequently, if N(A) denotes the algebra generated by the normalizer of A in N, then A ⊂
R ⊂ N(A), so that the center of N(A) is included in R. It follows that N(A) is a factor, since R 

is a factor. 

Suppose now that in addition N is hyper finite and let {Yn}n≧1 be a total sequence in N. 

We construct recursively an increasing sequence of matrix 

subalgebras {Nn}n≥ 1 in N, with matrix units {eij
n}1≦i,≦kn  such that the preceding conditions 

(i), (ii), (iii) hold together with the condition 

 (iv) ‖yi − ENn
φ
, (yj)‖

φ
≦ 2−n, 1 ≦ j ≦ n. 

Suppose this construction is done for 1 ≦ n ≦ m. As before, we can get a matrix algebra 

Nm+ 1
0  such that Nm ⊂ Nm+ 1

0 ⊂ N and such that conditions (i), (ii), (iii) are fulfilled. Since N 

is hyperfinite we can take a matrix subalgebra Nm+1 in N,Nm+1 ⊃ Nm+1
0 ,) also holds. 

If A = ⋃ An
w

n
̅̅ ̅̅ ̅̅ ̅̅ and R = ⋃ Nn

w
n
̅̅ ̅̅ ̅̅ ̅̅ , then A is regular in R and by condition iv),  R = 𝑁. 

Suppose now that N is of type II∞. Let e ∈ N be a finite projection of N. If ℋ is a 

separable infinite dimensional Hilbert space, then M is isomorphic to Me⨁̅𝔅(ℋ )and the 

inclusion of N in M becomes the inclusion Ne⨁̅𝔅(ℋ ) ⊂ Me⨁̅𝔅(ℋ )By Lemma(3.1.3) 
(Ne)

′ ∩Me = ℂ and the restriction of E to Me gives a normal conditional expectation from 

Meonto Ne. By the first part of the proof it follows that there exists an abelian *-subalgebra 

A1 in Newhich is maximal abelian in M e and whose normalizer in N e generates a subfactor 

N(A1) ⊂ Ne , . Let A2 ⊂ 𝔅(ℋ ) be an atomic maximal abelian subalgebra_in 𝔅(ℋ ) Then A2 

is regular in 𝔅(ℋ ).  It follows that A =  A1 ⨁̅ A2  ⊂ Ne  ⨁̅𝔅(ℋ )  is maximal abelian in 

Me⨁̅𝔅(ℋ ) and the normalize of A in Ne  ⨁̅𝔅(ℋ ) generates a factor (this is in fact 

N(A1⨁̅𝔅(ℋ )). If N is hyperfinite then by Connes' theorem Ne is the hyper finite II1  factor 

and applying again the first part of the proof a may be obtained to be regular in N. 

Theorem(3.1.9)[92]: Let M be a separable von Neumann algebra and let 𝑁 ⊂ 𝑀  be a 

semifinite von Neumann subalgebra of M. If 𝑁′ ∩ 𝑀 ⊂ 𝑁  and if there exists a normal 

conditional expectation of M onto N then there exists a maximal abelian * -subalgebra in N 

which is maximal abelian in M. 

Proof: Since 𝑁′ ∩ 𝑀 ⊂ 𝑁, it follows that the normal conditional expectation of M onto N is 

unique (see [103], Prop. 10.17). Let {𝑒𝑛}𝑛≧1 be a sequence of finite projections in N such that 

∑ 𝑒𝑛 = 1𝑛 . For each pair of algebras 𝑁𝑒𝑘 ⊂ 𝑀𝑒𝑘 , 𝑘 ≧ 1, using Theorem(3.1.6) and arguing as 

in the first part of the proof of Theorem (3.1.8) it follows that there exist a maximal abelian .-

subalgebra 𝐴𝑘  𝑜𝑓 𝑀𝑒𝑘 ,  contained in𝑁𝑒𝑘 . Then 𝐴 = ∑𝐴𝑘  is a subalgebra of N and it is 

maximal abelian in M. 

Examples(3.1.10)[92]: (i)  By Takesaki's theorem a sufficient condition for the existence of a 

normal conditional expectation of M onto a subalgebra N, is that N is in the centralizer of 
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some normal faithful state on M (note that in this case N is necessary finite). In particular if 

M is a type 𝐼𝐼1  factor then there exist normal conditional expectations onto all its von 

Neumann subalgebras. Thus, if M is separable 𝑁 ⊂ 𝑀 and 𝑁′ ∩ 𝑀 = ℂ, then by Theorem 

(3.1.8) there exists a semiregular maximal abelian subalgebra in N which is maximal abelian 

in M. 

(ii) Let N be a separable semifinite von Neumann algebra and let 𝛼: 𝐺 → 𝐴𝑢𝑡(𝑁) be a 

properly outer action of the countable discrete group G. By the relative commutant theorem 

we have 𝑁′ ∩ (𝑁 ×𝛼 𝐺) ⊂ 𝑁 (see [103], Chap. 22) and since there is a normal conditional 

expectation of 𝑁 ×𝛼 𝐺  onto N, Theorem (3.1.9) applies, so that there exists a maximal 

abelian subalgebra A in N which is maximal abelian in 𝑁 ×𝛼 𝐺. Moreover if N is a factor 

then A may be chosen to be semiregular in N. 

Proposition (3.1.11)[92]: Let M be a separable type II factor and let 𝐴 ⊂ 𝑀 be amaximal 

abelian *-subalgebra generated by finite projections. If A is semiregular then A is contained 

in some hyperfinite subfactor of M, in which it is regular. 

Proof: Let .𝒩(𝐴) 𝑏𝑒 the normalizer of A in M and N(A) the weakly closed subalgebra 

generated by 𝒩(𝐴). 
Consider the groupoid ℊ = {𝑣 ∈ 𝑀|𝑣  partial isometry of the form 𝑣 = 𝑢𝑝, 𝑢 ∈ 𝒩(𝐴), 𝑝 ∈
𝐴}. First we show that given two finite equivalent projections, 𝑒, 𝑓 ∈ 𝐴, 𝑒𝑓 = 0, there exists a 

partial isometry, 𝑣 ∈ ℊ, such that 𝑣∗ 𝑣 = 𝑒, 𝑣𝑣∗  = 𝑓 . 

Denote by ℘ the family of pairs (p, w), where 𝑝 ∈ 𝐴, 𝑝 ≦ 𝑒,  and 𝑤 ∈ ℊ , such that 

𝑤∗𝑤 = 𝑝 and 𝑤𝑤∗ ≦ 𝑓 Define a partial order in ℘ by (𝑃0,𝑊𝑜) < (𝑃1, 𝑤1), if 𝑃𝑜 ≦ 𝑃1, 𝑃𝑜 ≠
𝑃1,𝑊𝑜 = 𝑤1𝑃𝑜. By Zorn's lemma we obtain a maximal totally ordered family in ℘. Such a 

family has a countable cofinal subfamily so that it clearly has a maximal element (𝑝′, 𝑣′). 
Suppose 𝑝′ ≠ 𝑒  and denote 𝑝" = 𝑒 − 𝑝′, 𝑞" = 𝑓 − 𝑣′𝑣′ ∗ . (Note that 𝑝"  is equivalent with 

𝑞" in M.) 
If 𝑝"𝑢∗𝑞"𝑢 = 𝑂 for any unitary 𝑢 ∈ 𝒩(𝐴) then the projection 

𝑔 = ⋁{𝑢∗𝑞"𝑢|𝑢 ∈.𝒩(𝐴)} ∈ 𝐴 satisfies 𝑝"𝑔 = 0 and ∗ 𝑔𝑢 = 𝑔  for all u 𝜖𝒩(𝐴) . It follows 

that g is a nonscalar element in A which commutes with 𝒩(𝐴)and thus it commutes with 

𝑁(𝐴) = 𝑠𝑝𝑎𝑛̅̅ ̅̅ ̅̅ ̅𝑤 𝒩(𝐴). This is a contradiction, since 𝒩(𝐴)) is a factor. 

If𝑝"𝑢∗𝑞"𝑢 = 𝑃𝑜 ≠ 0 for some 𝑢 ∈ 𝒩(𝐴) then 𝑃𝑜 ≦ 𝑃", 𝑢𝑝𝑜  is in the groupoid ℊ and 𝑣′ +
𝑢𝑃0 is also in ℊ. Thus ℘ ∋ (𝑝′ + 𝑝0 𝑣′ + 𝑢𝑝0) > (𝑝′, 𝑣′), which is in contradiction with the 

maximality of (𝑝′, 𝑣′). Thus 𝑝′ = 𝑣′∗ 𝑣′ = 𝑒, 𝑣′ 𝑣′∗  = 𝑓, 𝑣′ ∈ ℊ. 

We prove now the proposition in the case M is of type 𝐼𝐼1 . 

Let 𝜏 be the trace on M and let {𝑎𝑛}𝑛≧1 ⊂ 𝐴 be a total sequence in 𝐴. We construct by 

induction an increasing sequence of matrix subalgebras {𝑀𝑛}𝑛≧1 of M, each of them with a 

set of matrix units {𝑒𝑖𝑗
𝑛}1≦𝑖,𝑗≦𝑘𝑛, such that: 

(a)∑ 𝑒𝑖𝑖
𝑛𝑘𝑛

𝑖=1 = 1 

(b) 𝑒𝑖𝑖
𝑛 are in the groupoid ℊ, for all n, i, j, 

(c) every 𝑒𝑘𝑙
𝑝

 , for 𝑝 ≦ 𝑛 , is the sum of some 𝑒𝑖𝑗
𝑛 , 

(d) if A. denotes the diagonal algebra generated by  {𝑒𝑖𝑗
𝑛}1 ≦𝑖 ≦𝑘𝑛., then 𝐴𝑛 ⊂ 𝐴 

and 

‖𝑎𝑗 − 𝐸𝐴𝑛
𝑡 (𝑎𝑗)‖𝑡

≦ 2−𝑛,    1 ≦ 𝑗 ≦ 𝑛. 
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Suppose this construction is done for 𝑛 ≦ 𝑚. 

Consider the elements {e1 i
m  𝑎𝑗 ei1

m} 1≦i≦km
1≦j≦m+1

 which are in 𝑒11
𝑚𝐴𝑒11

𝑚  (since 𝑒1i
m ∈

ℊ). Let {e′pp}1≤p≤s  be equivalent projections in 𝑒11
𝑚𝐴𝑒11

𝑚 ∑ 𝑒𝑝𝑝
′𝑠

𝑝=1 = 𝑒11
𝑚  such that if 𝐴0 =

𝑠𝑝𝑎𝑛  {e′pp}1≤p≤sthen 

‖𝑒1𝑖
𝑚𝑎𝑗𝑒𝑖1

𝑚 − 𝐸𝐴0
𝑡 (𝑒1𝑖

𝑚𝑎𝑗𝑒𝑖1
𝑚)‖

𝑡
≦ 𝑘𝑚

−12−(𝑚+1) , 1 ≦ 𝑖 ≦ 𝑘𝑚, 1 ≦ 𝑗 ≦ 𝑚 + 1. 

By the first part of the proof it follows that we can complete the set {𝑒𝑝𝑝
′ }𝑝  to a set of matrix 

units {𝑒𝑝𝑟
′ }1≦𝑝,𝑟≦𝑠 in the groupoid ℘. 

If {𝑒𝑖𝑗
𝑚+1}1≦𝑖,𝑗≦𝑘𝑚+1 ≝, {epr

′ eij
m} 1≦𝑝,𝑟≦𝑠
1≦𝑖,𝑗≦𝑘𝑚

 and 𝑀m+1 is the algebra generated by 

{𝑒𝑖𝑗
𝑚+1}1≦𝑖,𝑗≦𝑘𝑚+1then conditions (i)-(iv) are clearly fulfilled. 

If 𝐵 =  ⋃ 𝐴𝑛
𝑤

𝑛≧1
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅  𝑎𝑛𝑑 𝑅 = ⋃ 𝑀𝑛

𝑤
𝑛≧1
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  then R is hyperfinite, B is regular in R and by 

condition (iv), B =A. 

In the case M is a type 𝐼𝐼∞ factor, there exists a sequence of finite projections {𝑒𝑛}𝑛≧1. in A, 

which are equivalent in M, such that ∑ 𝑒𝑛𝑛≧1 = 1 (this is because A is generated by finite 

projections and because it has no minimal projections). Now we can apply the first part of the 

proof for pairs of projections 𝑒𝑛, 𝑒𝑛+1, and the type 𝐼𝐼1 case, to conclude also the type 𝐼𝐼∞ 

case. 

Corollary (3.1.12)[92]: Every separable type ll factor M contains a hyperfinite subfactor R 

such that 𝑅′ ∩ 𝑀 =  ℂ. 

Corollary (3.1.13)[92]: Every separable type II factor M has a maximal abelian *-subalgebra 

which is regular in some hyperfinite subfactor of M and thus, in particular, it is semiregular in 

M. 

We mention that the existence of semiregular maximal abelian ,*-subalgebras in 

factors was recently shown to be important in connection with the Stone-Weierstrass 

theorems for C*-algebras, in [93]. 

We construct a counterexample for the nonseparable case. Let M be a separable type 

𝐼𝐼1 factor with finite trace 𝜏 and 𝜔 a free ultrafilter on N. Denote by 𝑀𝜔 the quotient of the 

von Neumann algebra 𝐼∞(ℕ,𝑀) by the zero ideal of the trace 𝜏𝜔. defined by 𝜏𝜔((𝑥𝑛)𝑛) =
  lim
𝑘→𝜔

𝜏(𝑥𝑘) (see [96], [101]). Then 𝑀𝜔 is a finite factor and M is canonically imbedded in 

𝑀𝜔. By a well known result of A. Connes ([95]) if M has not the property Γ of Murray and 

von Neumann, then 𝑀′ ∩ 𝑀𝜔 = ℂ. But if 𝐴 ⊂ 𝑀 is any abelian .-subalgebra in M then A is 

far from being maximal abelian in 𝑀𝜔. This follows easily by a direct argument. It is also a 

consequence of the following: 

Proposition(3.1.14)[92]: If M is a type 𝐼𝐼1 factor then no maximal abelian *-subalgebra of 

𝑀𝜔 is separable. 

Proof: Denote by 𝜋𝜔the natural projection of 𝑙∞(ℕ,𝑀)) onto 𝑀𝜔 Let 𝐵 ⊂ 𝑀𝜔 be a maximal 

abelian *-subalgebra and suppose B is separable. Then B is generated as a weakly closed .-

subalgebra by a positive element 𝑎 ∈ 𝐵. Let (𝑎𝑛)𝑛≧1 be a sequence of positive elements in 

M, with 𝜋𝜔((𝑎𝑛)𝑛≧1) = 𝑎 Take 𝐴𝑛 ⊂ 𝑀 to be a maximal abelian .subalgebra in M such that 

𝑎𝑛 ∈ 𝐴𝑛 Denote by�̃�the subalgebra of all sequences (𝑏𝑛)𝑛≧1 in 𝑙∞(ℕ,𝑀)with 𝑏𝑛 ∈ 𝐴𝑛. Then 

𝜋𝜔 (�̃�) is commutative and 𝜋𝜔 (�̃�) ⊃ 𝐵 𝑠𝑜 𝑡ℎ𝑎𝑡 𝜋𝜔 (�̃�) = 𝐵. 
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Since 𝑀𝜔   is a continuous factor and B is maximal abelian and separable, one can find 

projections {𝑒𝑘,𝑛}2𝑛≧𝑘≧ 1
𝑛≧0

 ⊂ 𝐵 such that: 

(i) 𝑠𝑝𝑎𝑛̅̅ ̅̅ ̅̅ ̅𝑤  {𝑒𝑘,𝑛}𝑘,𝑛  = 𝐵 
(ii) 𝑡𝜔(𝑒𝑘,𝑛)  =  2

−𝑛, 2𝑛 ≧ 𝑘 ≧ 1, 𝑛 ≧ 0 

(iii) 𝑒2𝑘_1,𝑛 + 𝑒2𝑔𝑘,𝑛 = 𝑒𝑘,𝑛_1, 𝑛 ≧ 1. 

Moreover one can choose by induction over n and k, sequences (𝑒𝑘,𝑛
𝑚 )𝑚≧1 of projections in �̅� 

such that: 

(v) 𝜋𝜔((𝑒𝑘,𝑛
𝑚 )𝑚) = 𝑒𝑘,𝑛, 2

𝑛 ≧ 𝑘 ≧  1, 𝑛 ≧ 0, 

(vi) 𝑟(𝑒𝑘,𝑛
𝑚 . ) = 2−𝑛 , 2𝑛 ≧ 𝑘 ≧ 1, 𝑛 > 0,𝑚 ≧ 1, 

(vii)𝑒2𝑘−1,𝑛
𝑚 + 𝑒2𝑘,𝑛

𝑚 = 𝑒𝑘,𝑛−1
𝑚 , 2𝑛 ≧ 𝑘 ≧ 1, 𝑛 ≧ 1,𝑚 ≧ 1 

Take now 𝑒𝑚  = ∑ 𝑒2𝑘−1,𝑚
𝑚2𝑚

𝑘=1 and denote by 𝑒 = 𝜋𝜔((𝑒
𝑚)𝑚).  Then 𝑒 ∈ 𝜋𝜔(�̃� = 𝐵 

and 𝜏𝜔(𝑒)  =  1/2. 

Moreover 𝜏𝜔(𝑒𝑒𝑘,𝑛) = (1/2 ) 𝜏𝜔(𝑒𝑘,𝑛) for all k, n so that 𝜏𝜔(𝑒𝑥) = (1/2)𝜏𝜔(𝑥) for 

all 𝑥 ∈ 𝐵. In particular 𝜏𝜔(𝑒)  =  𝜏𝜔(𝑒. 𝑒) − (1/2) 𝜏𝜔(𝑒)  =  1/4 which is a contradiction. 

 It can be shown that the image by 𝜋𝜔 of any maximal abelian *- subalgebra of 𝑙∞(ℕ,𝑀) is 

maximal abelian in 𝑀𝜔  Indeed, let �̃� be maximal abelian in 𝑙∞(ℕ,𝑀). Then it is easy to see 

that there exists a sequence {𝐴𝑛}𝑛≧1  of maximal abelian .-subalgebras in M such that 

�̃� =̃ {(𝑎𝑛)𝑛  ∈ 𝑙
∞(ℕ,𝑀)|𝑎𝑛 ∈ 𝐴𝑛} }. Let (𝑥𝑛)𝑛  ∈ 𝑙

∞(ℕ,𝑀) be such that 𝑥 = 𝜋𝜔((𝑥𝑛)𝑛) 

commutes with 𝐵 = 𝜋𝜔(�̃�). 𝐿𝑒𝑡 𝑥𝑛
′ = 𝐸𝐴𝑛

𝑡 (𝑥𝑛)𝑎𝑛𝑑 𝑥𝑛
′′ = 𝑥𝑛 − 𝑥𝑛

′  Then 𝑥′ = 𝜋𝜔((𝑥𝑛
1)𝑛) is in 

B and 𝑥" = 𝜋𝜔((𝑥𝑛
′′)𝑛) satisfies 𝑡𝜔(𝑥

′′𝑦)  = 0 for all 𝑦 ∈ 𝐵 and 𝑥′′ commutes with B. By the 

Theorem (3.1.6), for 𝑥𝑛
′′ and 𝐴𝑛 = 𝐴𝑛

′ ∩𝑀 we can find a unitary 𝑢𝑛 𝑖𝑛 𝐴𝑛 such that 

‖𝑢𝑛𝑥𝑛
′′𝑢𝑛

∗ − 𝑥𝑛
′′‖𝑡
2 ≥ (2 − 1 ∕ 𝑛) ∥= ‖𝑥𝑛

′′‖𝑡
2 

If 𝑢 = 𝜋𝜔((𝑢𝑛)𝑛) ∈ 𝐵 then it follows that u commutes with 𝑥′′ and 𝑢𝑥"𝑢∗ is orthogonal to x" 

which is a contradiction, unless 𝑥" = 0. Thus 𝑥 = 𝑥′ ∈ 𝐵 and B is maximal abelian. 

The above proof works also for the similar statement of the more general situation of 

an ultraproduct algebra of a sequence of arbitrary finite factors. 

Corollary (3.1.15)[260]: Let N ⊂ Mφ  be such that N′ ∩ M ⊂ N . Given ε > 0  and 𝑥2 ∈

M, 𝑥2 ≠ O, 𝑥2 φ-orthogonal to N (i.e. such that EN
φ
(𝑥2) = 0), there exists a unitary 𝑢2 ∈ N 

such that 

‖𝑢2𝑥2𝑢2∗ − 𝑥2‖φ
2 > (2 − 휀) ‖𝑥2‖φ

2 , 

Proof :Denote by K𝑥2  = co̅̅̅
w  {𝑣2𝑥2𝑣2∗ |𝑣2 unitary in N}. First we show that 0 ∈ K𝑥2. 

Since K𝑥2  is a weakly compact convex subset of M, by the inferior semicontinuity of the 

norm ∥    ∥φ it follows that there exists an element 𝑦0
2 ∈ K𝑥2 such that 

‖𝑦0
2‖φ  = inf{‖𝑦

2‖φ|𝑦
2 ∈ K𝑥2}. 

Since ∥    ∥φ is a Hilbert norm and K𝑥2 is convex, it follows that 𝑦0
2 is the unique element in 

K𝑥2  with this property. But 𝑣2 K𝑥2𝑣
2∗ ⊂ K𝑥2  for all unitaries 𝑣2  in N. In particular 

𝑣2𝑦0
2𝑣2∗eK𝑥2. Since 𝑣2 ∈ Mφ  we have ‖𝑣2𝑦0

2𝑣2∗‖φ = ‖𝑦0
2‖φ, so that 𝑣2 𝑦0

2𝑣2∗ = 𝑦0
2 for all 

unitaries 𝑣2  in N. Consequently 𝑦0
2 ∈ N′ ∩ M ⊂ N. By the hypothesis, N ⊂  Mφ   and 𝑥2  is 

orthogonal to N, so that φ(𝑣2𝑥2𝑣2∗𝑦2) =  φ(𝑥2𝑣2∗ 𝑦2 𝑣2) =  0 for all 𝑦2, 𝑣2 ∈ N. It follows 
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that all elements in K𝑥2  are orthogonal to N. Thus 𝑦0
2 ∈ N and 𝑦0

2 is orthogonal to N, that is 

𝑦0
2 =  0. 

Suppose now that ‖𝑣2𝑥2𝑣2∗ − 𝑥2‖φ
2 ≦ (2 − ε)‖𝑥2‖φ

2  for all unitaries 𝑣2  in N. We 

obtain that ‖𝑣2𝑥2𝑣2∗‖φ
2 + ‖𝑥2‖φ

2 − 2 Reφ(𝑥2∗𝑣2𝑥2𝑣2∗) ≦ (2 − ε)‖𝑥2‖φ
2  so that 

2 Reφ(𝑥2∗𝑣2𝑥2𝑣2∗) ≧ ε‖𝑥2‖φ
2  for all unitaries 𝑣2 in N . Thus we get 2Reφ(𝑥2∗𝑦2) ≧

ε, ‖𝑥2‖φ
2  for every 𝑦2 ∈ K𝑥2 and in particular 0 ≧ ε‖𝑥2‖φ

2  , which is a contradiction. 

Corollary (3.1.16)[260]: Let M be a von Neumann algebra of countable type with a faithful 

normal positive form 𝜑𝑟 . Let N ⊂ M𝜑
𝑟
  be such that N′ ∩ M ⊂ N . If x1  . . . . , xn  ∈

M and ε > 0, then there exists a finite dimensional abelian  *-subalgebra A ⊂ N, such that 

∑ 

𝑟

‖𝐸
𝐴′∩𝑀

𝜑𝑟 (𝑥𝑖) − 𝐸𝐴
𝜑𝑟(𝑥𝑖)‖

𝜑𝑟
< 휀, 𝑖 = 1,… , 𝑛. 

Moreover, if M and N are factors and N′ ∩ M = ℂ, then A can be chosen such that its 

minimal projections are equivalent in N. 

Proof: Denote by 휀′ = 휀(1 + ∑ ‖𝑥𝑖‖𝜑𝑟
𝑛
𝑖=1 )

−1
. Let 𝑥𝑖

′ = 𝐸𝑁
𝜑𝑟
(𝑥𝑖), 𝑥𝑖

′′   = 𝑥𝑖 − 𝑥𝑖
′, 𝑖 = 1, . . , 𝑛. 

By Lemma (3.1.5) we get a finite dimensional, abelian ∗-subalgebra AocN such that 

∑ 

𝑟

‖𝐸
𝐴0
′∩𝑀

𝜑𝑟 (𝑥𝑖
′′)‖

𝜑𝑟
≦ (

휀′

2
)∑ 

𝑟

‖𝑥𝑖
′′‖𝜑𝑟 , 𝑖 = 1 , . . . , 𝑛. 

Let {ei}i ⊂ A0  be the minimal projections of A0. 

Consider the algebra Nei , and take a maximal abelian ,-subalgebra in Nei  (there is one by 

Zorn's lemma). Apply Lemma (3.1.2) for Nei and this maximal abelian subalgebra to obtain a 

finite dimensional abelian ,*subalgebra Ai ⊂ Nei, such that: 

∑ 

𝑟

‖𝐸
𝐴0
′∩𝑀

𝜑𝑟
(𝑒𝑖𝑥𝑗

′𝑒𝑖) − 𝐸𝐴𝑙
𝜑𝑒𝑖
𝑟

(𝑒𝑖𝑥𝑗
′𝑒𝑖)‖

𝜑𝑒𝑖
𝑟
≦ (휀′ /2) ∑  

𝑟

‖𝑒𝑖𝑥𝑗
′𝑒𝑖‖𝜑𝑟

, 𝑗 = 1 , . . . , 𝑛. 

If we let A = ∑ Aii , then A ⊂ N. Since xj
′) are also in N we get: 

‖𝐸
𝐴′∩𝑀

𝜑𝑟
(𝑥𝑗
′) − 𝐸𝐴

𝜑𝑟
(𝑥𝑗
′)‖

𝜑𝑟

2
=,‖𝐸

𝐴′∩𝑁

𝜑𝑟
(𝑥𝑗
′) − 𝐸𝐴

𝜑𝑟
(𝑥𝑗
′)‖

𝜑𝑟

2

=∑∑ 

𝑟

‖𝐸𝐴𝑙∩𝑁𝑒𝑖

𝜑𝑒𝑖
𝑟

(𝑒𝑖𝑥𝑗
′𝑒𝑖) − 𝐸𝐴𝑙

𝜑𝑒𝑖
𝑟

(𝑒𝑖𝑥𝑗
′𝑒𝑖)‖

𝜑𝑒𝑖
𝑟

2

𝒊

≦ (
휀′2

4
)∑∑ 

𝑟

‖𝑒𝑖𝑥𝑗
′𝑒𝑖‖𝜑𝑒𝑖

𝑟

2
≦ (

휀′2

4
)∑ 

𝑟

‖𝑥𝑗
′‖
𝜑𝑟

2

𝒊

 

Finally we get: 
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∑ 

𝑟

‖𝐸
𝐴′∩𝑀

𝜑𝑟
(𝑥𝑗) − 𝐸𝐴

𝜑𝑟
(𝑥𝑗)‖

𝜑𝑟

≦∑ 

𝑟

‖𝐸
𝐴′∩𝑀

𝜑𝑟
(𝑥𝑗) − 𝐸𝐴

𝜑𝑟
(𝑥𝑗)‖

𝜑𝑟
+ ∑ 

𝑟

‖𝐸
𝐴′∩𝑀

𝜑𝑟
(𝑥𝑗
′′) − 𝐸𝐴

𝜑𝑟
(𝑥𝑗
′′)‖

𝜑𝑟

≦ (휀′/2) ∑  

𝑟

‖𝑥𝑗
′‖
𝜑𝑟
 +∑ 

𝑟

‖𝐸
𝐴0
′∩𝑀

𝜑𝑟
(𝑥𝑗
′′) − 𝐸𝐴0

𝜑𝑟
(𝑥𝑗
′′)‖

𝜑𝑟

≦ (
휀′

2
)∑ 

𝑟

(‖𝑥𝑗
′‖
𝜑𝑟
 + ‖𝑥𝑗

′′‖
𝜑𝑟
) ≦ 휀′∑ 

𝑟

‖𝑥𝑗‖𝜑𝑟  < 휀,   1 ≦ 𝑗 ≦ 𝑛. 

Section (3.2): Factors Associated with Free Groups 

A von Neuman algebra 𝒜acting on a Hilbert space ℋ is called injective if there exists a norm 

one projection from the Banach algebra of all linear bounded operators on ℋ onto 𝒜. As the 

injective von Neumann algebras form a monotone class, any von Neumann algebra has 

maximal injective von Neumann subalgebras. 

We exhibit the first concrete examples of maximal injective von Neumann subalgebras 

in type II, factors. As a consequence we solve two old problems of R. V. Kadison on the 

embeddings of the hyperfinite factor R. 

First we show that if L(𝔽n) is the type II1factor associated with the left regular representation 

λ of the free group on generators 𝔽n, ∞ ≥  n ≥  2, and u is one of the generators of 𝔽nthen 

the abelian von Neumann algebra generated in L(𝔽n ) by the unitary 𝜆(𝑢)  is maximal 

injective. So, quite surprisingly, a diffuse abelian von Neumann algebra can be embedded in a 

type II1  factor as a maximal injective von Neumann subalgebra. We show that any von 

Neumann subalgebra of 𝐿(𝔽n) that contains 𝜆(𝑢) is a direct sum of an abelian algebra and of 

a sequence of full factors of type  II1 . This solves in particular Problem 7 in [116], by 

showing that 𝜆(𝑢)is not contained in any hyperfmite subfactor of 𝐿(𝔽n). 
We show that if 𝔽n acts freely on some nonatomic probability measure space (𝑋, 𝜇) by 

measure preserving automorphisms and if M denotes the associated group measure algebra 

and 𝑅𝑢, denotes the injective subalgebra of M corresponding to the action of the generator 𝑢 𝜖 
𝔽n then 𝑅𝑛 is a maximal injective von Neumann subalgebra of M. Choosing suitable actions 

of 𝔽n, on (𝑋, 𝜇) we show that R, can be any injective type II1 von Neumann algebra. 

Finally, using some of these examples we construct maximal hyperfinite subfactors with 

nontrivial relative commutant. The set of hyperfinite subfactors of a type II1  factor was 

showd to be inductively ordered in [98], but until now it was not known whether a maximal 

hyperfinite subfactor may have nontrivial relative commutant (cf. [116], Problem 81). We 

mention that by [92] any separable type II, factor has a maximal injective von Neumann 

subalgebra with trivial relative commutant and thus amaximal hyperfinite subfactor with 

trivial relative commutant. 

The proofs of all the results are based on the study of the asymptotic behaviour of the 

Hilbert norms of some commutators in crossed product algebras by free groups. These 

estimates will be used in the framework of McDuff s ultraproduct algebras 𝑀𝜔  [101]. 

Although the proofs depend on the specifid properties of the free groups, they can be easily 

extended to give similar results for free products of von Neumann algebras. 
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The variety of examples of maximal injective subalgebras that we found suggests the 

following natural problem: classify up to isomorphism all the maximal injective von 

Neuamnn subalgebras of a given type II1factor M. It seems to us that in fact the list of 

maximal injective von Neumann subalgebras is the same for all nonhyperfinite type II1 

factors M, more precisely, that any completely nonatomic injective finite von Neumann 

algebra can be embedded in M as a maximal injective von Neumann subalgebra. 

 A von Neumann algebra 𝒜 is called injective if whenever acting on a Hilbert space ℋ 

it is the range of a norm one projection fromℬ(ℋ),  the algebra of all linear bounded 

operators on ℋ  (see, [103], Chapter X1 ). In [96] A. Connes showd that a separable von 

Neumann algebra is injective if and only if it is approximately finite dimensional, i.e., 

generated by an ascending sequence of finite dimensional *subalgebras. In particular this 

shows that the hyperlinite type II1 factor R is the uniqueseparable injective factor of type II1. 

Let ℳ be an arbitrary von Neumann algebra. A von Neumann subalgebra ℬ 𝑜𝑓 ℳy is 

called maximal injective if it is injective and if it is maximal (with respect to inclusion) in the 

set of all injective von Neumann subalgebras of ℳ: Since injective von Neumann algebras 

form a monotone class, it follows that the set of injective subalgebras of ℳ is inductively 

ordered, so that by Zorn’s lemma any injective von Neumann subalgebra of ℳ is contained 

in a maximal injective von Neumann subalgebra of ℳ. 

If ℬ is maximal injective in ℳ then ℬ is singular in ℳ, i.e., its normalizer in ℳ is 

reduced to the unitaries of ℬ. Indeed, because if w is a unitary element in ℳ and 𝒲ℬ𝒲∗  =
ℬ then the von Neumann algebra generated by ℬ 𝑎𝑛𝑑 𝑤 in ℳ is also injective (see [103]) so 

that 𝑤 ∈ ℬ by the maximality of ℬ. In particular it follows that ℬ′  ∩ℳ ⊂ 𝔹. 

Throughout M will be a finite von Neumann algebra with a fixed normal finite faithful 

trace �̇�, 𝜏( 1)  =  1. 𝐼𝑓 𝐵 ⊂  𝑀  is a von Neumann subalgebra then 𝐸B  denotes the unique 

normal 𝜏-preserving conditional expectation of M onto B. Denote by ‖𝑥‖2  =  𝜏(𝑥
∗𝑥)1/2 the 

Hilbert norm on M given by 𝜏 and let 𝐿2(𝑀, 𝜏) be the Hilbert space of square integrable 

operators affiliated with (𝑀, 𝜏), so that 𝐿2(𝑀, 𝜏)  is the completion of M in the norm ∥    ∥2. 
Then 𝐸B  is in fact the restriction to M of the orthogonal projection of 𝐿2(𝑀, 𝜏)  onto the 

subspace 𝐿2(𝑀, 𝜏|𝐵) (which is the closure of B in 𝐿2(𝑀, 𝜏)). 
Remark that M acts an 𝐿2(𝑀, 𝜏) by left and right multiplication. 

Two von Neumann subalgebras 𝐵1, 𝐵2  of M are called mutually orthogonal (𝐵1  ⊥  𝐵2) if 
𝜏(𝑏1 𝑏2)  =  𝑡(𝑏1 𝑏2)  =  𝜏(𝑏1) 𝜏(𝑏2)  for all 𝑏1 ∈ 𝐵2,  𝑏1 ∈ 𝐵2,  [121].This is in fact 

equivalent with the orthogonality of the Hilbert subspaces 𝐿2(𝐵1  ⊥  𝐵2)  ⊝
𝐶 𝑎𝑛𝑑 𝐿2(𝑀, 𝜏|𝐵2)  ⊝  𝐶 𝑖𝑛 𝐿2(𝑀, 𝜏) . 

In [121] we showd that if 𝐵 ⊂  𝑀 is a von Neumann subalgebra and 𝑤 ∈  𝑀  is a 

unitary element such that for any 휀 >  0 there exists a partition of the unity (𝑒𝑙)𝑙 in B with 

𝜏(𝑒𝑙)  <  휀, for all 𝑖, and 𝑊𝐴0 𝑤
∗  ⊥  𝐵, where 𝐴0 = ∑𝐶𝑒𝑙 then w is orthogonal to B and to 

𝐵’ ∩  𝑀. This result will be frequently used in the sequel. In connection with this device we 

shall need the following: 

Lemma (3.2.1)[104]: If M is a type 𝐼𝐼1  von Neumann algebra and 𝐴 ⊂ 𝑀  is a maximal 

abelian *-s&algebra of M, then for any 𝑛 ≥ 1  there exists a 2𝑛  dimensional abelian *-

sualgebra 𝐴𝑛in M orthogonal to A and with the minimal projections mutually equivalent in 

M. 
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Proof: It is easy to see that given any element 𝑧 ∈  𝑍 ⊂ 𝐴 (𝑧is the center of 𝑀), 0 ≤  𝑧 ≤
 1, there exists a projection in A with central trace equal to z.So, for 𝑧 =  2−𝑛 we can choose 

recursively 2𝑛 projections {𝑒1
0}1 ≤𝑖≤2𝑛   in A, mutually equivalent in M and such that ∑𝑒𝑙

0 =
 1 . Let 𝑀0  ⊂  𝑀  be a 2𝑛 × 2𝑛  matrix algebra such that {𝑒𝑙

0 }1  are its diagonal minimal 

projections. By [121]there exists a maximal abelian subalgebra 𝐴1  ⊂ 𝑀𝑂 orthogonal to 𝐴𝑛
0  in 

𝑀0 i.e., such that 𝑒𝑙
0𝑒𝑒𝑙

0  =  2−𝑛𝑒𝑙
0, for any minimal projection 𝑒 𝑖𝑛 𝐴𝑛, and 1 ≤  𝑖 ≤  2𝑛. It 

follows that 𝐸𝐴(𝑒)  =  2
−𝑛 for any minimal projection 𝑒 𝑖𝑛 𝐴𝑛 so that 𝐴𝑛is orthogonal to A in 

M. 

We consider another relation between von Neumann subalgebras ةclosely related to 

that of orthogonality: we are interested in finding nice sufficient conditions for two von 

Neumann sub algebras A, B to commute in conditional expectation, 𝑖. 𝑒. , 𝐸𝐴 ∘ 𝐸𝐵  =  𝐸𝐵 ∘ 𝐸𝐴. 

The next result will do: 

Lemma (3.2.2)[104]: Let 𝐵1, 𝐵2 be von Neumann subalgebras of M and suppose that the 

group 𝑢 =  {𝑤  unitary in 𝐵𝑤[𝐵2𝑤
∗ = 𝐵2] generates 𝐵1 then 𝐸𝐵2′  ∘  𝐸𝐵1′∩𝑀  =  𝐸𝐵1′∩𝑀  ∘

 𝐸𝐵2  =  𝐸𝐵1′∩𝑀2. 

Proof: For 𝑥 ∈ 𝑀, 𝑙𝑒𝑡 𝐾𝑋 = 𝑐𝑜̅̅ ̅
𝑤{𝑢𝑥𝑢∗|𝑢 𝑢𝑛𝑖𝑡𝑎𝑟𝑦 𝑖𝑛 𝑈}.  Then 𝐾𝑥  is a convex weakly 

compact subset of M and by the inferior semicontinuity of the application  𝑥 → 𝑡 ‖𝑥‖2  it 

follows that there exists 𝐸(𝑥)  ∈  𝐾𝑥, such that ‖𝐸(𝑥)‖2 = inf  {‖𝑦‖2 𝑦 ∈  𝐾𝑥}. Since ‖ ‖2is a 

Hilbert norm and 𝐾𝑥  is convex it follows that 𝐸(𝑥)is the unique element in 𝐾𝑥 , with this 

property. Moreover, since 𝒰 is a group, 𝑤𝐸(𝑥)𝑤∗ ∈  𝐾𝑥 for all 𝑤 in 𝒰 and ‖𝑤𝐸(𝑥)𝑤∗‖2 =
‖𝐸(𝑥)‖2  so that 𝑤𝐸(𝑥)𝑤∗  =  𝐸(𝑥) . Consequently 𝐸(𝑥) ∈ 𝒰′ ∩𝑀 = 𝐵1

′ ∩  𝑀  and E is a 

well-defined function from M to 𝐵1
′ ∩  𝑀  . If 𝑥 ∈ 𝐵1

′ ∩  𝑀  then clearly K𝑥 =
 {x} so that E(x)  =  x. If 𝑥 ∈  𝑀 is orthogonal to 𝐵1

′  ∩  𝑀 (as an element in 𝐿2(𝑀, 𝜏)) then 

the set K𝑥 is orthogonal to 𝐵1
′  ∩  𝑀 (since 𝑤𝑥𝑤∗ is orthogonal to 𝐵1

′  ∩  𝑀 for all unitaries 

𝑤 ∈ 𝒰 ). This means that 𝐸(𝑥)  =  0. It follows that E(x) is the orthogonal projection of x 

onto 𝐵1
′  ∩  𝑀 that is,  𝐸(𝑥) =  𝐸𝐵1′  ∩ 𝑀(𝑥). 

 Now, for 𝑥 ∈ 𝐵2  we get 𝑤𝑥𝑤∗ ∈  𝐵2  for all 𝑤 ∈  𝒰  so that  𝐾𝑥 ⊂  𝐵𝑥 , and thus 

𝐸𝐵1′  ∩ 𝑀(𝑥) ∈ 𝐵2. Since we also have 𝐸𝐵1′  ∩ 𝑀(𝑥) ∈ 𝐵1
′  ∩  𝑀 we get 𝐸𝐵1′  ∩ 𝑀(𝐵2

′ ) ⊂ 𝐵1
′  ∩ 𝐵2 . 

So, if p and q denote the extensions of 𝐸𝐵1′  ∩ 𝑀 and, respectively, 𝐸𝐵2 to 𝐿2(𝑀, 𝜏) then the left 

suppot of 𝑝𝑞 is equal to 𝑝⋀ 𝑞. It follows that 𝑝𝑞 =  𝑝 ⋀ 𝑞 =  𝑞𝑝. 
If 𝜔 is a free ultrafilter on ℕ then denote by 𝑀𝜔  the quotient of the von Neumann 

algebra 𝑙∞(ℕ,𝑀) by the O-ideal of the trace 𝜏𝜔, 𝜏𝜔((𝑥𝑛)𝑛)  =  lim
𝑛→𝜔

𝜏(𝑥𝑛). Then 𝑀𝜔  is a 

finite von Neumann algebra [101], [116], 𝜏𝜔 is anormal faithful trace on 𝑀𝜔  and 𝑀  is 

naturally embedded in 𝑀𝜔 as the algebra of constant sequences. Moreover if M is a type ΙΙ1 

factor then so is 𝑀𝜔. For 𝐵 ⊂  𝑀 a von Neumann subalgebra we denote by 𝐵𝜔 ⊂ 𝑀𝜔 the 

von Neumann subalgebra of all elements represented by sequences in B. 
Then 𝐸𝐵𝜔((𝑥𝑛)𝑛)  =  (𝐸𝐵(𝑥𝑛))𝑛 note that if 𝑒 ∈  𝑀 is a nonzero projection then (𝑀𝑒)

𝜔  =
 (𝑀𝜔)𝑒 a norm bounded sequence (𝑥𝑛)𝑛 in M is called a central sequence if ‖[𝑥𝑛, 𝑥]‖2  → 0 

for all 𝑥 ∈  𝑀. The central sequence (𝑥𝑛)𝑛  is nontrivial if lim inf
𝑛

‖𝑥𝑛 − 𝜏(𝑥𝑛)‖2 >  0. The 

central sequences represent elements from 𝑀′ ∩ 𝑀𝜔; if the central sequence is nontrivial 

then the corresponding element in 𝑀′ ∩ 𝑀𝜔; is nonscalar. Conversely if (𝑦𝑛)𝑛 represent an 

element in 𝑀′ ∩ 𝑀𝜔;then one can take a subsequence(𝑥𝑛)𝑛  =  (𝑦𝑘𝑛)𝑛, such that (𝑥𝑛)𝑛 is a 
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central sequence. Moreover if (𝑦𝑛)𝑛 is nonscalar then one can choose (𝑥𝑛)𝑛to be nontrivial 

[101]. 

Recall that a separable type ΙΙ1 factor M has the property Γ of Murray and von Neumann if 

for any 𝑥1, . . . , 𝑥𝑛  ∈  𝑀, 휀 >  0  there exists a unitary element 𝑤 ∈  𝑀  such that 𝜏(𝑤)  =
 0, ‖[𝑤, 𝑥𝑘]‖2 <  휀, 𝑛 ≥  𝑘 ≥  1.[118] It is known  that M has the property  if and only if 

𝑀′ ∩ 𝑀𝜔 # 𝐶 and that in this case 𝑀′ ∩ 𝑀𝜔; is completely nonatomic. Also, by McDuff s 

theorem M is isomorphic to 𝑀 ⨂ 𝑅 if and only if 𝑀′ ∩ 𝑀𝜔; is non-commutative. Moreover 

in this case 𝑀′ ∩ 𝑀𝜔;is a typeΙΙ1 II, von Neumann algebra [101]. By this result it easily 

follows that M satisfies McDufP sproperty M ≃ M ⨂ R if and only if for any x1 , . . . , x𝑛  ∈
M, ε >  0, there exist unitary elements 𝑤1 , 𝑤2  ∈  𝑀 such that 𝜏(𝑤1) = 𝜏(𝑤2)  =  0,𝑤1𝑤2  =
 −𝑤2𝑤1 , ‖[𝑤𝑖 , 𝑥𝑘]‖2 < 휀, 𝑛 ≥  𝑘 ≥  1, 𝑖 =  1,2. 

We shall use the following terminology for type ΙΙ1factors: 

(i) M is a factor if it satisfies the property of Murray and von Neumann; 

(ii) M is an ST factor if it satisfies Mc Duffs property; 

(iii) M is a 𝑤Γ factor if it is a Γ factor but not an 𝑠Γ factor, or equivalently if 𝑀′  ∩  𝑀𝜔 is a 

nontrivial abelian algebra; 

(iv) M is a non Γ factor (or a full factor) if it is not a Γ factor. 

Since 𝑅 ≃  𝑅 ⊗ 𝑅, 𝑅 𝑖𝑠 𝑎𝑛 𝑠Γ factor. In fact it is known that 𝑅′  ∩  𝑅𝜔 is a type ΙΙ1  factor 

[111], [108]. 

If 𝑅0 is a separable injective type ΙΙ1von Neumann algebra (but not necessarily a factor) then 

𝑅0
′  ∩  𝑅0

𝜔 is also very large, in fact by [96] and arguing as in [101] it is easy to see that 𝑅0
′  ∩

 𝑅0
𝜔 is a type ΙΙ1 von Neumann algebra. 

In [98] it was shown that the set of hyperlinite subfactors of a type 𝐼𝐼1factor M is 

inductively ordered. Similar results hold for Γ  and s  Γ  subfactors so that we have the 

following 

 (i) The sets of hyperfinite, Γ and s Γ subfactors of M are inductively ordered with respect to 

inclusion. 

(ii) If 𝑁 ⊂  𝑀 is a maximal hyperfinite, s Γ or Γ subfactor then 𝑁′ ∩  𝑀 contains no nontrivial 

subfactors with the same unity as M. 

(iii) lf N is a hyperflnite (respectively a Γ) subfactor of 𝑀 𝑎𝑛𝑑 𝑢 ∈  𝑀 

is a unitary element normalizing N and acting properly outer on N, then the von Neumann 

algebra generated by N and u is a hyperBnite (respectively a Γ) subfactor of M. As a 

consequence, if 𝑁′ ∩  𝑀 =  𝐶  and N is a maximal hyperfinite (respectively a maximal Γ) 

subfactor of M then N is singular in M. 

The hypertinite case of (i)-(iii) is treated in [96] and [l0]. So let us show (i) for Γ and 

𝑠Γ  subfactors. Since M is separable it is enough to consider increasing sequences of 

subfactors. Suppose (𝑁𝑘)𝑘 are subfactors in 𝑀,𝑁𝑘 ⊂ 𝑁𝑘+1, 𝑘 ≥  1, 𝑎𝑛𝑑 𝑙𝑒𝑡 𝑁 =  ⋃ 𝑁𝑘
𝑤

𝑘
̅̅ ̅̅ ̅̅ ̅̅ ̅ . 

Then N is a factor (since it has unique trace) and if 𝑥1 , . . . , 𝑥𝑛  ∈  𝑁, ∈ >  0, then there exist 

𝑘 𝑛 ≥ 1  and elements 𝑥1
0, . . . , 𝑥𝑛

0  ∈  𝑁𝑘𝑛 .  such that ‖𝑥1 − 𝑥𝑖
0‖
2
 <  휀/2, 𝑛 ≥  𝑖 ≥

 1.  𝐼𝑁𝑘𝑛  𝑖𝑠 𝑎 Γ factor there exists a unitary element 𝑤 ∈  𝑁𝑘𝑛 ⊂ 𝑁 such that 𝜏(𝑤) = 0 and 

‖𝑥1 − 𝑥𝑖
0‖
2
 <  휀/2, 𝑛 ≥  𝑖 ≥  1, so that we get ‖𝑥1 − 𝑥𝑖‖2  <  휀, 𝑛 ≥  𝑖 ≥  1. If 𝑁𝑘𝑛  is an 

𝑆Γ factor then there exist unitary elements 𝑤1, 𝑤2  ∈  𝑁𝑘𝑛  ⊂  𝑁 such that 𝜏(𝑤1)  =  𝜏(𝑤2)  =



81 

 0 𝑎𝑛𝑑 ‖𝑥1 − 𝑥𝑖
0‖
2
 <  휀/2, 𝑛 ≥  𝑖 ≥  1, 𝑗 =  1,2,  so that ‖𝑥1 − 𝑥𝑖

0‖
2
 <  휀, 𝑛 ≥  𝑖 ≥  1, 𝑗 =

 1, 2. Thus if (𝑁𝑘)𝑘 are all r (respectively 𝑆Γ) factors then so is N. 

To show (ii) note that if 𝑁0  ⊂  𝑁
′  ∩ 𝑀 is a subfactor then the von Neumann algebra 𝑁1  ⊂

 𝑀 generated by N and N, is a factor isomorphic to 𝑁 ⨂ 𝑁0. Hence if 𝑁 𝑖𝑠 Γ then 𝑁1 is Γ and 

if N is 𝑠Γ then N, is 𝑆Γ Finally, let us show (iii) in the cask N is a Γ subfactor of M. Denote 

by 𝑎 the action Ad 𝑢 on 𝑁 and by 𝑁1 the von Neumann algebra generated by N and 𝑢 𝑖𝑛 𝑁1 
Thus 𝑁1 ≃  𝑁 ×  𝑎 so that N, is a subfactor of M. Ad u also implement an automorphism 

𝛽 on 𝑁𝜔  =  𝑁
′  ∩  𝑁𝜔, 𝛽((𝑥𝑛)𝑛)  =  (𝑎(𝑥𝑛)𝑛),=  (𝑢𝑥𝑛 𝑢

∗ )𝑛 . Since N is a Γ factor, 𝑁𝜔  is 

completely nonatomic. If the action 𝛽 has a nontrivial fixed point in 𝑁𝜔 then 𝑁1
′  ∩  𝑁1

𝜔 ≠ 𝐶 

so that 𝑁1 is a Γ factor. 

If 𝛽  acts ergodically on 𝑁𝜔  then there exist unitaries 𝑤𝑛  ∈  𝑁𝜔, 𝑛 ≥  1 , such that 

𝜏𝜔(𝑤𝑛) = 0, 𝑛 ≥  1, and‖𝛽(𝑤𝑛) − 𝑤𝑛‖2  <  2
−𝑛 , 𝑛 ≥  1. Indeed by the Rohlin-type theorem 

of A. Connes, for each 휀 >  0, 𝑛 ≥  1 , there exists a partition of the unity 

𝑒1, . . . , 𝑒𝑛, 𝑖𝑛 𝑁𝜔 such that ‖ 𝛽(𝑒𝑖) − 𝑒𝑖+1‖2  <  𝑛
−12−𝑛−1, 𝑛 ≥, 𝑖 ≥  𝑒𝑛+1, = 𝑒1and such that 

all the projections 𝑒𝑖 have the same trace. 

Then 𝑤𝑛  = ∑ 𝜆𝑘𝑒𝑘
𝑛
𝑘=1 , where 𝜆 =  𝑒𝑥𝑝 2𝜋𝑖/𝑛,  satisfies the conditions. Now each 

𝑤𝑛can be represented by a sequence of unitaries in 𝑁,𝑤𝑛  = (𝑤𝑛𝑘)𝑘, 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝜏(𝑤𝑛𝑘)  =
 0 for all k. Since 𝑤𝑛  ∈  𝑁𝜔  =  𝑁

′ ∩ 𝑁𝜔 and ‖𝛽(𝑤𝑛) − 𝑤𝑛‖2 < 2
−𝑛 one can find for each 

𝑛 ≥  1 an integer 𝑘𝑛  such that ‖𝛼(𝑤𝑛,𝑘𝑛) − 𝑤𝑛,𝑘𝑛‖2
< 2−𝑛, ‖[𝑤𝑛,𝑘𝑛𝑦𝑗]‖2

< 2−𝑛“, 𝑛 ≥ 𝑗 ≥

 1, where {𝑌𝑗}𝑗 is a dense sequence in N fixed from the beginning. Thus 𝑤 =  (𝑤𝑛,𝑘𝑛)𝑛
 is in 

𝑁𝜔 = 𝑁
′ ∩ 𝑁𝜔, 𝛽(𝑤)  =  (𝛼(𝑤𝑛,𝑘𝑛))𝑛

 =  (𝑤𝑛,𝑘𝑛)𝑛
=  𝑤  and 𝜏𝜔, (𝑤)  =  0,  contradicting 

our assumption on the ergodicity of 𝛽.                                                                         

Note that in (iii) we implicitly show that if 𝑁 𝑖𝑠 𝑎 Γ factor then 𝑁 ×  𝑍 is also a Γ 

factor. This result, together with the similar one for finite groups (cf.[106]), shows that if G is 

a group that can be obtained by countable many extensions of finite or cyclic groups, then 

𝑁 ×  𝐺 is a Γ factor whenever G acts freely on the Γ factor N. This is the case, for instance, 

for solvable discrete groups. It seems to us that a careful use of the techniques in [119] may 

yield the general result that if N is a Γ factor and if G is an amenable group acting freely on N 

then 𝑁 ×  𝐺 is a Γ factor (see also [114]. 

We mention now some relations between maximal injectivity and maximal 

hyperfiniteness for subfactors of M. 

Lemma (3.2.3)[104]: Let M be a separable type 𝐼𝐼1  factor and 𝑅 ∈  𝑀  a hyperfinite 

subfactor. 

(i) If R is a maximal injective von Neumann subalgebra of M then R is a maximal hyperfinite 

subfactor of M. 

 (ii) If R is a maximal hypeflnite subfactor of M and 𝑅′  ∩  𝑀 =  𝐶  then R is maximal 

injective in M. 

Proof: (i) is obvious and (ii) follows from the fact that if 𝑅′  ∩  𝑀 =  𝐶  then any von 

Neumann subalgebra N situated between R and M also satisfiesN’ 𝑁′  ∩  𝑀 =  𝐶 . In 

particular N follows a factor. 
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It seems that the following generalization of (ii) holds true: if 𝑅 ⊂  𝑀  is a maximal 

hyperfinite subfactor,𝑅′  ∩  𝑀  = 𝑍, and N is the von Neumann algebra generated by R and Z 

then N is maximal injective in M. One can easily show this if 𝑍 ≃  𝐶2. 
Let 𝔽𝑛be the free group on n generators, 2 ≤  𝑛 ≤ ∞. Denote by 𝑢, 𝑣1, 𝑣2 , . . ., the 

generators of 𝔽𝑛 The elements of 𝔽𝑛will always be assumed in their reduced form [117]. 

Let 𝑀0 be a finite von Neumann algebra with a normal finite faithful trace 𝜏0, 𝜏0(1)  =
 1. Suppose 𝔽𝑛  acts on 𝑀0  by 𝜏0-preserving automorphisms and denote by 𝑀 = 𝑀0  × 𝔽𝑛 

the corresponding crossed product von Neumann algebra. We identify 𝑀0 with its canonical 

image in 𝑀 =  𝑀0  × 𝔽𝑛  and we denote by 𝜆(g), g ∈ 𝔽𝑛  the unitaries in M canonically 

implementing the action of 𝔽𝑛  on 𝑀0 and by 𝜏 the unique normal faithful trace on M that 

extends the trace 𝜏0 of 𝑀0. 

Note that {𝐿2(𝑀0, 𝜏0)𝜆(g)}g∈Fn  , are mutually orthogonal subspaces of 𝐿2(𝑀, 𝜏) and 

∑ 𝐿2(𝑀0, 𝜏0)𝜆(g)g∈Fn  = 𝐿2(𝑀, 𝜏).  Thus, an element 𝑥 ∈ 𝐿2(𝑀, 𝜏) can be uniquely 

decomposed as 𝑥 =  ∑ 𝛼g𝜆(g)g∈Fn , with 𝑎g  ∈  𝑀0 ‖𝑥‖2
2  = ∑ ‖𝛼g‖2

2
g∈Fn . The set {g ∈

𝔽𝑛|𝛼g  ≠  0} is called the support of 𝑥. 

Let 𝒻 =  𝑠𝑝𝑎𝑛{𝑀0𝜆(g) |g ∈ 𝔽𝑛}. Then 𝒻 is a weakly dense *-subalgebra in 𝑀. We call 

the elements of 𝒻 polynomials in𝜆(g) , g ∈ 𝔽𝑛 with coefficients in 𝑀0.IF 𝑥 = ∑ 𝑏g𝜆(g)g∈Fn ∈

𝐿2(𝑀, 𝜏)  and 𝑆 ⊂ 𝔽𝑛  is a nonempty set, we denote by 𝑥2 ∈  𝐿
2(𝑀, 𝜏) the element 

∑ 𝑏g𝜆(g)g∈Fn , with  𝑏g = 𝑎g  if g ∈ 𝑆  and 𝑏g = 0  if g ∉ 𝑆  . Hence 𝑥2  is the orthogonal 

projection of x on ∑ 𝐿2(𝑀0, 𝜏0)𝜆(g)g∈S . 

Finally, denote by 𝑀𝑢  the von Neumann subalgebra of M generated by 𝑀0 and 

𝜆(𝑢), 𝑖. 𝑒. , 𝑀𝑢  =  𝑀0 ×𝑢 ℤ. 
Lemma (3.2.4)[104]: Let w be a free ultrqjUter on N. Suppose x is an element in 𝑀𝜔 that 

commutes with 𝜆(𝑢). Then for any 𝑦1, 𝑦2  ∈  𝑀 with 𝐸𝑀𝑢(𝑦1)  =  𝐸𝑀𝑢(𝑦2)  =  0 the vectors 

𝑦1 (𝑥 − 𝐸𝑀𝑢𝜔(𝑥)), (𝑥 − 𝐸𝑀𝑢𝜔(𝑥)) 𝑦2 𝑦1 𝐸𝑀𝑢𝜔(𝑥)  − 𝐸𝑀𝑢𝜔(𝑥) 𝑦2  are mutually orthogonal in 

𝐿2(𝑀𝜔, 𝜏𝜔). In particular ‖𝑦1𝑥 − 𝑥𝑦2‖2
2 ≥ ‖𝑦1 (𝑥 − 𝐸𝑀𝑢𝜔(𝑥))‖2

2
+ ‖(𝑥 − 𝐸𝑀𝑢𝜔(𝑥)) 𝑦2‖2

2
. 

Proof : Let (𝑥𝑛)𝑛  be a sequence of elements in M representing 𝑥 ∈  𝑀𝜔. It is enough to 

show the statement in the case when lim
𝑛→∞

‖[𝑥𝑛, 𝜆(𝑢)]‖2 =  0. 

Let 휀 >  0. By the Kaplan sky density theorem there exist 𝑦1
0, 𝑦2

0  ∈ 𝒻 such that ‖𝑦1 −
𝑦1
0‖2  < 휀, ‖𝑦2 − 𝑦2

0‖2  < 휀 ‖𝑦1
0‖ ≤ ‖𝑦1‖, ‖𝑦2

0‖ ≤ ‖𝑦2‖, 𝐸𝑀𝑢  (𝑦2
0 ) =  0 . Let 𝑁0 −  1  be the 

maximal length of the words 𝑔 ∈  𝐹𝑛  in the supports of 𝑦1
0 , 𝑦2

0. Denote by 𝑆0
1 = {𝑔′ ∈

 𝐹𝑛|𝑔
′’ contains a nonzero power of some 𝑣𝑖  𝑎𝑛𝑑 𝑔

′ begins with a power of u not larger in 

absolute value than 2𝑁0  −  1 }, 𝑆 0
2 = ( 𝑆0

1)−1, =  𝑆0  = 𝑆0
1 ∪ 𝑆0

2, 𝑆𝑢 = {𝑢
𝑘   |𝑘 ∈  ℤ }, 𝑆 =

 (𝐹𝑛\𝑆𝑛)\𝑆0. Note that if 𝑥 ∈ 𝑀 then 𝑥𝑠𝑢  =  𝐸𝑀𝑈(𝑥). 

Our first goal is to show that ‖(𝑥𝑛)𝑠0‖2
 is small for n large. Since ‖(𝑥𝑛)𝑠0‖2

 ≤ ‖(𝑥𝑛)𝑠01‖2
+

 ‖(𝑥𝑛)𝑠02‖2
 it will be suflicient to control the norms in the right side. Let N, be an integer 

multiple of 4𝑁0  such that 𝑁1 ≥ 2
5휀−2𝑁0,. By the hypothesis, there exists 𝑛1  = 𝑛1(휀, 𝑁1) 

such that if 𝑛 ≥  𝑛1 then ‖𝜆(𝑢𝑘)𝑥𝑛𝜆(𝑢
−𝑘) − 𝑥𝑛‖2 < 2

−2휀 for all |𝑘| ≤ 𝑁1. So if 4𝑁0 |𝑘| ≤

𝑁1, and 𝑛 ≥  𝑛1 then we have 



83 

‖𝜆(𝑢4𝑁0𝑘)(𝑥𝑛)𝑆01𝜆(𝑢
−4𝑁0𝑘) − (𝑥𝑛)

𝑢
4𝑁0𝑘𝑠𝑜

1
𝑢−4𝑁0𝑘

‖
2

= ‖(𝜆(𝑢4𝑁0𝑘)𝑥𝑛𝜆(𝑢
−4𝑁0𝑘) − 𝑥𝑛)

𝑢
4𝑁0𝑘𝑠𝑜

1
𝑢−4𝑁0𝑘

‖
2

≤ ‖𝜆(𝑢4𝑁0𝑘)𝑥𝑛𝜆(𝑢
−4𝑁0𝑘) − 𝑥𝑛‖2 < 2

−2휀. 

Using the parallelogram identity in the Hilbert space 𝐿2(𝑀, 𝜏) we get the inequalities 

‖(𝑥𝑛)𝑠01‖2
2
= ‖𝜆(𝑢4𝑁0𝑘)(𝑥𝑛)𝑆01𝜆(𝑢

−4𝑁0𝑘)‖
2

2
 

≤  2 ‖𝜆(𝑢4𝑁0𝑘)(𝑥𝑛)𝑆01𝜆(𝑢
−4𝑁0𝑘) − (𝑥𝑛)

𝑢
4𝑁0𝑘𝑠𝑜

1
𝑢−4𝑁0𝑘

‖
2

2
 

+ 2‖(𝑥𝑛)
𝑢
4𝑁0𝑘𝑠𝑜

1
𝑢−4𝑁0𝑘

‖
2

2
≤ 2−3휀2 + 2‖(𝑥𝑛)

𝑢
4𝑁0𝑘𝑠𝑜

1
𝑢−4𝑁0𝑘

‖
2

2
 

We use the fact that {𝑢4𝑁0𝑘𝑆0
1𝑢4𝑁0𝑘}𝑘∈𝑍 are disjoint subsets of 𝔽𝑛 so that summing up the 

above inequalities for all 𝑘, 0 <  4𝑁0  |𝑘| ≤  𝑁1, we get 

2−1𝑁0
−1𝑁1 ‖(𝑥𝑛)𝑠01‖2

2
 <  2−1𝑁0

−1𝑁1, 2
−3휀2  +  2 ‖𝑥𝑛‖2

2  

so that 

‖(𝑥𝑛)𝑠01‖2
2
 <  2−3휀2  + 4𝑁0𝑁0

−1 ≤ 2−2휀2. 

Similarly we get ‖(𝑥𝑛)𝑠01‖2
2−1휀 and thus ‖(𝑥𝑛)𝑆0‖2

< 휀 for all 𝑛 ≥  𝑛. 

Next we show that for any 𝑛 ≥  1, 𝑦1
0(𝑋𝑛)𝑠, (𝑋𝑛)𝑠𝑦2

0 and 𝑦2
0(𝑋𝑛)𝑠𝑢  −  (𝑋𝑛)𝑠𝑢𝑦2

0  are 

mutually orthogonal vectors in 𝐿2(𝑀, 𝜏). To do this we show that they have disjoint supports 

in 𝔽𝑛 . So, let 𝑔1  ∈  𝔽𝑛, be in the support of 𝑦1
0  and 𝑔2  ∈  𝔽𝑛, in the support of 𝑦1

0 . Since 

(𝑦1
0)𝑆𝑢  =  𝐸𝑀𝑢(𝑦1

0) =  0, 𝑖 =  1,2 , it follows that 𝑔1 , 𝑔2  ∉  𝑆𝑢  and thus each of them 

contains nonzero powers of some 𝑣𝑗
,𝑠. 

Since any element in S begins and ends with a power of u greater in absolute value 

than twice the length of 𝑔1 𝑎𝑛𝑑 𝑔2 it follows that 𝑔1 𝑆 ∩  𝑆𝑔2  =  𝜙, 𝑔1𝑠 ∩ 𝑠𝑢𝑔2  = 𝜙. Thus 

the support of𝑦1
0(𝑥𝑛)𝑠  is disjoint from the supports of ( (𝑥𝑛)𝑠 𝑦2

0 𝑎𝑛𝑑(𝑥𝑛)𝑠𝑢 𝑦2
0. Let 𝑔3  be 

another element in the support of 𝑦1
0 . We claim that 𝑔1 𝑆 ∩ 𝑔3𝑆𝑢 = ∅. Indeed, because any 

word in the set 𝑔1 S has a subword that begins and ends with nonzero powers of some 𝑣𝑗
,𝑠 

and of length greater than 𝑁0  +  1, while the subwords of the words in the set g, S, that begin 

and end with nonzero powers of some 𝑣𝑗
,𝑠 have lengths at most equal to the length of 𝑔3, 𝑖. 𝑒., 

smaller than 𝑁0. Thus 𝑦1
0(𝑥𝑛)𝑠 𝑎𝑛𝑑 𝑦1

0(𝑥𝑛)2𝑢  have disjoint supports. Similarly we get that 

the support of (𝑥𝑛)𝑠 𝑦2
0 is disjoint from the supports of 𝑦1

0(𝑥𝑛)2𝑢, and (𝑥𝑛)2𝑢𝑦2
0. 

Thus, if 𝒻𝜔  denotes the ultraproduct Hilbert space obtained as the quotient of 

{ (𝜉𝑛)𝑛  ⊂  𝐿
2(𝑀, 𝜏) |𝑠𝑢𝑝 (𝜉𝑛)2 < ∞ }  by the subspace { (𝜂𝑛)𝑛  ⊂  𝐿

2(𝑀, 𝜏) | lim
𝑛→𝜔

‖𝜂𝑛‖2 =

0 } , endowed with the norm ‖(𝜉𝑛)𝑛 ‖2 = | lim
𝑛→𝜔

‖𝜉𝑛‖2  𝑡ℎ𝑒𝑛 𝑥
′ = (𝑦1

0(𝑥𝑛)𝑠)𝑛𝑥
′′′ =

 (𝑦1
0𝐸𝑀𝑢(𝑥𝑛) − 𝐸𝑀𝑢(𝑥𝑛)𝑦1

0)
2
  are mutually orthogonal elements in 𝒻𝜔 . Moreover 

𝐿2(𝑀𝜔, 𝜏𝜔) is naturally embedded in 𝒻𝜔, [96], and by the preceding norm estimates we have 
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(i)‖𝑦1(𝑥 − 𝐸𝑀𝑢𝜔(𝑥)) − 𝑥
′‖
2
 ≤ 𝑠𝑢𝑝𝑛≥𝑛1 ‖𝑦1 (𝑥𝑛 − 𝐸𝑀𝑛(𝑥𝑛)) − 𝑦1

0(𝑥𝑛)2‖
2

≤ 𝑠𝑢𝑝𝑛≥𝑛1  ‖(𝑦1 − 𝑦1
0) (𝑥𝑛 − 𝐸𝑀𝑛(𝑥𝑛))‖2

 + 𝑠𝑢𝑝𝑛≥𝑛1‖𝑦1
0(𝑥𝑛)𝑠0‖2

≤ 𝑠𝑢𝑝(‖𝑥𝑛‖ + ‖𝑦1‖). 

(ii) ‖(𝑥 − 𝐸𝑀𝑢𝜔(𝑥)) 𝑦2 − 𝑥
′′‖

2
𝑠𝑢𝑝𝑛≥𝑛1 ‖(𝑥𝑛 − 𝐸𝑀𝑛(𝑥𝑛)) 𝑦2 − (𝑥𝑛)𝑠𝑦2

0‖
2

≤  휀𝑠𝑢𝑝𝑛≥𝑛1  ‖(𝑥𝑛 − 𝐸𝑀𝑛(𝑥𝑛)) (𝑦2 − 𝑦2
0)‖

2
+ 𝑠𝑢𝑝𝑛≥𝑛1‖(𝑥𝑛)𝑠0𝑦1

0‖
2

≤  휀 𝑠𝑢𝑝(‖𝑥𝑛‖ + ‖𝑦2‖). 

(iii) ‖(𝑦1𝐸𝑀𝑢𝜔(𝑥) − 𝐸𝑀𝑢𝜔(𝑥)𝑦2) − 𝑥
′′′‖

2 
 

≤  𝑠𝑢𝑝𝑛≥𝑛1‖𝑦1𝐸𝑀𝑢𝜔(𝑥) − 𝐸𝑀𝑢𝜔(𝑥)𝑦2 − (𝑦1
0(𝑥𝑛)𝑠𝑢 − (𝑥𝑛)𝑠𝑢𝑦2

0)‖
2
 

≤ 𝑠𝑢𝑝𝑛≥𝑛1‖(𝑦1 − 𝑦1
0)𝐸𝑀𝑢(𝑥𝑛)‖2

+ 𝑠𝑢𝑝𝑛≥𝑛1 , ‖𝐸𝑀𝑢(𝑥𝑛)(𝑦2 − 𝑦2
0)‖

2

≤ 2휀 𝑠𝑢𝑝‖𝑥𝑛‖. 

This shows that the vectors 𝑦1  (𝑥 − 𝐸𝑀𝑢𝜔(𝜔)) , (𝑥 − 𝐸𝑀𝑢𝜔(𝑥)) 𝑦2𝑦1𝐸𝑀𝑢𝜔(𝑥) −

𝐸𝑀𝑢𝜔(𝑥)𝑦2 can be approximated arbitrarrly well in 𝒻𝜔 by some mutually orthogonal vectors 

and hence they are mutually orthogonal in 𝐿2(𝑀𝜔, 𝜏𝜔 𝒻𝜔. Since their sum is equal to 𝑦1𝑥 −
 𝑥𝑦2 we get 

‖𝑦1𝑥 − 𝑥𝑦2‖2
2 = ‖𝑦1  (𝑥 − 𝐸𝑀𝑢𝜔(𝑥))‖2

2
+ ‖(𝑥 − 𝐸𝑀𝑢𝜔(𝑥)) 𝑦2‖2

2
 

+‖𝑦1 𝑥 − 𝐸𝑀𝑢𝜔(𝑥) − 𝐸𝑀𝑢𝜔(𝑥)𝑦2‖2
2
≥ ‖𝑦1  (𝑥 − 𝐸𝑀𝑢𝜔(𝑥)) , ‖2

2
 

+‖ (𝑥 − 𝐸𝑀𝑢𝜔(𝑥)) 𝑦2 ‖2

2
 

Let 𝔽𝑛 be as in the preceding the free group on n generators, ∞ ≥  𝑛 ≥  2, and fix 𝑢 ∈  𝔽𝑛 to 

be one of the generators of 𝔽𝑛 Let 𝜆 be the left regular representation of 𝔽𝑛 and 𝐿(𝔽𝑛)  =
 𝜆(𝔽𝑛)

′′  the type II, factor associated with it[115]. Denote by 𝐴𝑢  the von Neumann 

subalgebra generated in 𝐿(𝔽𝑛) by the unitary element 𝜆(𝑢). 
It is known for long time that 𝐴𝑢 is a maximal abelian *-subalgebra in 𝐿(𝔽𝑛) (cf. [115], see 

also [121]). We shall show that in fact 𝐴𝑢 is a maximal injective von Neumann subalgebra in 

𝐿(𝔽𝑛). 
 Lemma(3.2.5)[104]: If 𝐵 ⊂  𝐿(𝔽𝑛)  is a von Neumann subalgebra that contains 𝐴𝑢  then 

there exists a partition of the unity {𝑒𝑛} 𝑛>0in the center of B such that 𝐵𝑒0  =  𝐴𝑢𝑒0 and 

𝐵𝑒𝑛 is a factor for all 𝑛 ≥  1 . Moreover for each 𝑛 ≥  1 the algebra (𝐵′ ∩ 𝐴𝑢
𝜔) 𝑒𝑛  has a 

nonzero atomic part. 

Proof: Since 𝐴𝑢 is maximal abelian in 𝐿(𝔽𝑛) it is maximal abelian in B, hence the center 𝒻 

of B is contained in 𝐴𝑢. 𝐿𝑒𝑡 𝑒0  be the maximal projection in the set {𝑝 ∈  𝒻|𝑝 

projection, 𝐵𝑝 =  𝐴𝑢𝑝} (𝑒0 is possibly zero). Let 𝑒 =  1 − 𝑒0 We have to show that 𝒻𝑒 is an 

atomic algebra. Suppose on the contrary that there exists a projection 0 ≠  𝑞 ∈  𝒻𝑒 such that 

𝒻𝑞  is completely nonatomic. Denote 𝐴 =  𝐴𝑢( 1 −  𝑞)  +  𝒻𝑞,  so that  𝐴 ⊂  𝐴𝑢  and A is 

completely nonatomic. For any element 𝑔 ∈  𝔽𝑛\{𝑢
𝑘  |𝑘  ∈ ℤ }  we have  𝜆(g)𝐴𝜆(g−1) ⊂

𝜆(g)𝐴𝑢𝜆(g
−1) and 𝜆(g)𝐴𝑢𝜆(g

−1), 𝐴𝑢   are mutually orthogonal subalgebras in 𝐿(𝔽𝑛) so that 

A and 𝑦(g) 𝐴𝜆(g−1) are mutually orthogonal. By Lemma 2.5 in [121] it follows that 𝜆(g) is 
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orthogonal (with respect to the trace) to 𝐴′  ∩  𝐿(𝔽𝑛). But the Hilbert space generated in 

𝐿2(𝐿(𝔽𝑛), 𝜏) 𝑏𝑦 𝜆(g), g ∈  𝔽𝑛\{𝑢
𝑘|𝑘 ∈  ℤ} , coincides with the orthogonal of 

𝐿2(𝐴𝑢, 𝜏) 𝑖𝑛 𝐿
2(𝐿(𝔽𝑛), 𝜏). 𝑇ℎ𝑢𝑠 𝐴

′  ∩  𝐿(𝔽𝑛)  ⊂  𝐿
2(𝐴𝑛, 𝜏)  so that 𝐴′ ∩  𝐿(𝔽𝑛)  ⊂  𝐴𝑢.  In 

particular, since (𝐴′ ∩  𝐿(𝔽𝑛))𝑞 =  (𝒻
′ ∩  𝐿(𝔽𝑛))𝑞 ⊃ 𝐵𝑞, it follows that 𝐵𝑞 ⊂  𝐴𝑢, and this 

contradicts the maximality of 𝑒0. 

Let{𝑒𝑛} 𝑛>1  be the atoms of 𝒻𝑒 (so that 𝑒, + ∑ 𝑒𝑛𝑛  =  1). Since 𝐴𝑢  ⊂ 𝐵, 𝐵  is completely 

nonatomic, so that 𝐵𝑒𝑛 are factors of type ΙΙ1, 𝑛 ≥  1. 
Suppose (𝐵′ ∩ 𝐴𝑢

𝜔) 𝑒𝑛 is completely nonatomic for some 𝑛 ≥  1 and let 𝐵1 = (𝐵
′  ∩

 𝐴𝑢
𝜔) 𝑒𝑛  +  𝐴𝑢

𝜔( 1 −  𝑒𝑛) . Then 𝐵1 ⊂ 𝐴𝑢
𝜔  is also completely nonatomic and since 

𝐴𝑢
𝜔, 𝜆(g)𝐴𝑢

𝜔𝜆( g−1)  are mutually orthogonal for g ∈  𝔽𝑛\{𝑢
𝑘|𝑘 ∈  ℤ}  it follows that 𝐵1 ⊂

𝐴𝑢
𝜔 and 𝜆(g)𝐵1𝜆(g

−1) ⊂ 𝜆(g) 𝐴𝑢𝜆(g
−1) are mutually orthogonal subalgebras. Thus 𝜆(g)is 

orthogonal to 𝐵1
′  ∩ 𝐿(𝔽𝑛)

𝜔 and in particular to 𝐵𝑒𝑛  ⊂ ((𝐵
′ ∩ 𝐴𝑢

𝜔)’ ∩  𝐿(𝔽𝑛)
𝜔)𝑒𝑛 = (𝐵1

′ ∩
𝐿(𝔽𝑛)

𝜔)𝑒𝑛 ⊂ 𝐵1
′ ∩ 𝐿(𝔽𝑛)

𝜔 , for all g 𝔽𝑛\{𝑢
𝑘|𝑘 ∈  𝑍} . We get 𝐵𝑒𝑛 ⊂ 𝐴𝑢,  which is a 

contradiction.  

Theorem (3.2.6)[104]: If 𝐵 ⊂  𝐿(𝔽𝑛) is a von Neumann algebra that contains one of the 

generators of 𝔽𝑛then B is a direct sum of an abelian algebra and of a ,sequence of non Γ 

type 𝐼𝐼1 factors. 

Proof: Suppose 𝜆(𝑢)  ∈  𝐵. By (1) there exist projections {𝑒𝑛} 𝑛>0 in the center of B such 

that∑ 𝑒𝑛𝑛  =  1, 𝐵𝑒0 = 𝐴𝑢𝑒0 and 𝐵𝑒𝑛, is a type 𝐼𝐼1, factor for each 𝑛 ≥  1. Suppose Be has 

the property Γ  for some 𝑒 ∈  {𝑒𝑛 }𝑛≥1 . It follows that (𝐵𝑒)
′ ∩ 𝐵𝑒

𝜔  has no atoms [101]. 

Since (𝐵’ ∩ 𝐵𝑒
𝜔) 𝑒 has a nonzero atomic part (by the preceding lemma) we obtain that there 

exists an element 𝑥 ∈ (𝐵𝑒)’ ∩ 𝐿(𝔽𝑛)𝑒
𝜔 not contained in 𝐵𝑒

𝜔. Thus[𝑥, 𝜆(𝑢)] =  0 and [𝑥, 𝑤]  =
 0 for all 𝑤 ∈  𝐵𝑒. 
In particular we can choose w to be a unitary element in 𝐵𝑒 such that w is orthogonal to 

𝐴𝑢, 𝑖. 𝑒. , 𝐸𝐴𝑢(𝑤)  =  0 (for instance take 𝑒1, 𝑒2 to be projections in 𝐴𝑢 such that 𝑒1 + 𝑒2  =

𝑒 𝑎𝑛𝑑 𝜏(𝑒1) =  𝜏(𝑒2)  .and let w be a selfadjoint unitary element in the factor Be, with 

𝑤𝑒1𝑤∗  =  𝑒2 ). By Lemma (3.2.4) we get 0 = ‖𝑥𝑤 −  𝑤𝑥 ‖2 ≥ ‖(𝑥 − 𝐸𝐴𝑢𝜔(𝑥)) 𝑤 ‖2
=

‖𝑥 − 𝐸𝐴𝑢𝜔(𝑥) ‖2
, which is a contradiction. 

Corollary (3.2.7) [104]: 𝐴𝑢 is a maximal injective von Neumann subalgebra in 𝐿(𝔽𝑛). 
Proof: If 𝐵 ⊂ 𝐿(𝑙𝔽𝑛)  is a von Neumann subalgebra and 𝐴𝑢 ⊂  𝐵,  𝐴𝑢 ≠ 𝐵  then by the 

preceding theorem there exists a projection 𝑒 ∈  𝐵’ ∩  𝐴𝑢, 𝑒 ≠  0, such that Be is a non Γ 

factor of type ΙΙ1. By A. Connes’ theorem [96] Be (and thus B) cannot be injective. 

Corollary (3.2.8) [104]: Let 𝐵 ⊂  𝐿(𝔽𝑛) be a von Neumann subalgebra and suppose 𝜆(𝑢) 
normalizes 𝐵, 𝑖. 𝑒. , 𝜆(𝑢) 𝐵𝜆(𝑢)∗  =  𝐵. 

(i) If B is injective then 𝐵 ⊂ 𝐴𝑢. 

(ii) If B is a factor then B = C or B is a non Γ factor of type ΙΙ1. 

Proof:  If B is injective and 𝜆(𝑢) 𝐵𝜆(𝑢)∗  =  𝐵 then the von Neumann algebra N generated 

by 𝜆(𝑢) and B is injective and 𝜆(𝑢)  ∈  𝑁. By the preceding corollary we get 𝐵 ⊂  𝑁 =  𝐴𝑢. 

Now suppose B is a factor. If B is finite dimensional then it is injective and (i) shows 

that 𝐵 =  ℂ. If B is a  Γ type II, factor then denote by a the automorphism of B implemented 

by 𝜆(𝑢), 𝑖. 𝑒. , 𝑎(𝑏)  =  𝜆(𝑢) 𝑏𝜆(𝑢)∗, 𝑏 ∈  𝐵. If a is an interior automorphism then let w E B 

be a unitary element such that 𝑎 = 𝐴𝑑𝑤 = 𝐴𝑑𝜆(𝑢)|𝐵. It follows that {𝑤)‘ ∩ 𝐵 =  (𝜆(𝑢)′ ∩
𝐵 ⊂ {𝜆(𝑢)]‘ ∩  𝐿(𝔽𝑛)  =  𝐴𝑢𝑎𝑛𝑑 { 𝑤

∗𝜆(𝑢)}’ ∩  𝐿(𝔽𝑛)  ⊃  𝐵. Consequently  
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𝑤 ∈  𝐴𝑢, 𝑤
∗𝜆(𝑢)  ∈  𝐴𝑢, and if A is the von Neumann algebra generated by 𝑤∗𝜆(𝑢) then A 

is atomic. \ Indeed, because if 0 ≠ 𝑓 ∈  𝐴  is a projection such that 𝐴𝑓 is completely 

nonatomic then by [121], (or arguing as in the preceding Lemma(3.2.5)), we get (𝐴𝑓)‘ ∩
 𝐿(𝐹𝑛)𝑓 =  𝐴𝑢𝑓 Since 𝑓 ∈  𝐴 ⊂  𝐵’ it follows that 𝐵𝑓 ⊂ (𝐴𝑓)‘ ∩  𝐿(𝔽𝑛)𝑓 =  𝐴𝑢𝑓 which is a 

contradiction. Thus the algebra A generated by 𝑤∗𝜆(𝑢) is atomic so that if e is a minimal 

projection in A there exists a complex scalar 

𝑦, |𝑦| =  1,  with 𝑤∗𝜆(𝑢) 𝑒 =  𝑦𝑒, 𝑖. 𝑒. , 𝜆(𝑢) 𝑒 =  𝑦 . But 𝑒 ∈ 𝐴𝑐𝐵’ ∩ 𝐴𝑢 , so that  𝜆(𝑢)𝑒 =
𝑦𝑤𝑒 ∈ 𝐵𝑒, hence 𝐴𝑢𝑒 ⊂ 𝐵𝑒, and since Be is isomorphic to B (because 𝑒 ∈  𝐵’ and B is a 

factor) it follows that Be is a Γ  factor. Finally, if we take B1 =  eBe + A𝑢( 1 −
 e) then Au  ⊂  B1and B1 contradicts the conclusion of Theorem (3.2.6). 

If a is a properly outer automorphism of the Γ factor B, (iii) it follows that the von 

Neumann algebra N generated by B and 𝜆(𝑢) is also a  Γ factor and 𝜆(𝑢)  ∈  𝑁, again in 

contradiction with Theorem (3.2.6). 

Corollary(3.2.9)[104]:(i) If B is a completely nonatomic finite type I von Neumann algebra 

then B can be embedded in 𝐿(𝔽∞) as a maximal injective von Neumann subalgebra.  

(ii) If B is a completely nonatomic type I von Neumann algebra (not necessary finite) then B 

can be embedded in 𝐿(𝔽∞) ⨂𝐼∞ as a maximal injective von Neumann subalgebra (here 𝐼∞is 

the separable infinite dimensional type I factor). 

Proof:  Both (i) and (ii) are easy consequences of Theorem (3.2.6) and of the fact that by 

[121] the algebras 𝐴𝑢 = {𝜆(𝑢𝑛)}“, 𝑛 ≥  1, are not unitary conjugated in 𝐿(𝔽∞)  (𝑢1, 𝑢2, . . ., 
are the generators of 𝔽∞ For instance, if 𝐵 = 𝐴1

0⊕𝑀2(𝐴2
0) ⊕𝑀3(𝐴3

0)⊕ . . .,  with 𝐴𝑛
0  

abelian, nonatomic and 𝑀𝑛(𝐴𝑛
0) the n by n matrix algebra over 𝐴𝑛

0  , then take a partition of 

the unity {𝑒𝑛
𝑘}𝑛≥𝑘≥1∕𝑛≥1 𝑖𝑛 𝐿(𝔽2)  such that 𝜏(𝑒𝑛

1)  = . . . = 𝜏(𝑒𝑛
𝑛) ≠ 𝑂, 𝑛 ≥ 1, andoneach 

projection et consider the algebra Ad 𝑣𝑛
𝑘(𝐴𝑛),  where 𝑣𝑛

𝑘 are partial isometries in 

𝐿(𝔽∞)𝑣𝑛
𝑘𝑣𝑛
𝑘∗  = 𝑒𝑛

𝑘 𝑎𝑛𝑑 𝑡)𝑣𝑛
𝑘∗𝑣𝑛

𝑘  𝑖𝑠  a projection in 𝐴𝑛  the same for all 𝑘, 𝑛 ≥ 𝑘 ≥  1 . If 

𝐵0  =  ⨁𝑛,𝑘  𝐴𝑑𝑣𝑛
𝑘(𝐴𝑛) and 𝐵1 denotes the algebra generated in 𝐿(𝔽∞)by the normaker of ,𝐵0 

then 𝐵1  ≃  𝐵 and 𝐵1 is maximal injective in 𝐿(𝔽∞)                                        
Theorem (3.2.10)[104]: Let (𝑋, 𝜇) be a nonatomic probability measure space and suppose 

𝔽𝑛 acts freely on X by measure preserving automorphisms. Denote by 𝑀 =  𝐿∞ (𝑋, 𝜇)  × 𝔽𝑛 

the group measure algebra associated with this action and by 𝑅𝑢 = 𝐿
∞ (𝑋, 𝜇)  ×𝑢 ℤ  the 

subalgebra of M corresponding to the action of the generator 𝑢 ∈  𝔽𝑛on the space X. Then M 

and 𝑅𝑢  are type ΙΙ1  von Neumann aIgebras and 𝑅𝑢  , is a maximal iqjective von Neumann 

subalgebra of M. Moreover if u acts ergodically on X then M is a factor and 𝑅𝑢is a maximal 

𝑠Γ subfactor of M. 

Proof: Denote by 𝐴 = 𝐿∞(𝑋, 𝜇), so that 𝑀 = 𝐴 × 𝔽𝑛,  𝑅𝑢 =×𝑢 ℤ since IF, acts freely on A, 

A is a Cartan subalgebra both in M and in 𝑅𝑢, [112]. 

The fact that M and 𝑅𝑢 are of type ΙΙ1 follows by classical results on crossed products 

(see [103]). 

Suppose there exists an injective von Neumann subalgebra 𝑁 ⊂  𝑀 such that 𝑅𝑢 ≠ 𝑁. 

Then 𝐴 is also a maximal abelian subalgebra in N and in fact [112] it is a Cartan 

subalgebra in N. In particular 𝑁’ ∩  𝑁 ⊂  𝑁’ ∩  𝑀 ⊂  𝑅𝑢
′  ∩  𝑀 ⊂  𝐴 so that the center of N 

is contained in the center of 𝑅𝑢 which is contained in 𝐴. 
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Thus N is of type ΙΙ1 (since any type I central projection of N would be a central projection of 

type I in 𝑅𝑢). 

We first show that 𝑁’ ∩ 𝑁𝜔  ⊂  𝑅𝑢
𝜔 . Suppose on the contrary that 𝑁’ ∩ 𝑁𝜔  ⊂  𝑅𝑢

𝜔 . 
As pointed, since N is an injective von Neumann algebra of type 𝐼𝐼1, 𝑁

′ ∩ 𝑁𝜔 is of type II,. 
Let 𝐴𝜔 = (𝑁’ ∩ 𝑁

𝜔) ∩ 𝐴𝜔  =  𝑁′ ∩ 𝐴𝜔 and 𝐵 ⊂  𝑁′ ∩ 𝑁𝜔 a maximal abelian *subalgebra 

of 𝑁′ ∩ 𝑁𝜔  that contains 𝐴𝜔 By Lemma (3.2.1) there exist finite dimensional abelian von 

Neumann subalge τω(𝑒)  =  2
−𝑛for all the minimal projections 𝑒 ∈  𝐴𝑛 , 𝑛 ≥  1. 

We infer that 𝐴𝑛 is also orthogonal to 𝐴𝜔. Indeed, since A is a Cartan subalgebra in N 

it follows 𝔄 = {𝑤  unitary element in 𝑁 𝑤𝐴𝜔𝑤∗  =  𝐴𝜔} generates N, so that by Lemma 

(3.2.2), EAω  o EN′∩Nω  = EN′∩NωoEAω   =  EN′∩Nω  = EAω  Thus, if 𝑥 ∈  𝐴𝑛, 𝑦 ∈ 𝐴
𝜔 , then 

𝜏𝜔, (𝑥𝑦)  =  𝜏𝜔(EN′∩Nω(𝑥𝑦))  =  𝜏𝜔, (𝑥EN′∩Nω(𝑦))  =  𝜏𝜔(𝑥EAω(𝑦)) =
𝜏𝜔(𝑥) 𝜏𝜔(EAω(𝑦))  =  𝜏𝜔(𝑥) 𝜏𝜔(𝑦) . Now, since 𝐴𝑛  is orthogonal to Aω  and 𝐴𝑛 ⊂ 𝑁’ ∩
𝑁𝜔 ⊂ 𝑅𝑢

𝜔, for any g ∈  𝔽𝑛\{𝑢
𝑘|𝑘 ∈  𝑍) the algebra 𝜆(g) 𝐴𝑛𝜆(g

−1) is orthogonal to 𝑅𝑢
𝜔, 𝑛 ≥

1 . It follows by [106] that 𝜆(g) is orthogonal to (𝑁′ ∩ 𝑁𝜔)’ ∩ 𝑁𝜔  and thus 𝜆(g)  is 

orthogonal to N for all g ∈  𝔽𝑛\{𝑢
𝑘|𝑘 ∈ ℤ} . Consequently 𝑁𝜆( g)  and N are mutually 

orthogonal linear subspaces in 𝐿2(𝑀, 𝜏), in particular 𝐴𝜆( g) and N are mutually orthogonal 

(since 𝐴 ⊂ 𝑁) so that ∑g∈𝔽𝑛\{𝑢𝑘)𝑘  𝐿
2(𝐴, 𝜏) 𝜆( g) is orthogonal to N. 

 It follows that 𝑁 ⊂ 𝐿2(𝑅𝑢, 𝑡), hence 𝑁 ⊂  𝑅𝑢 which is a contradiction. 

Denote by 𝑓 the maximal projection in the center of N such that 𝑁𝑓 =  𝑅𝑢𝑓: Let 𝑒 =  1 −
𝑓 : Since 𝑅𝑢  ≠  𝑁, 𝑒 ≠  0 . Take 𝑥 ∈  (𝑁’ ∩  𝑁𝜔)\𝑅𝑢

𝜔, It follows that  𝑒𝑥 ∈  (𝑁’ ∩ 𝑁𝜔)\
𝑅𝑢
𝜔,so that we may suppose 𝑒𝑥 =  𝑥𝑒 =  𝑥 . If 𝑦 ∈  𝑁  is an arbitrary element such that 

𝐸𝑅𝑢(𝑦)  =  0 then by Lemma(3.2.4) we get 

0 =   ‖𝑦𝑥  −  𝑥𝑦‖2 ≥ ‖𝑌 (𝑥 − 𝐸𝑅𝑢
𝜔(𝑥))‖

2
ℎ 𝑒𝑛𝑐𝑒 𝑦 (𝑥 −  𝐸𝑅𝑢𝜔(𝑥))  =  0. 

Moreover if 𝑦0, 𝑦 ∈  𝑁  and 𝐸𝑅𝑢 (𝑦)  =  0  then 𝑦0 𝑦(𝑥 − 𝐸𝑅𝑢(𝑥))  =  0  and 𝑦𝑦0 (𝑥 −

𝐸𝑅𝑢(𝑥)) =  𝑦(𝑦0  − 𝐸𝑅𝑢 (𝑦))(𝑥 − 𝐸𝑅𝑢(𝑥))  +  𝑦𝐸𝑅𝑢(𝑦0)(𝑥 − 𝐸𝑅𝑢(𝑥))  = 0  (since 

𝐸𝑅𝑢 (𝑦𝐸𝑅𝑢 (𝑦0))  =  0  and 𝐸𝑅𝑢 (𝑦0  −  𝐸𝑅𝑢 (𝑦0))  =  0) . Let J be the w-closed two-

sided”ideaf of N generated by all 𝑦 ∈  𝑁, 𝐸𝑅𝑢 (𝑦)  =  0 and let p be the projection in the 

center of N such that 𝐽 =  𝑁𝑝. Since for all 𝑦 ∈  𝑁 satisfying 𝐸𝑅𝑢(𝑦)  =  0 we have eye = y it 

follows that 𝑝 ≤  𝑒. 𝐼𝑓 𝑒 − 𝑝 ≠ 0, there exists an element 𝑦0 ∈  𝑁, 0 ≠  𝑦0  =  𝑦0(𝑒 − 𝑝), 
such that 𝐸𝑅𝑢 (𝑦0)  =  0. Indeed because otherwise 𝑁(𝑒 − 𝑝)  =  𝑅𝑢(𝑒 − 𝑝), contradicting 

the miximality of 𝑓 =  1 −  𝑒. But then 𝑦0 ∈  𝐽 =  𝑁𝑝, which is again a contradiction. This 

shows that 𝑒 =  𝑝 and by the preceding remarks for any 𝑦 ∈ 𝐽 we have y(x – y(x − ERuω(x)) 

= 0, in particular e (x − ERuω(x))  =  0. But e (x − ERuω(x))  =   x − ERuω(x),  a 

contradiction. 

Thus 𝑅𝑢 is maximal injective in M. 

If in addition u acts ergodically on A then 𝔽𝑛 acts ergodically on A so that both 𝑅𝑢 and M are 

type II1 factors. The proof that 𝑅𝑢 is a maximal sΓ 

subfactor of M is exactly the same as the proof of the maximal injectivity of  𝑅𝑢  Indeed 

because from the injectivity of N we used in the preceding proof only the fact that 𝑁’ ∩ 𝑁𝜔 

is of type II1. 
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Examples (3.2.11)[104]: (i) Let (𝑋0, 𝜇0) be a probability measure space such that 𝐿2(𝑋0, 𝜇0) 
has dimension at least two. For instance, consider𝑋0 = {0, 1} 𝑎𝑛𝑑 , 𝜇0({0}) = 𝜇0({1}) =
2−1. 𝐼𝑓 g ∈  𝔽𝑛  let (𝑋0, 𝜇0)g = (𝑋0, 𝜇0)  and denote by (𝑋, 𝜇) Πg∈𝔽n , (𝑋0, 𝜇0)  the product 

probability measure space. Let  𝜎 be the Bernoulli shift action of 𝔽n, on X so that any g ∈
 𝔽𝑛\(𝑒) acts ergodically on X (in fact strongly mixing). Then 𝑅𝑢 = 𝐿

∞(𝑋, 𝜇)  ×𝜎(𝑢)  ℤ is a 

hyperlinite subfactor of the type II1 factor 𝑀 =  𝐿∞(𝑋, 𝜇)  ×𝜎 𝔽n, and by Theorem (3.2.10) 

𝑅𝑢 is a maximal 𝑠Γ subfactor of M. Moreover by [122] and the Hilbert space lemma in [113] 

the action of 𝔽n  on (𝑋, 𝜇)  is strongly ergodic, i.e., it has no nontrivial almost invariant 

sequences, so that by [107] M is a non Γ  type II1 factor (ii) Let (𝑋0, 𝜇0), (𝑋, 𝜇) =
Πg∈𝔽n , (𝑋0, 𝜇0)g be as in (i) and (𝑋1, 𝜇1) = Πk∈z (𝑋0, 𝜇0)𝑘, where (𝑋0, 𝜇0)𝑘  =  (𝑋0, 𝜇0). Let 

𝜎1 be the following action of 𝔽n on 𝑌1 ∶  𝑖𝑓 𝑢, 𝑣1 , 𝑣2 , . . ., are as usual the generators of 𝔽n 

then all 𝜎1(𝑢)𝜎1(𝑣1)…, act on Y, as the same Bernoulli shift over the group ℤ. Consider the 

product action 𝜎 × 𝜎1  of 𝔽n  on 𝑋 × 𝑌1,  Since 𝜎(𝑢) and 𝜎1(𝑢) are strongly mixing, (𝜎 ×
𝜎1)(𝑢) is ergodic, so that the corresponding group measure algebra 𝑀 = 𝐿∞(𝑋 × 𝑌1, 𝜇 ×
𝜇1, )𝑋𝜎 × 𝜎1  𝔽n, is a typeIΙ1, factor and 𝑅𝑢 = 𝐿

∞(𝑋 × 𝑌1, 𝜇 × 𝜇1)𝑋𝜎 × 𝜎1(𝑢) ℤ is a hyperfinite 

subfactor of M. By Theorem (3.2.10)  𝑅𝑢 is a maximal 𝑠Γ subfactor of M. Since 𝜎 × 𝜎1 has 

nontrivial almost invariant sequences (because the action 𝜎1is amenable), M is a Γ factor and 

since 𝑅𝑢 ≠  𝑀,𝑀 𝑖𝑠 𝑤Γ  (because if M would be 𝑠Γ  then maximality of 𝑅𝑢  would be 

contradicted). The fact that the Γ factor M is 𝑤Γ follows also by [106]. 

(iii) (𝑋0, 𝜇0), (𝑋, 𝜇) = Πg∈𝔽n , (𝑋0, 𝜇0)g  be as in (i), 𝔽𝑛− 1  the subgroup of 𝔽𝑛  generated by 

𝑣1, 𝑢2 , . . ., and (𝑌2, 𝜇2)  == Πg∈𝔽n−1  (𝑋0, 𝜇0)g. 

Consider the action σ2 of F2, on Y2 as follows : σ2(𝑢)acts trivially on Y2 and 𝜎2|𝐹𝑛−1is 

the Bernoulli shift over the group 𝐹𝑛−1 Then the action 𝜎 × 𝜎2 of𝔽𝑛𝑜𝑛 (𝑋 ×  𝑌2, 𝜇 × 𝜇2) is 

free, ergodic, but the action of 𝜎 × 𝜎2(𝑢) is not ergodic, it acts trivially on sets of the form 

𝑋 ×  𝐴, 𝐴 ⊂  𝑌2. Thus in this case 𝑀 = 𝐿∞(𝑋 × 𝑌2, 𝜇 × 𝜇2)𝑥𝜎 × 𝜎2  𝔽𝑛 is a type 𝐼𝐼1 factor and 

𝑅𝑢 ≃  𝑅 ⊗ 𝐴0where 𝐴0 is a completely nonatomic abelian von Neumann algebra. By the 

same arguments as in (i) and (ii) we get that for 𝑛 =  2,𝑀 is a 𝑤Γ factor (because 𝜎2  is 

amenable) and for 𝑛 ≥  3 𝑀 is non Γ (because in this case 𝜎2 is strongly ergodic). 

(iv) Let 𝑥0 = {0, 1} with the measure 𝜇0({𝑂}) = 𝜇0({ 𝐼}) =  2
−1 and let 𝑧1, 𝑧2, …, be a Bore1 

partition of (𝑌1, 𝜇2) = Π𝑘∈𝑧 (𝑋0, 𝜇0)𝑘  with 𝜇(𝑍𝑘)  =  2
−𝑘 , 𝑘 ≥ 1 . Then (𝑍𝑘, 𝜇𝐼|𝑍𝑘) ≃

(𝑌1, 2
−𝑘𝜇1) . Now let 𝜎0 be the following action of 𝔽𝑛𝑜𝑛 𝑌1 ∶  𝜎0(𝑢) is trivial on 𝑍1 and it is 

the Bernoulli shift on 𝑍𝑘, 𝑘 ≥  2, via the isomorphism(𝑍𝑘, 𝜇𝐼|𝑍𝑘) ≃  (𝑌1, 2
−𝑘𝜇1)𝜎0|𝔽𝑛−1  acts 

on 𝑌1 as the Bernoulli shift via the isomorphism (𝑌1, 𝜇1)  ≃  Πg∈𝔽n , (𝑋0, 𝜇0)g Then take the 

product action 𝜎 × 𝜎0, 𝑜𝑓 𝔽𝑛, 𝑜𝑛 𝑋 × 𝑌1 Since 𝜎 𝑎𝑛𝑑 𝜎0  are strongly mixing the 

corresponding M is a type 𝐼𝐼1 factor. The subalgebra 𝑅𝑢 is isomorphic in this case to 𝑅 ⊗ 𝐴0 
where 𝐴0 is abelian of the form 𝐴0  = 𝐴1⊗𝐴2with 𝐴1 completely nonatomic and 𝐴2 atomic 

and infinite dimensional. Again by  [113 ], [107], if 𝑛 = 2 then M is wΓ and if 𝑛 ≥ 3 then 

Misnon Γ. 
Note that by obvious modifications of this example we can choose the action 𝜎0such that the 

abelian algebra 𝐴0 (the center of R,) is of any form we like. 
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(v) Let 𝔽2
0  be the subgroup of 𝑆𝐿(2, 𝕫)  generated by (

1 2
0 1

)  and (
1 2
0 1

)  so that 𝔽2
0  is 

isomorphic to the free group 𝔽2. 𝐿𝑒𝑡 𝕋
2  = ℝ2/ℤ2  be the two-dimensional torus with the 

normalized Haar measure 𝜇. 𝐿𝑒𝑡 𝑆𝐿(2, ℤ) act on 𝕋2 as the group of linear automorphisms and 

denote by 𝜎′the restriction of this action to 𝔽2
0  𝐴𝑠 𝜎′is well known to be ergodic, the algebra 

𝑀 = 𝐿∞(𝕋2, 𝜇)  ×𝜎′  𝔽2 , is a type II1  factor. If 𝑅𝑢  is the von Neumann subalgebra of M 

generated by the action of the element 𝑢 =  (
1 2
0 1

)  ∈  𝔽2
0 then 𝑅𝑢 has diffuse center but it is 

maximal injective in M by Theorem (3,2.10). We mention that it is not known whether the 

action of 𝔽2
0 on 𝕋2 is strongly ergodic, although the global action of 𝑆𝐿(2, ℤ) was showd to 

be strongly ergodic in [122]. 

Let us summarise the conclusions of the preceding examples, using then notations of 

Theorem (3.2.10): 

Proposition (3.2.12)[104]: Let 𝐴0 be an arbitrary separable abelian von Neumann algebra. 

There exist free ergodic measure preserving actions of 𝔽𝑛, 𝑛 ≥  2 , on a nonatomic 

probability measure space (𝑋, 𝜇) such that 𝑅𝑢 ≃  𝑅 ⨂𝐴0, and such that M is a non Γ or a w Γ 

factor of type II1. 

Note that Theorem (3.2.10) and Examples (3.2.11) also provide examples of maximal 

amenable subequivalence relations of the measured equivalence relation 𝑅𝔽𝑛  implemented 

on (𝑋, 𝜇) by the action of the group 𝔽𝑛 . 

We mention now a consequence of [92]: 

Theorem(3.2.13)[104]: If M is a separable type II1 factor then M contains the hyperfinite 

factor R as a maximal injective von Neumann subalgebra. 

Proof: By [92] there exists a hyperfinite subfactor 𝑅0 ⊂ 𝑀 such that 

𝑅0
′ ∩  𝑀 = ℂ. So, if R is a maximal injective von Neumann subalgebra that contains 𝑅0  then 

𝑅′ ∩𝑀 ⊂  𝑅0
′ ∩  𝑀 = ℂ  and thus R is a factor. By [96] R is the hyperfinite type II1 factor.  

We close with two problems. The first one, if answered in the affirmative, would 

considerably enlarge our class of examples. The second one is related to the proof of 

Theorem (3.2.10), but also has an independent interest. 

Problems(3.2.14)[104]:If 𝑀1, 𝑀2  are type II1  factors and 𝐵1  ⊂  𝑀1, 𝐵2  ⊂  𝑀2  are maximal 

injective von Neumann algebras, is 𝐵1⊗ 𝐵2maximal injective in 𝑀1⊗ 𝑀2? Is this true at 

least for 𝑀2  = 𝐵2  =  𝑅? 
 Let 𝑅 𝐼 ⊂ 𝑅 be a hyperlinite subfactor such that 𝑅0

′ ∩  𝑅 = ℂ and 𝑅′ ∩ 𝑅𝜔 ⊂ 𝑅1
𝜔 for some 

free ultrafilter 𝜔 𝑜𝑛 ℕ. Does it follow that 𝑅1 =  𝑅? 
Let (𝑋, 𝜇) be a nonatomic probability measure space and suppose 𝔽2 acts freely on (𝑋, 𝜇)by 

measure preserving automorphisms. Let 𝑢, 𝑣  be the generators of 𝔽2 . denote 𝐴 =
 𝐿∞(𝑋, 𝜇),𝑀 =  𝐴 × 𝔽2, 𝑅𝑢   =  𝐴 ×𝑢  ℤ and by 𝜆(g), g ∈  𝔽2  the unitaries of M 

canonically implementing the action of 𝔽2 on A. Suppose in addition that both 𝑢 and 𝑣 act 

ergodically on A and that there exists an automorphism Θ 𝑜𝑛 𝑀 such that Θ(𝜆(𝑢))  =
 𝜆(𝑣), Θ(𝐴)  =  𝐴. For examples of such a situation see Examples (3.2.11), (i) and (ii); so, R, 

is hyperfinite and by Theorem (3.2.10) it is a maximal sr subfactor of M. 

Denote by N the algebra of 2 by 2 matrices over M and 𝑅 =  {𝑥 ⊕  Θ(𝑥)|𝑥 ∈  𝑅𝑢}  ⊂  𝑁. 

Thus R is isomorphic to 𝑅𝑢 and in fact, if 𝑒 =   (
1 0
0 0

) ∈ 𝑀2(𝑀) =  𝑁, then 𝑅𝑒 =  𝑅𝑢 Note 
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that if 𝔽2 acts as in Examples (3.2.11), (i) then M and N are non Γ, if 𝔽2 acts as in 2o then M 

and N are 𝑤Γ. 

Theorem (3.2.15)[104]: With the above notations, R is a maximal 𝑠Γ subfactor in N. In 

particular it is a maximal hyperfinite subfactor in N, but 𝑅’ ∩  𝑁 = 𝐶𝑒 +  𝐶(1 −  𝑒). 
Proof: We shall assume on the contrary that there exists an 𝑠Γ subfactor 𝑁0 in N such that 

𝑅 ⊂ 𝑁0, 𝑅 ≠ 𝑁0 First of all note that 𝑁0  has elements of the form 𝑥 =

 (𝑥
11 𝑥12

𝑥21 𝑥22
)  𝑤𝑖𝑡ℎ 𝑥12  ≠  0.  Indeed, because otherwise 𝑒 ∈  𝑁0

′ ∩  𝑁 𝑎𝑛𝑑 𝑠𝑜 𝑁0𝑒 ≃ 𝑁0 , 

would be an 𝑠Γ subfactor of M. By Theorem (3.2.10), 𝑅𝑢  =  𝑁0𝑒 𝑎𝑛𝑑 𝑡ℎ𝑢𝑠 𝑅 =   𝑁0 which 

contradicts our assumption. 

Next we show that R has a central sequence (𝑥𝑛)𝑛 with 

𝑥𝑛 = (
𝑥𝑛
11 𝑥𝑛

12

𝑥𝑛
21 𝑥𝑛

22), 

such that ‖𝑥𝑛
12‖2 ≥  𝛿 >  0, for all 𝑛 ≥  1. We do this in the following two lemmas. In the 

third lemma we show that in fact there also exists an element 

𝑦 = (
𝑦11 𝑦12

𝑦21 𝑦22
) ∈ 𝑁0, 

such that ‖𝑦21𝑥𝑛
12‖2 ≥  𝑐 >  0, 𝑛 ≥  1. 

Lemma(3.2.16)[104]: 𝑒𝑁0𝑒 ⊄  𝑅𝑢. 

Proof: Let 𝑥 = 𝑥∗ ∈ 𝑁0𝑤𝑖𝑡ℎ 𝑥
𝑙2  ≠  0 . Then the element 𝑥(𝜆(𝑢𝑛)  ⊕  Θ(𝜆(𝑢𝑛))) 𝑥∗  =

 𝑥(𝜆(𝑢𝑛)  ⊕  𝜆(𝑣𝑛)) 𝑥∗ belongs to 𝑁0 and 

x(λ(un)⨁ λ (vn))x∗  =  ( 𝑥
11 𝑥12

𝑥12
∗
𝑥22
) (
𝜆(𝑢𝑛) 0

0 𝜆(𝑣𝑛)
) ( 𝑥

11 𝑥12

𝑥12
∗
𝑥22
) 

= ( 𝑥
11𝜆(𝑢𝑛)𝑥11 + 𝑥12𝜆(𝑣𝑛)𝑥12  ) ∗

∗ ∗
)  

If 𝑒𝑁𝑂𝑒 ⊂  𝑅𝑢 then 𝑥11 ∈ 𝑅 and 𝑥11𝜆(𝑢𝑛) 𝑥11 + 𝑥12𝜆(𝑣𝑛)𝑥12
∗
 ∈  𝑅𝑢 

Since 𝜆(𝑢𝑛)  ∈  𝑅𝑢 we get 𝑥12𝜆(𝑣𝑛)𝑥12
∗
 ∈  𝑅𝑢 for all  𝑛 ∈  ℤ. Thus 

𝑦𝑥12𝜆(𝑣𝑛)𝑥12
∗
𝑦∗ is in 𝑅𝑢 for all 𝑦 ∈  𝑅𝑢, 𝑛 ∈  ℤ. As 𝜆(𝑔)𝑅𝑢𝜆(𝑔

−1) and 

𝐴𝑣 = {𝜆(𝑣)}
′′ are mutually orthogonal subalgebras in M for all 

g ∈  𝔽2, it follows that 𝜆(𝑔)𝑦𝑥12𝐴𝑣𝑥
12∗𝑦∗𝜆(q−1) and 𝐴𝑣  ⊝ ℂ are 

mutually orthogonal linear subspaces in 𝐿2(𝑀, 𝜏), g ∈  𝔽2 So, if 

𝑏1, 𝑏2 ∈  𝐴𝑣  then 𝜏((𝑏2  −  𝑡(𝑏2)) 𝜆(g)𝑦𝑥
12𝑏1𝑥

12∗𝑦∗𝜆(g−1)  =  0 , or 

equivalent𝜏(𝑏2𝜆(g)𝑦𝑥
12𝑏1𝑥

12∗𝑦∗𝜆(g−1) = 𝜏(𝑏2)(𝜆(g)𝑦𝑥
12𝑏1𝑥

12∗𝑦∗𝜆(g−1)).  
In particular if we take an arbitrary 휀 >  0  and a partition of the unity 

𝑒1 , 𝑒2 , . . . , 𝑒𝑚𝑖𝑛 𝐴𝑣𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡  𝜏(𝑒𝑖) < 휀, 𝑚 ≥ 𝑖 ≥ 1 then we have 

𝜏(𝜆(g)𝑦𝑥12𝑒𝑖𝑥
12∗𝑦∗𝜆(g−1)) < 휀‖𝑥12‖2‖𝑦‖2 so that if 𝐴0 denotes the algebra generated by 

𝑒1 . . . , 𝑒𝑚we get 

|𝜏(𝜆(g)𝑦𝑥12|2 ≤ ‖𝐸𝐴0′∩𝑀(𝜆(g)𝑦𝑥
12)‖

2

2
 

= ‖∑𝑒𝑖𝜆(g)𝑦𝑥
12𝑒𝑖

𝑖

‖

2

2

=∑‖𝑒𝑖𝜆(g)𝑦𝑥
12𝑒𝑖‖2

2

𝑖
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=∑𝜏(𝑒𝑖𝜆(g)𝑦𝑥
12𝑒𝑖𝑥

12∗𝑦∗𝜆(g−1))

𝑖

 

< 휀‖𝑥12‖2‖𝑦‖2∑𝜏(𝑒𝑖) = 휀‖𝑥
12‖2‖𝑦‖2

𝑖

 

Thus 𝑡(𝜆(g)𝑦𝑥12)  =  0 for all g ∈  𝔽2, 𝑦 ∈  𝑅𝑢, and if we take 𝑦 ∈ 𝐴 we obtain that 𝑥12 is 

orthogonal to 𝐴𝜆(g) in 𝐿2(𝑀, 𝜏)  for all g ∈ 𝔽2  so that 𝑥12  is orthogonal to M. This is a 

contradiction. 

Lemma(3.2.17)[104]: 𝑁0 has a cent and sequence (𝑥𝑛)𝑛 with ‖𝑥𝑛
12‖2  ≥ 𝛿 >  0, 𝑛 >  1. 

 Proof: If we assume the contrary, then e commutes with 𝑁0
′  ∩  𝑁0

𝜔. Since 𝑁0
′  ∩  𝑁0

𝜔 is a 

type II1 von Neumann algebra it follows that (𝑁0
′  ∩  𝑁0

𝜔.), is also of type II1 Let 𝑀1 be the 

von Neumann algebra generated in M by 𝑒𝑁0𝑒. Then 𝑅𝑢 ⊂ 𝑀1, 𝑀1is a factor (because 𝑀1
′ ∩

𝑀1 ⊂ 𝑀1
′ ∩  𝑀 ⊂  𝑅𝑢

′ ∩  𝑀 = ℂ) and by the preceding lemma 𝑅𝑢 ≠ 𝑀1  as 𝑀1
′ ∩

𝑀1
𝜔contains𝑒(𝑁0

′  ∩  𝑁0
𝜔)e it follows that 𝑀1

′ ∩𝑀1
𝜔 is noncommutative, so that 𝑀1 is an 𝑠Γ 

factor, contradicting Theorem (3.2.10).  

Lemma(3.2.18)[104]: There exists an element 𝑦 ∈  𝑁0, and a central sequence (𝑥𝑛)𝑛 in 𝑁0 

such that ‖𝑦21𝑥𝑛
12‖2  ≥ 𝑐 >  0, 𝑛 ≥  1. 

Proof:  By Lemma (3.2.17) there exists a central sequence (𝑦𝑛)𝑛  such that ‖𝑦𝑛‖ ≤
1, ‖𝑥𝑛

12‖2  ≥ 𝛿 >  0, 𝑛 >  1 . We claim that there exist 𝑐 >  0, 𝑛0  ∈ ℕ and a subsequence 

(𝑦𝑛𝑘
12)

𝑘
𝑜𝑓 (𝑦𝑛

12)𝑛  such that ‖𝑦𝑛0
12∗𝑦𝑛𝑘

12‖
2
≥ 𝑐 >  0 for all 𝑘 ≥ 1. Denote �̃�0 = (𝑦𝑛

12)𝑛  ∈  𝑁0
𝜔 

and assume on the contrary that for any 𝑘 ≥  1 there exists 𝑛𝑘  (𝑤𝑖𝑡ℎ 𝑛𝑘  >  𝑛𝑘−1 such that 

‖𝑥𝑘
12∗𝑥𝑚

12‖
2
< 2−𝑘  for all 𝑚 ≥  𝑛𝑘  Thus �̃�1  = (𝑦𝑛

12)𝑛 ∈ 𝑁0
𝜔 satisfies �̃�0

∗�̃�1 =  0 𝑖𝑛 𝑁0
𝜔 Then 

construct �̃�2  as a subsequence of �̃�1  such that �̃�1
∗�̃�2 =  0. �̃�2  will also satisfy �̃�1

∗�̃�2 =  0 . 

Recursively we get n + 1 elements �̃�0, �̃�1 , . . . , �̃�𝑛  in 𝑁0
𝜔 with�̃�𝑙

∗�̃�𝑗 =  0 𝑖𝑓 𝑖 ≠ 𝑗, ‖�̃�𝑙‖ ≤  1 

and ‖�̃�𝑙‖2 ≥ 𝛿. This is a contradiction if 𝑛 > 𝛿−1.  

End of the proof of Theorem (3.2.15). By Lemma (3.2.18)  there exists a sequence (𝑥𝑛)𝑛in N 

and 𝑦 ∈ 𝑁  such that ‖𝑥𝑛‖  ≤  1, 𝑛 ≥  1, ‖[𝑥𝑛, 𝜆(𝑢)⨁𝜆(𝑣)]‖2 →  0, ‖𝑥𝑛, 𝑦‖2 → 0  and 

‖𝑦21𝑥𝑛
12‖2 ≥ 𝑐 > 0, 𝑛 ≥ 1 It follows that: 

‖𝜆(𝑢𝑘)𝑥𝑛
11𝜆(𝑢−𝑘) − 𝑥𝑛

11‖
2
→ 0‖𝜆(𝑣𝑘)𝑥𝑛

22𝜆(𝑣−𝑘) − 𝑥𝑛
22‖

2
→ 0  

‖𝜆(𝑣𝑘)𝑥𝑛
21𝜆(𝑢−𝑘) − 𝑥𝑛

21‖
2
→ 0‖𝜆(𝑢𝑘)𝑥𝑛

12𝜆(𝑣−𝑘) − 𝑥𝑛
12‖

2
→ 0 for all 𝑘 ∈ ℤ            (1) 

‖𝑦22𝑥𝑛
22 + 𝑦21𝑥𝑛

12 − 𝑥𝑛
22𝑦22 − 𝑥𝑛

21𝑦12‖2 →𝑛 0.                   (2) 
We shall use from now on. Similar computations as in the proof of Lemma (3.2.4) will show 

that the element 𝑦21𝑥𝑛
12 makes it impossible for (2) to hold. So let 휀 >  0 by the Kaplansky 

density theorem there exist 𝑦0
∪ ∈  𝔽  (polynomials in 𝔽2with coefficients in A) such that 

‖𝑦∪ − 𝑦0
∪‖2  < 휀, ‖𝑦0

∪‖ ≤  ‖𝑦∪‖. 𝐿𝑒𝑡 𝑁0  −  1 be the maximal length of a word appearing in 

the supports of 𝑦0
∪, 1 ≤  𝑖, 𝑗 ≤  2. 𝐿𝑒𝑡 𝑁1  be a multiple of 4𝑁0 , such that 𝑁1  >

 3휀−2 𝑁0. 𝐿𝑒𝑡 𝑛1  =  𝑛1(휀, 𝑁1) be such that for 𝑛 ≥ 𝑛1 we have: 

‖𝜆(𝑢𝑘)𝑥𝑛
21𝜆(𝑢−𝑘) − 𝑥𝑛

11‖
2
 < 휀, ‖𝜆(𝑣𝑘)𝑥𝑛

22𝜆(𝑣−𝑘) − 𝑥𝑛
22‖

2
 <  휀, 

‖𝜆(𝑢𝑘)𝑥𝑛
12𝜆(𝑣−𝑘) − 𝑥𝑛

12‖
2
 < 휀, 

‖𝜆(𝑣𝑘)𝑥𝑛
21𝜆(𝑢−𝑘) − 𝑥𝑛

21‖
2
 < 휀 for |𝑘| ≤ 𝑁1                       (3) 

𝑙𝑖𝑚 𝑠𝑢𝑝𝑛‖𝑦0
22𝑥𝑛

22 + 𝑦0
21𝑥𝑛

12 − 𝑥𝑛
22𝑦0

22 − 𝑥𝑛
21𝑦0

12‖2 ≤ 휀              (4) 
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Note that we also have ‖𝑦0
21𝑥𝑛

12‖2 ≥  𝑐 −  휀. 
Let 𝑇0

1 = {g  ∈⋮  𝔽2 |gbegins with a power of 𝑢  not larger in absolute value than 

2𝑁0 −  1 }, 𝑇0
1 = {g  ∈⋮  𝔽2 |g ends with a power of 𝑣 not larger in absolute value than 2𝑁0 −

 1 }, 𝑇0 = 𝑇0
1 ∪ 𝑇0

2  We show first that ‖(𝑥𝑛
12)𝑇0‖2

<  3휀 . ‘Indeed, we have that 

{𝑢4𝑁0𝑘𝑇0
1𝑣4𝑁0𝑘}𝑘∈𝑧 are disjoint sets and for 4𝑁0|𝑘| ≤ 𝑁1, we get 

‖𝜆(𝑢4𝑁0𝑘)(𝑥𝑛
12)𝑇01𝜆(𝑣

4𝑁0𝑘) − (𝑥𝑛
12)

𝑢4𝑁0𝑘𝑇0
1−4𝑁0𝑘‖

2

= ‖𝜆(𝑢4𝑁0𝑘)𝑥𝑛
12𝜆(𝑣4𝑁0𝑘) − 𝑥𝑛

12)
𝑢
4𝑁0𝑘

𝑇0
1−4𝑁0𝑘

‖
2

≤ ‖𝜆(𝑢4𝑁0𝑘)𝑥𝑛
12𝜆(𝑣4𝑁0𝑘) − 𝑥𝑛

12‖
2
< 휀 

Using the parallelogram identity and summing up over all |𝑘| ≤  (4𝑁0)
−1𝑁1, 𝑘 ≠  0, we get 

2(4𝑁0)
−1𝑁1‖(𝑥𝑛

12)𝑇01‖2
2

≤ 2∑ ‖𝜆(𝑢4𝑁0𝑘)(𝑥𝑛
12)𝑇01𝜆(𝑣

−4𝑁0𝑘) − (𝑥𝑛
12)𝑢4𝑁0𝑘𝑇01𝑣−4𝑁0𝑘‖2

2

𝑘

+ 2‖∑(𝑥𝑛
12)

𝑢4𝑁0𝑘𝑇0
1−4𝑁0𝑘

𝑘

‖

2

2

≤ 2(4𝑁0)
−1𝑁1휀

2 + 2‖𝑥𝑛
12‖2

2 

so that‖(𝑥𝑛
12)𝑇01‖2

2
 < 휀2  +  휀2; similarly‖(𝑥𝑛

12)𝑇01‖2
2
 < 2휀2 and thus 

‖(𝑥𝑛
12)𝑇0‖2

 ≤ ‖(𝑥𝑛
12)𝑇01‖2

 + ‖(𝑥𝑛
12)𝑇02‖2

 < 3휀 

Let 𝑇1 = 𝔽2\𝑇0  and 𝑇 =  𝑈 { g𝑇1 |g ∈ 𝔽2 has a length not larger than 𝑁0 −  1} . Clearly 

𝑦0
21𝑥𝑛

12 = 𝑦𝑛
21(𝑥𝑛

12)𝑇1  + 𝑥0
21(𝑥𝑛

12)𝑇0 and 𝑦0
21(𝑥𝑛

12)𝑇1 = (𝑦0
21(𝑥𝑛

12)𝑇1)𝑇
, so that  

‖(𝑦0
21𝑥𝑛

12)𝑇‖2 ≥ ‖𝑦0
21(𝑥𝑛

12)𝑇1‖2
− ‖𝑦0

21(𝑥𝑛
12)𝑇0‖2

≥ ‖𝑦0
21𝑥𝑛

12‖2 − 2‖𝑦0
21(𝑥𝑛

12)𝑇0‖2
≥ ‖𝑦0

21𝑥𝑛
12‖2 − 6휀‖𝑦

21‖ 

In particular we have ‖𝑦0
21𝑥𝑛

12‖𝑇 ≥  𝑐 −  휀 −  6휀 ‖𝑦
21‖. To get a contradiction from this 

inequality and (4) it will be sufficient to show that  𝑦0
22𝑥𝑛

22, 𝑥𝑛
22𝑦0

22, 𝑥0
21𝑦0

12 have small norms 

on the set T. This is easy to see for 𝑥0
21𝑦0

12, since by the same computation as for 𝑦0
21𝑥𝑛

12 its 

norm is concentrated on 𝑇−1 and 𝑇 ∩ 𝑇−1  = 𝜙. 

The other two elements in (4) can be treated in the same way, so let us do it for 

‖(𝑦0
22𝑥𝑛

22)𝑇‖2. Denote as in Lemma (3.2.4) , 𝑆, =  {𝑣𝑘|𝑘 ∈  ℤ}, 𝑆1 = {g ∈  𝔽2|g begins and 

ends with powers of v greater than 2𝑁0  −  1 in modulus}, 𝑆0 = (𝔽2\𝑆𝑣)\𝑆1. As in the proof 

of Lemma (3.2.4), we may suppose that 𝑛1 is such that ‖(𝑥𝑛
22)𝑆0‖2

3휀, for all 𝑛 ≥ 𝑛1 For any 

g ∈  𝔽2 , of length not larger than 𝑁0  −  1, we have g𝑆1 ∩  𝑇 = 𝜙, g𝑆𝑣 ∩  𝑇 = 𝜙 . Indeed 

because in the first 2𝑁0 letters of a word in T there are more u’s than u’s, while a word in g𝑆1 

or in g𝑆𝑣 is in the opposite situation, and also because any word in T has more than 3𝑁0 
letters, with some nonzero power of v at the end. It follows that 

‖(𝑦0
22𝑥𝑛

22)𝑇‖2 ≤ ‖𝑦0
22(𝑥𝑛

22)𝑆0‖2
≤ ‖𝑦22‖. ‖(𝑥𝑛

22)𝑆0‖2
. 

We have thus obtained that for 𝑛 ≥  𝑛1, 
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‖𝑦0
22𝑥𝑛

22 + 𝑦0
21𝑥𝑛

12 − 𝑥𝑛
22𝑦0

22 − 𝑥𝑛
21𝑦0

12‖2
≥ ‖(𝑦0

22𝑥𝑛
22)𝑇 + (𝑦0

21𝑥𝑛
12)𝑇 − (𝑥𝑛

22𝑦0
22)𝑇 − (𝑥𝑛

21𝑦0
12)𝑇‖2

≥ ‖(𝑦0
21𝑥𝑛

12)𝑇‖2 − ‖(𝑦0
22𝑥𝑛

22)𝑇‖2 − ‖(𝑥𝑛
22𝑦0

22)𝑇‖2 − ‖(𝑥𝑛
21𝑦0

12)𝑇‖2
≥ 𝑐 − 휀 − 6휀‖𝑦21‖ − 3휀‖𝑦22‖ − 3휀‖𝑦22‖ − 3휀‖𝑦12‖ 

So, if 휀 is small enough this is in contradiction with (4). Hence our initial assumption on the 

existence of an 𝑠Γ subfactor 𝑁0 of N such that 𝑅 ⊂  𝑁0, 𝑅 ≠ 𝑁0 lead to a contradiction. It 

follows that R is a maximal 𝑠Γ subfactor in N.  

Examples (3.2.19)[104]: (i) A maximal hyperfinite subfactor -with noncommutative relative 

commutant can be constructed as follows: Let’ Θ, 𝑅𝑢, 𝑀 be as in Theorem (3.2.15) and denote 

𝑁 =  𝑀3(𝑀) the 3 by 3 matrix algebra over 𝑀,𝑅 =  {𝑥 ⊕  𝑥 ⊕  Θ(𝑥)|𝑥 ∈  𝑅𝑢}. Then R is 

maximal hyperfiite in N (in fact it is maximal 𝑠Γ) and 𝑅′ ∩  𝑁 ≃  𝑀2(ℂ) ⨁ ℂ. 

(ii) A more general -example than Theorem (3.2.15), is the following: Let 𝔽𝑛be the free 

group with n generators, that we denote by’ 𝑢1 , 𝑢𝑛, . . . , 𝑢𝑛 (∞ >  𝑛 ≥  2) and suppose 𝔽𝑛 

acts freely and ,ergodically by measure preserving transformations on the nonatomic 

probability measure space (𝑋, 𝜇). As in Theorem (3.2.15), denote 𝐴 = 𝐿∞(𝑋, 𝜇),𝑀 = 𝐴 ×
𝐹𝑛, 𝑅1 = 𝐴 ×𝑢1 ℤand by 𝜆(g), g ∈  𝔽𝑛 the unitaries in M canonically implementing the action 

of 𝔽𝑛 𝑜𝑛 𝐴 . Suppose there exists an automorphism Θ ∈  𝐴𝑢𝑡(𝑀)  such that Θ(𝐴) =
 𝐴, Θ(𝑢1) =  𝑢𝑖+1𝑛 − 1 ≥ 𝑖 ≥ 1  and let 𝑁 = 𝑀𝑛(𝑀), 𝑅 = {𝑥⨁Θ(𝑥)⨁… ⨁Θ

𝑛−1(𝑥)|𝑥 ∈
𝑅1}. 

Then R is a maximal hyperiinite subfactor of N (in fact a maximal 𝑠Γ subfactor) and 

𝑅′  ∩  𝑁 ≃ 𝐶𝑛. 

In both examples (i) and (ii) it follows by Examples (3.2.11) , (i), (ii) that M and N can 

be chosen either non Γ or 𝑤Γ. 

The proofs of Examples (3.2.19), (i) and (ii), aside from some ‘obvious modifications, 

follow step by step the proof of Theorem (3.2.15). So we have in  conclusion: 

Theorem (3.2.20)[104]: (i) For any 𝑛 ≥  2 there exist type II1wΓ and non Γfactors M with 

maximal hypeflnite subfactors R such that 𝑅′ ∩  𝑀 ≃ ℂ1. 
(ii) There exist II1wΓ  and non Γ factors with maximal hypflnite subfactors having 

noncommutative reliitive cornmutant. 

The above theorem and Theorem (3.2.13) show that a first invariant to consider for the 

classification (up to conjugation by automorphisms) of the maximal hyper- finite subfactors 

of a type II1 factor M is the type of their relative cornmutant in M. 

 

Corollary (3.2.21)[260]: Let 𝐵𝑟 , 𝐵𝑟+1 be von Neumann subalgebras of M and suppose that 

the group 𝑢 =  {𝑤𝑟−2  unitary in 𝐵𝑟−2𝑤𝑟−2[𝐵𝑟+1𝑤𝑟−2
∗ = 𝐵𝑟+1] generates 𝐵𝑟  then 𝐸𝐵𝑟+1′  ∘

 𝐸𝐵𝑟′∩𝑀  =  𝐸𝐵𝑟′∩𝑀  ∘  𝐸𝐵𝑟+1  =  𝐸𝐵𝑟′∩𝑀2. 

Proof: For 𝑥 ∈ 𝑀 , let  𝐾𝑋 = 𝑐𝑜̅̅ ̅
𝑤𝑟−2{𝑢𝑥𝑢∗|𝑢  unitary in 𝑈}.  Then 𝐾𝑥  is a convex weakly 

compact subset of M and by the inferior semicontinuity of the application  𝑥 → 𝑡 ‖𝑥‖2  it 

follows that there exists 𝐸(𝑥)  ∈  𝐾𝑥, such that ‖𝐸(𝑥)‖2 = inf  {‖𝑦‖2 𝑦 ∈  𝐾𝑥}. Since ∥   ∥2is 

a Hilbert norm and 𝐾𝑥 is convex it follows that 𝐸(𝑥)is the unique element in 𝐾𝑥, with this 

property. Moreover, since 𝒰𝑟−2  is a group, 𝑤𝑟−2𝐸(𝑥)𝑤𝑟−2
∗ ∈  𝐾𝑥  for all 𝑤𝑟−2  in 𝒰𝑟−2  and 

‖𝑤𝑟−2𝐸(𝑥)𝑤𝑟−2
∗ ‖2 = ‖𝐸(𝑥)‖2  so that 𝑤𝑟−2𝐸(𝑥)𝑤𝑟−2

∗  =  𝐸(𝑥) . Consequently 𝐸(𝑥) ∈
𝒰𝑟−2
′ ∩𝑀 = 𝐵𝑟

′ ∩  𝑀 and E is a well-defined function from M to 𝐵𝑟
′ ∩  𝑀 . If 𝑥 ∈ 𝐵𝑟

′ ∩  𝑀 
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then clearly K𝑥 = {x} so that E(x)  =  x. If 𝑥 ∈  𝑀 is orthogonal to 𝐵𝑟
′  ∩  𝑀 (as an element 

in 𝐿2(𝑀, 𝜏))  then the set K𝑥  is orthogonal to 𝐵𝑟
′  ∩  𝑀  (since 𝑤𝑟−2𝑥𝑤𝑟−2

∗  is orthogonal to 

𝐵𝑟
′  ∩  𝑀 for all unitaries 𝑤𝑟−2  ∈ 𝒰𝑟−2 ). This means that 𝐸(𝑥)  =  0. It follows that E(x) is 

the orthogonal projection of x onto 𝐵𝑟
′  ∩  𝑀 that is,  𝐸(𝑥) =  𝐸𝐵𝑟′  ∩ 𝑀(𝑥). 

 Now, for 𝑥 ∈ 𝐵𝑟+1 we get 𝑤𝑟−2𝑥𝑤𝑟−2
∗ ∈  𝐵𝑟+1 for all 𝑤𝑟−2  ∈  𝒰𝑟−2 so that  𝐾𝑥 ⊂  𝐵𝑟+𝑥−1, 

and thus 𝐸𝐵𝑟′  ∩ 𝑀(𝑥) ∈ 𝐵𝑟+1 . Since we also have 𝐸𝐵𝑟′  ∩ 𝑀(𝑥) ∈ 𝐵𝑟
′  ∩  𝑀  we get 

𝐸𝐵𝑟′  ∩ 𝑀(𝐵𝑟+1
′ ) ⊂ 𝐵𝑟

′  ∩ 𝐵𝑟+1 . So, if p and q denote the extensions of 𝐸𝐵𝑟′  ∩ 𝑀  and, 

respectively, 𝐸𝐵𝑟+1  to 𝐿2(𝑀, 𝜏) then the left suppot of 𝑝𝑞  is equal to 𝑝⋀ 𝑞. It follows that 

𝑝𝑞 =  𝑝 ⋀ 𝑞 =  𝑞𝑝. 
Corollary (3.2.22)[260]: 𝑁𝑟−1  has a cent and sequence (𝑥1+𝜖)1+𝜖  with ‖𝑥1+𝜖

12 ‖2  ≥ 𝛿 > 0, 

𝜖 > 0. 

 Proof: If we assume the contrary, then 𝑒 commutes with 𝑁𝑟−1
′  ∩  𝑁𝑟−1

𝜔 . Since 𝑁𝑟−1
′  ∩  𝑁𝑟−1

𝜔  

is a type II1 von Neumann algebra it follows that (𝑁𝑟−1
′  ∩  𝑁𝑟−1

𝜔 .), is also of type II1 Let 𝑀𝑟 
be the von Neumann algebra generated in 𝑀𝑟−2 by 𝑒𝑁𝑟−1𝑒. Then 𝑅𝑢𝑟−2 ⊂ 𝑀𝑟 ,𝑀𝑟 is a factor 

(because 𝑀𝑟
′ ∩𝑀𝑟 ⊂ 𝑀𝑟

′ ∩ 𝑀𝑟−2  ⊂  𝑅𝑢𝑟−2
′ ∩ 𝑀𝑟−2 = ℂ) and by the preceding lemma 

𝑅𝑢𝑟−2 ≠ 𝑀𝑟  as 𝑀𝑟
′ ∩𝑀𝑟

𝜔  contains 𝑒(𝑁𝑟−1
′  ∩  𝑁𝑟−1

𝜔 ) e it follows that 𝑀𝑟
′ ∩𝑀𝑟

𝜔  is 

noncommutative, so that 𝑀𝑟 is an 𝑠Γ factor, contradicting Theorem (3.2.10).   
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Chapter 4 

Quasi-regular and Induced Representations of the Infinite-Dimensional Nilpotent 

Group 

 

We show that construction uses the infinite tensor product of arbitrary Gaussian 

measures in the spaces ℝ𝑚 with 𝑚 > 1 extending in a rather subtle way for the infinite tensor 

product of one-dimensional Gaussian measures. It depends on two completions H̃ and G̃ of 

the subgroup H and the group G, on an extension  S̃ ∶  H̃  →  U(V ) of the representation S : H 

→ U(V ) and on a choice of the G-quasi-invariant measure μ on an appropriate completion 

X̃  =  H ̃\G̃  of the space H\G. We consider the “nilpotent” group B0
ℤ  of infinite in both 

directions upper triangular matrices and the induced representation corresponding to the so-

called generic orbits. 

Section (4.1): Infinite-Dimensional Nilpotent Group  

For (𝑋, 𝐵) be a measurable space and let Aut(X) denote the group of all measurable 

automorphisms of the space X. With any measurable action α :G → Aut(X) of a group* G on 

the space X and a G-quasi-invariant measure 𝜇 𝑜𝑛 𝑋  one can associate a unitary 

representation 𝜋𝛼,𝜇,𝑋 ∶ 𝐺 →  𝑈(𝐿2(𝑋, 𝜇)), of the group G by the formula (𝜋𝑡
𝛼,𝜇,𝑋

 𝑓 )(𝑥)  =

(𝑑𝜇(𝛼𝑡−1(𝑥))/𝑑𝜇(𝑥))
1/2𝑓 (𝛼𝑡−1(𝑥)), 𝑓 ∈  𝐿

2(𝑋, 𝜇). Let us set 𝛼(𝐺) = {𝛼𝑡  ∈  𝐴𝑢𝑡(𝑋) | 𝑡 ∈
𝐺} . Let 𝛼(𝐺)′  be the centralizer of the subgroup 𝛼(𝐺)  in 𝐴𝑢𝑡(𝑋): 𝛼(𝐺)′  =  {𝑔 ∈
 𝐴𝑢𝑡(𝑋) | {𝑔, 𝛼𝑡}  = 𝑔𝛼𝑡𝑔

−1𝛼𝑡
−1 =  𝑒 ∀𝑡 ∈  𝐺}. The following conjecture has been discussed 

in [146]–[148]. 

Conjecture (4.1.1)[123]: The representation 𝜋𝛼,𝜇,𝑋 ∶ 𝐺 → 𝑈(𝐿2(𝑋, 𝜇)) is irreducible if and 

only if : 

(i) 𝜇g  ⊥  𝜇 ∀g ∈  𝛼(𝐺)′ \ {𝑒} (where ⊥ stands for singular), 

(ii) the measure μ is G-ergodic. 

We recall that a measure μ is G-ergodic if 𝑓 (𝛼𝑡 (𝑥))  =  𝑓 (𝑥) ∀𝑡 ∈  𝐺  implies 𝑓(𝑥) =
𝑐𝑜𝑛𝑠𝑡 𝜇 a.e. for all functions 𝑓 ∈  𝐿1(𝑋, 𝜇). 

We shall show Conjecture (4.1.1) in the case where G is the infinite-dimensional 

nilpotent group 𝐺 =  𝐵0
ℕ of finite upper-triangular matrices of infinite order with unities on 

the diagonal, the space 𝑋 =  𝑋𝑚  being the set of left cosets 𝐺𝑚 \ 𝐵
ℕ, 𝐺𝑚  being suitable 

subgroups of the group 𝐵ℕ of all upper-triangular matrices of infinite order with unities on 

the diagonal, and μ an infinite tensor product of Gaussian measures on the spaces ℝ𝑚 with 

some fixed 𝑚 > 1. 

A more detailed explanation of the concepts used here is given in the following. 

Let G be a locally compact group. The right 𝜌 (𝑟𝑒𝑠𝑝𝑒𝑐𝑡𝑖𝑣𝑒𝑙𝑦 𝑙𝑒𝑓𝑡 𝜆) regular 

representation of the group G is a particular case of the representation 𝜋𝛼,𝜇,𝑋 with the space X 

= G, the action α being the right action α = R (respectively the left action α = L), and the 

measure μ being the right invariant Haar measure on the group G (see, [131], [139], [140], 

[160]). 

A quasiregular representation of a locally compact group G is also a particular case of 

the representation 𝜋𝛼,𝜇,𝑋  (see, for example, [160]) with the space X = H \ G, where H is a 

subgroup of the group G, the action α being the right action of the group G on the space X 

and the measure μ being some quasi-invariant measure on the space X (this measure is unique 
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up to a scalar multiple). We remark that in [139], [140] this representation has also been 

called geometric representation. 

We will consider the approach which deals with analogs for infinite dimensional 

groups of the regular and quasiregular representations of finite-dimensional groups. 

Let G be an infinite-dimensional topological group. To define an analog of the regular 

representation, let us consider some topological group �̃�, containing the initial group G as a 

dense subgroup, i.e. �̅�  =  �̃� (�̅�  being the closure of G). Suppose we have some quasi-

invariant measure μ on 𝑋 = �̃�  with respect to the right action of the group 𝐺, 𝑖. 𝑒. 𝛼 =

 𝑅, 𝑅𝑡 (𝑥)  =  𝑥𝑡
−1 . In this case we shall call the representation 𝜋𝛼,𝜇,�̃�  an analog of the 

regular representation. We shall denote this representation by 𝑇𝑅,𝜇, and the Conjecture (4.1.1) 

is reduced to the following Ismagilov conjecture. 

Conjecture(4.1.2)[123]:(Ismagilov,1985) The right regular representation 𝑇𝑅,𝜇  ∶ 𝐺 →
𝑈(𝐿2(�̃�, 𝜇)) is irreducible if and only if : 

(i) 𝜇  ⊥  𝜇 ∀𝑡 ∈  𝐺\ {𝑒}, 
(ii) the measure μ is G-ergodic. 

The work [145] initiated the study of representations of current groups, i.e. groups 

𝐶(𝑋, 𝑈) of continuous mappings 𝑋 → 𝑈, where X is a finite-dimensional Riemannian 

manifold and U is a finite-dimensional Lie group. 

The regular representation of infinite-dimensional groups, in the case of current 

groups, was studied firstly in [124], [127], [128], [137] (see [129]). An analog of the regular 

representation for an arbitrary infinite-dimensional group G, using a G-quasi-invariant 

measure on some completion �̃� of such a group, is defined in [141], [143]. 

For 𝑋 =  𝑆1, 𝑈 a compact or non-compact connected Lie group,Wiener measures on the loop 

groups �̌�  =  𝐶(𝑋, 𝑈)  were constructed and their quasi-invariance were showd in [124], 

[127], [129], [151], [155]. 

Conjecture (4.1.2) was formulated by R.S. Ismagilov for the group 𝐺 =  𝐵0
ℕ and the 

measure μ being the product of arbitrary one-dimensional centered Gaussian measures on the 

group �̃�  =  𝐵ℕ and was showd for this case in [141], [142]. 

The first result in this direction was showd in [156]. For the complex infinite-dimensional 

Borel group 𝐵𝑜𝑟0
𝑐,ℕ

 and the standard Gaussian measure on its completion 𝐵𝑜𝑟𝑐,ℕ the 

irreducibility of the corresponding regular representation was showd there. Here Borc,N 0 

(respectively Borc,N) is the group of matrices of the form x = exp t +s where t is a diagonal 

matrix with a finite number of nonzero real elements (respectively arbitrary real elements) 

and s is a finite (respectively arbitrary) complex strictly upper-triangular matrix. 

For the product of arbitrary one-dimensional measures on the group BN Conjecture(4.1.2) 

was showd in [144] under some technical assumptions on the measure. 

In [143] Conjecture(4.1.2) was showd for the groups of the interval and circle 

diffeomorphisms. For the group of the interval diffeomorphisms the Shavgulidze measure 

[158] was used, the image of the classical Wiener measure with respect to some bijection. For 

the group of circle diffeomorphisms the Malliavin measure [153] was used. 

Whether Conjecture(4.1.2) holds in the general case is an open problem. 

In [148] it was shown that Conjecture(4.1.1) holds for the inductive limit 𝐺 =
 𝑆𝐿0(2

∞, ℝ)  = lim
→𝑛
𝑆𝐿(2𝑛−1, ℝ) , of the special linear groups (simple groups) acting on a 
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strip of length 𝑚 ∈  𝑁 in the space of real matrices which are infinite in both directions, the 

measure μ being a product Gaussian measure. 

Let us consider the special case of a G-space, namely the homogeneous space 𝑋 =
 𝐻 \ �̌�, where H is a subgroup of the group �̃� 𝑎𝑛𝑑 𝜇 is some quasi-invariant measure on X (if 

it exists) with respect to the right action R of the group G on the homogeneous space 𝐻 \ �̃�. 

In this case we call the corresponding representation 𝜋𝑅,𝜇,𝐻\�̃� an analog of the quasiregular or 

geometric representation of the group G (see [145]). 

In [125] Conjecture (4.1.1)was showd for the solvable infinite-dimensional real Borel 

group 𝐺 = 𝐵𝑜𝑟0
ℕ  acting on G-spaces 𝑋𝑚, 𝑚 ∈  𝑁,  where 𝑋𝑚  is the set of left cosets 

𝐺𝑚 \ 𝐵𝑜𝑟
ℕ, 𝑎𝑛𝑑 𝐺𝑚 is some subgroups of the group 𝐵𝑜𝑟ℕof all upper-triangular matrices of 

infinite order with non zero elements on the diagonal. The measure 𝜇 𝑜𝑛 𝑋𝑚 is the product of 

infinitely many onedimensional Gaussian measures on ℝ. 

In [146], [147] Conjecture (4.1.1) was showd for the nilpotent group 𝐺 = 𝐵0
ℕ and some 

G-spaces 𝑋𝑚, 𝑚 ∈  ℕ, being the set of left cosets 𝐺𝑚\𝐵ℕ, where 𝐺𝑚 are some subgroups of 

the group 𝐵ℕ. Here the measure 𝜇 𝑜𝑛 𝑋𝑚 is the infinite product of arbitrary one-dimensional 

Gaussian measures on R. In this case the variables 𝑥𝑝𝑞 , 1 ≤ 𝑝 ≤ 𝑞 ≤  𝑚,  can be 

approximated by linear combinations of the expressions 𝐴𝑝𝑛𝐴𝑞𝑛, 𝑞 < 𝑛,  where 𝐴𝑘𝑛  are 

generators of one-parameter groups exp(𝑡𝐸𝑘𝑛), 𝑘 < 𝑛, 𝑡 ∈ ℝ. 
In [126], using results of [144], we extended the results of [145]–[146] to the case of an 

infinite tensor product of one-dimensional non-Gaussian (general) measures. 

We generalize results of [145]–[147] in another direction. Namely we show 

Conjecture(4.1.1) for the same nilpotent infinite-dimensional group 𝐺 =  𝐵0
ℕ and the same 

G-spaces 𝑋𝑚, 𝑚 ∈  ℕ, but with a measure μ which is the infinite tensor product of arbitrary 

centered Gaussian measures on ℝ𝑚 , for any arbitrary fixed 𝑚 ∈  𝑁.  More precisely, the 

measure μ on 𝑋𝑚 ≃ ℝ1  ×  ℝ2  ×· · ·× ℝ𝑚−1 × ℝ𝑚  ×  ℝ𝑚  ×· · ·  is the infinite tensor 

product of arbitrary 

Gaussian centered measures: 

𝜇 =  𝜇𝐵
𝑚 =⨂ 

∞

𝑛=2

 𝜇𝐵(𝑛)  , 

where 𝜇𝐵(𝑛)  is a Gaussian measure on the space ℝ𝑛−1 𝑓𝑜𝑟 2 ≤ 𝑛 ≤  𝑚  and 𝜇𝐵(𝑛)  is a 

Gaussian measure on the space ℝ𝑚 for 𝑛 >  𝑚. In this case for the approximation of the 

variables 𝑥𝑝𝑞  , 1 ≤ 𝑝 ≤ 𝑞 ≤  𝑚,  we also use the commutative family of the generators 

𝐴𝑘𝑛, 1 ≤  𝑘 ≤ 𝑚 < 𝑛, but the corresponding expressions are much more complicated. In fact 

the extensions of [145]–[147] to the present case are not at all simple, the above expressions 

are no longer polynomials in the generators 𝐴𝑘𝑛 they rather involve, next to the generators, 

also the one-parameter groups 

𝑇𝑒𝑥𝑝(𝑡𝐸𝑘𝑛)
𝑅,𝜇𝐵

𝑚

=  𝑒𝑥𝑝(𝑡𝐴𝑘𝑛), 𝑡 ∈ ℝ, 

their derivatives and very special suitable chosen combinations that allow to approximate in 

an appropriate way the variables involved (see Lemmas  (4.1.12)and (4.1.15) 

Let us consider the group �̃�  =  𝐵ℕ of all upper-triangular real matrices of infinite order with 

unities on the diagonal 
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�̃�  =  𝐵ℕ  = {𝐼 + 𝑥|𝑥  = ∑ 𝑥𝑘𝑛𝐸𝑘𝑛
1≤𝑘<𝑛

} , 

and its subgroup 

𝐺 =  𝐵0
ℕ =  𝐼 + 𝑥 ∈  𝐵ℕ | 𝑥 𝑖𝑠 𝑓𝑖𝑛𝑖𝑡𝑒, 

where 𝐸𝑘𝑛  is an infinite-dimensional matrix with 1 at the place 𝑘, 𝑛 ∈  ℕ  and zeros 

elsewhere , 𝑥 =  (𝑥𝑘𝑛)𝑘<𝑛  is finite means that 𝑥𝑘𝑛  =  0  for all (k, n) except for a finite 

number of indices 𝑘, 𝑛. 

Obviously, 𝐵0
ℕ = lim

⟶𝑛
𝐵(𝑛, ℝ)  is the inductive limit of the group 𝐵(𝑛,ℝ) of real 

uppertriangular matrices with units on the principal diagonal 

𝐵(𝑛,ℝ)  = {𝐼 + ∑ 𝑥𝑘𝑟𝐸𝑘𝑟|𝑥𝑘𝑟 ∈ ℝ

1≤𝑘≤𝑟≤𝑛

} 

with respect to the natural imbedding 𝐵(𝑛,ℝ)  ⊂  𝐵(𝑛 +  1,ℝ). 𝐹𝑜𝑟 𝑚 ∈  ℕ we also define 

the subgroups 𝐺𝑚, respectively 𝐺𝑚, of the group 𝐵ℕ as follows: 

𝐺𝑚  = {𝐼 + 𝑥 ∈ 𝐵
ℕ |𝑥 = ∑ 𝑥𝑘𝑛𝐸𝑘𝑛

𝑚<𝑘<𝑛

} , 

𝐺𝑚  = {𝐼 + 𝑥 ∈ 𝐵ℕ |𝑥 = ∑ 𝑥𝑘𝑛𝐸𝑘𝑛
1≤𝑘≤𝑚,𝑘<𝑛

} . 

Since 𝐵ℕ = 𝐺𝑚  · 𝐺
𝑚 the space  𝑋𝑚 of left cosets 𝑋𝑚  =  𝐺𝑚 \𝐵

ℕ is isomorphic to the group 

𝐺𝑚. We use the notation 𝐺𝑚  ≃ 𝐺𝑚. By construction, the right action R of the group G is well 

defined on the space 𝑋𝑚. More precisely if we define the decomposition 𝑥 =  𝑥𝑚 ·  𝑥
𝑚: 

𝐵ℕ ∋ 𝑥 ↦ 𝑥𝑚  ·  𝑥
𝑚  ∈  𝐺𝑚  · 𝐺

𝑚, 
the right action R of the group 𝐵0

ℕ on the space 𝑋𝑚 is defined as follows: 

𝑅𝑡 (𝑥
𝑚) = (𝑥𝑚𝑡−1)𝑚, 𝑥𝑚  ∈  𝐺𝑚, 𝑡 ∈  𝐵0

ℕ. 
Define the measure 𝜇𝑚 ∶=  𝜇𝐵

𝑚 on the space 𝑋𝑚  ≃ 𝐺𝑚 

𝑋𝑚  ≃  ℝ1 ×ℝ2  ×· · ·× 𝑅𝑚−1  × ℝ𝑚  × ℝ𝑚  ×· · · 
by the formula 𝜇𝐵

𝑚  = ⨂  ∞
𝑛=2  𝜇𝐵(𝑛)  , where 𝜇𝐵(𝑛) is the Gaussian measure on the space ℝ𝑚 for 

𝑛 > 𝑚 (respectively on the space ℝ𝑛−1 for 2 ≤ 𝑛 ≤  𝑚) defined by  

𝑑𝜇𝐵(𝑛)(𝑥)  =  
1

√(2𝜋)𝑚 𝑑𝑒𝑡𝐵(𝑛)
 𝑒𝑥𝑝 (−

1

2
((𝐵(𝑛))

−1
𝑥, 𝑥))𝑑𝑥 

= √
𝑑𝑒𝑡𝐶(𝑛)

(2𝜋)𝑚
𝑒𝑥𝑝 (−

1

2
(𝐶(𝑛)𝑥, 𝑥))𝑑𝑥                                             (1) 

where 𝐵(𝑛)  are positive-definite operators in the space ℝ𝑚 (𝑜𝑟 ℝ𝑛−1), 𝑥 =
 (𝑥1𝑛, 𝑥2𝑛, . . . , 𝑥𝑚𝑛), 𝑑𝑥 is a Lebesgue measure on ℝ𝑚 𝑎𝑛𝑑 𝐶(𝑛)  =  (𝐵(𝑛))−1. 

Lemma(4.1.3)[123]: For the measure 𝜇𝐵
𝑚 we have 

(𝜇𝐵
𝑚)𝑅𝑡  ∼  𝜇𝐵

𝑚, ∀𝑡 ∈  𝐵0
ℕ 

(with ∼ meaning equivalence). 
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Proof: The right action 𝑅𝑡 for 𝑡 ∈  𝐵0
ℕ changes linearly only a finite number of coordinates 

of the point 𝑥 ∈  𝑋𝑚.  
Now we can define the representation associated with the right action 

𝑇𝑅,𝜇𝐵
𝑚
  ∶ 𝐵0

ℕ → 𝑈 (𝐿2 (𝑋𝑚, 𝜇𝐵
𝑚)) 

in the natural way, i.e. 

(𝑇𝑡
𝑅,𝜇𝐵

𝑚

 𝑓) (𝑥)  = (𝑑𝜇𝐵
𝑚(𝑅𝑡

−1 (𝑥))/𝑑𝜇𝐵
𝑚(𝑥))

1/2
𝑓(𝑅𝑡

−1 (𝑥)) . 

Lemma(4.1.4)[123]: The measure 𝜇𝐵
𝑚 on the space 𝑋𝑚 is ergodic with respect to the right 

action 𝑅 of the group 𝐵0
ℕ on the space 𝑋𝑚. 

Proof: It is well known that any measurable function on ℝ∞ = ℝ ×  ℝ ×· with the standard 

Gaussian measure 𝜇𝐼  = ⨂  ∞
𝑛=1 𝜇𝐼𝑛  ,  where 𝐼𝑛  ≡  𝐼  (see (i)) which is invariant under any 

change of the first coordinates (i.e. with respect to the additive action of the group 𝑅0
∞  ) 

coincides almost everywhere with a constant function (see [159]). The proof works also in the 

case where we replace ℝ 𝑏𝑦 ℝ𝑚, 𝑚 > 1, and the standard Gaussian measure 𝜇𝐼  on ℝ with 

any probability measure 𝜇𝐵(𝑛)  𝑜𝑛 ℝ
𝑚 equivalent with the Lebesgue measure on ℝ𝑚. To show  

this it is sufficient to see that any function 𝑓 ∈  𝐿1((ℝ𝑚)∞,⊗ 𝑛=1 
∞ 𝜇𝐵(𝑛)  ) is the limit of 𝜇𝑘 −

𝑎. 𝑒. constant functions 𝑓𝑘  ∶  𝑓 =  𝑙𝑖𝑚𝑘 𝑓
𝑘  , 𝑤ℎ𝑒𝑟𝑒 𝜇𝑘  =⊗𝑛=1 

𝑘 𝜇𝐵(𝑛)  , 

𝑓𝑘  = ∫ 𝑓(𝑥)𝑑𝜇𝑘(𝑥)

(ℝ𝑚)∞

 𝑎𝑛𝑑 𝜇𝑘  = ⨂  

∞

𝑛=𝑘+1

𝜇𝐵(𝑛)  . 

Therefore the proof follows from the fact that the measure 𝜇𝐵
𝑚  = ⨂  ∞

𝑛=2 𝜇𝐵(𝑛)  on the space 

𝑋𝑚  = ℝ1 ×ℝ2 ×· · ·× ℝ𝑚−1 ×ℝ𝑚 ×ℝ𝑚 ×···  is the infinite tensor product of Gaussian 

measures 𝜇𝐵(𝑛) on the space ℝ𝑚(𝑓𝑜𝑟 𝑛 >  𝑚), from the fact that the right action 𝑅𝑡 𝑓𝑜𝑟 𝑡 ∈

 𝐵0
ℕ changes only a finite number of coordinates of the point 𝑥 ∈  𝑋𝑚, and that the group 

𝐺0
𝑚  =  𝐺𝑚  ∩  𝐵0

ℕ ⊂ 𝑋𝑚 acts transitively on itself. In fact it is shown that the measure is 

ergodic with respect to the action of the subgroup 𝐺0
𝑚 ⊂ 𝐵0

ℕ .  

Theorem (4.1.5)[123]: For the measure 𝜇𝐵
𝑚 the following four statements are equivalent: 

(i) the representation 𝑇𝑡
𝑅,𝜇𝐵

𝑚

is irreducible; 

(ii) (𝜇𝐵
𝑚)𝐿𝑡  ⊥ 𝜇𝐵

𝑚∀𝑡 ∈  𝐵(𝑚,ℝ) \ {𝑒}; 
(iii) (𝜇𝐵

𝑚)𝐿𝑒𝑥𝑝(𝑡𝐸𝑝𝑞 )  ⊥  𝜇𝐵
𝑚∀𝑡 ∈  ℝ \ {0} ∀1 ≤ 𝑝 < 𝑞 ≤  𝑚; 

(iv) 𝑆𝑝𝑞
𝐿 (𝜇𝐵

𝑚)  = ∑ 𝑐𝑝𝑝
(𝑛)
 𝑏𝑞𝑞
(𝑛)
 ∞

𝑛=𝑞+1  = ∞∀1 ≤ 𝑝 < 𝑞 ≤  𝑚,  

where 𝐵(𝑛)  =  (𝑏𝑘𝑟
(𝑛)
 )𝑘,𝑟=1
𝑚 , 𝐶(𝑛)  =  (𝑐𝑘𝑟

(𝑛)
 )𝑘,𝑟=1
𝑚  𝑎𝑛𝑑 𝐶(𝑛)  =  (𝐵(𝑛))−1. 

Proof: The proof of Theorem (4.1.5) is organized as follows: 

(𝑖)  ⇒  (𝑖𝑖)  ⇒  (𝑖𝑖𝑖)  ⇒  (𝑖𝑣)  ⇒  (𝑖). 
The parts (𝑖)  ⇒  (𝑖𝑖)  ⇒  (𝑖𝑖𝑖)  are evident. The part (𝑖𝑖𝑖)  ⇔  (𝑖𝑣)  follows from 

Lemma(4.1.9), which is based on the Kakutani criterion [138]. 

The idea of the proof of irreducibility, i.e. the part (𝑖𝑣) ⇒ (𝑖). Let us denote by 𝔄𝑚 the von 

Neumann algebra generated by the representation 𝑇𝑡
𝑅,𝜇𝐵

𝑚

 

𝔄𝑚  = (𝑇𝑡
𝑅,𝜇𝐵

𝑚

| 𝑡 ∈  𝐺)
′′

. 

We show that (𝑖𝑣)  ⇒  [(𝔄𝑚)′  ⊂  𝐿∞(𝑋𝑚, 𝑢𝑏
𝑚)]  ⇒  (𝑖) . Let the inclusion (𝔄𝑚)′′  ⊂

 𝐿∞(𝑋𝑚, 𝜇𝐵
𝑚) holds. Using the ergodicity of the measure 𝜇𝐵

𝑚 Lemma (4.1.9) this shows the 
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irreducibility. Indeed in this case an operator 𝐴 ∈  (𝔄𝑚)′  should be the operator of 

multiplication (since (𝔄𝑚)′  ⊂ 𝐿∞(𝑋𝑚, 𝜇𝐵
𝑚))  by some essentially bounded function 𝑎 ∈

 𝐿∞(𝑋𝑚, 𝜇𝐵
𝑚) . The commutation relation [𝐴, 𝑇𝑡

𝑅,𝜇𝐵
𝑚

]  =  0 ∀𝑡 ∈  𝐵0
ℕ  implies 𝑎(𝑅𝑡

−1 (𝑥))  =

 𝑎(𝑥) (𝑚𝑜𝑑 𝜇𝐵
𝑚) ∀𝑡 ∈ 𝐵0

ℕ , so by ergodicity of the measure 𝜇𝐵
𝑚  with respect to the right 

action of the group 𝐵0
ℕ on the space 𝑋𝑚 we conclude that 𝐴 =  𝑎 =  𝑐𝑜𝑛𝑠𝑡 (𝑚𝑜𝑑 𝜇𝐵

𝑚). This 

then shows the irreducibility in Theorem(4.1.5), i.e. the part [(𝔄𝑚)′  ⊂  𝐿∞(𝑋𝑚, 𝜇𝐵
𝑚)] ⇒ (𝑖). 

The proof of the remaining part, i.e. the implication (𝑖𝑣)  ⇒ [(𝔄𝑚)′  ⊂  𝐿∞(𝑋𝑚, 𝜇𝐵
𝑚)]  is 

based on the fact that the operators of multiplication by independent variables 𝑥𝑝𝑞 , 1 ≤  𝑝 ≤

 𝑚, 𝑝 < 𝑞 , may be approximated in the strong resolvent sense by some functions of the 

generators 

𝐴𝑘𝑛
𝑅,𝑚   =  

𝑑

𝑑𝑡
  𝑇𝐼+𝑡𝐸𝑘𝑛

𝑅,𝜇𝐵
𝑚

|
𝑡=0
 , 𝑘, 𝑛 ∈  ℕ, 𝑘 < 𝑛, 

i.e. that the operators 𝑥𝑝𝑞  are affiliated with the von-Neumann algebra 𝔄𝑚 . See Lemma 

(4.1.15)  and Lemma (4.1.16) . 

Definition (4.1.6)[123]: Recall (cf., e.g., [132]) that a non-necessarily bounded self-adjoint 

operator A in a Hilbert space H is said to be affiliated with a von Neumann algebra M of 

operators in this Hilbert space 𝐻, 𝑖𝑓 𝑒𝑥𝑝(𝑖𝑡𝐴)  ∈ 𝑀 for all 𝑡 ∈  ℝ. One then writes 𝐴𝜂𝑀. 

Since the algebra (𝑒𝑥𝑝(𝑖𝑡𝑥𝑝𝑞) | 𝑡 ∈  ℝ, 1 ≤  𝑝 ≤  𝑚, 𝑝 < 𝑞)′′  is the maximal abelian 

subalgebra in the von Neumann algebra B(H) of all bounded operator in the Hilbert space 

𝐻 =  𝐿2(𝑋𝑚, 𝜇𝐵
𝑚 )  we conclude that  (𝑒𝑥𝑝(𝑖𝑡𝑥𝑝𝑞) | 𝑡 ∈  ℝ, 1 ≤  𝑝 ≤ 𝑚, 𝑝 <  𝑞)

′′ =

 𝐿∞(𝑋𝑚, 𝜇𝐵
𝑚 ) . The inclusion (𝑒𝑥𝑝(𝑖𝑡𝑥𝑝𝑞), 1 ≤  𝑝 ≤  𝑚, 𝑝 < 𝑞)  ⊂  𝔄

𝑚 𝑖𝑚𝑝𝑙𝑖𝑒𝑠 (𝔄𝑚)′ ⊂

 𝐿∞(𝑋𝑚, 𝜇𝐵
𝑚). 

To finish the proof of Theorem(4.1.5) it remains to show the implication 

(𝑖𝑣)  ⇒ (𝑥𝑝𝑞  𝜂 𝔄
𝑚, 1 ≤  𝑝 ≤ 𝑚, 𝑝 < 𝑞) ⇔  𝑒𝑥𝑝(𝑖𝑡𝑥𝑝𝑞)  ∈  𝔄

𝑚, 1 ≤  𝑝 ≤  𝑚, 𝑝 <  𝑞 

 It is sufficient to show that 𝛴𝑚  > 𝐶𝑆𝑚, for some C >0, where 

𝑆𝑚 ∶= ∑ 𝑆𝑝𝑞
𝐿 (

1≤𝑝<𝑞≤𝑚

𝜇𝐵
𝑚). 𝛴𝑚 ∶= ∑ ∑(𝑚)

𝑟

𝑝𝑞1≤𝑟≤𝑝≤𝑞≤𝑚

, 

and the series 𝑆𝑝𝑞
𝐿  (𝜇𝑚) 𝑎𝑛𝑑 ∑ (𝑚)𝑟

𝑝𝑞  are defined in Lemmas (4.1.9) and (4.1.13) ). This is 

done in Appendices A–C. 

We define the generalization of the characteristic polynomial for matrix C and establish 

some its properties. These properties are used then in Appendices B and C. For a matrix 

𝐶 ∈  𝑀𝑎𝑡(𝑘, ℂ) we set  

𝐺𝑘(𝜆)  =  𝑑𝑒𝑡𝐶𝑘(𝜆), 𝑤ℎ𝑒𝑟𝑒 𝐶𝑘(𝜆)  =  𝐶 +∑𝜆𝑟𝐸𝑟𝑟 , 𝜆

𝑘

𝑟=1

 =  (𝜆1, . . . , 𝜆𝑘)  ∈ ℂ
𝑘. 

Lemma (4.1.7)[123]: Lemma (4.1.22) For a positive definite matrix 𝐶 ∈  𝑀𝑎𝑡(𝑘, ℂ), 𝜆 ∈
 ℝ𝑘 with 𝜆𝑟  ≥ 0, 𝑟 =  1, . . . , 𝑘, we have 

 
𝜕

𝜕𝜆𝑝

𝐺𝑘(𝜆)

𝐺𝑙(𝜆)
≥  0, 

 where 𝐺𝑙(𝜆)  = 𝑀
12. . . 𝑙 
12. . . 𝑙

 (𝐶𝑘(𝜆)) and 1 ≤ 𝑝 ≤ 𝑙 ≤  𝑘. 

The proof of Lemma (4.1.7) is based on the following inequality (see Lemma (4.1.21).) 
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Lemma (4.1.8)[123]: (Hadamard–Ficher’s inequality [135], [136], see also [150]) Let 𝐶 ∈
 𝑀at(𝑚,ℝ) be a positive definite matrix and ∅ ⊆ 𝛼, 𝛽 ⊆  {1, . . . , 𝑚}. Then 

|
𝑑𝑒𝑡𝐶𝛼 𝑑𝑒𝑡𝐶𝛼∩𝛽
𝑑𝑒𝑡𝐶𝛼∪𝛽 𝑑𝑒𝑡𝐶𝛽

|   = |
𝑀(𝛼) 𝑀(𝛼 ∩  𝛽)

𝑀(𝛼 ∪  𝛽) 𝑀(𝛽)
|  ≥ 0, 

where 𝐶𝛼 𝑓𝑜𝑟 𝛼 =  {𝛼1, . . . , 𝛼𝑠 } denotes the matrix which entries lie on the intersection of 

𝛼1, . . . , 𝛼𝑠 rows and 𝛼1, . . . , 𝛼𝑠 columns of the matrix C and 𝑀(𝛼)  = 𝑀𝛼
𝛼 (𝐶)  =  𝑑𝑒𝑡𝐶𝛼 are 

corresponding minors of the matrix C. 

The “best” approximation of 𝑥𝑝𝑞 by the generators 𝐴𝑘𝑛
𝑅,𝑚  is based on the exact computation of 

the matrix elements 

∅𝑝(𝑡)  = (𝑇𝑡
𝑅,𝜇𝐵

𝑚

 𝟏, 𝟏) , 𝑡 =  𝐼 +∑𝑡𝑟𝐸𝑟𝑛, (𝑡𝑟)𝑟=1
𝑝

∈  ℝ𝑝
𝑝

𝑟=1

, 

of the representation 𝑇𝑅,𝜇𝐵
𝑚

 and their generalization (see Appendix B, Lemma (4.1.23) , and 

on the finding the appropriate combinations of operator functions of the generators 𝐴𝑘𝑛
𝑅,𝑚  to 

approximate the operators of multiplication by 𝑥𝑝𝑞. 

Finally the proof of the inequality 𝛴𝑚  > 𝐶𝑆𝑚,  is based on Lemmas (4.1.7), (4.1.8) 

and(4.1.25) dealing with some inequalities involving the generalized characteristic 

polynomials. Lemma(4.1.25)  is showd. 

Lemma (4.1.9)[123]: For the measure 𝜇𝐵
𝑚 we have the equivalence of 

(i) (𝜇𝐵
𝑚)

𝐿𝑒𝑥𝑝(𝑡𝐸𝑝𝑞)  ⊥  𝜇𝐵
𝑚∀𝑡 ∈ ℝ \ {0} ∀1 ≤ 𝑝 < 𝑞 ≤  𝑚 and 

(ii)𝑆𝑝𝑞
𝐿 (𝜇𝐵

𝑚) = ∑ 𝑐𝑝𝑝
(𝑛)
𝑏𝑞𝑞
(𝑛)∞

𝑛=𝑞+1 = ∑
𝑐𝑝𝑝
(𝑛)
𝐴𝑞
𝑞
(𝐶(𝑛))

𝑑𝑒𝑡(𝐶(𝑛))
∞
𝑛=𝑞+1 = ∞ ∀1 ≤ 𝑝 < 𝑞 ≤  𝑚, 

where 𝐵(𝑛)  =  (𝑏𝑘𝑟
(𝑛)
)𝑘,𝑟=1
𝑚 , 𝐶(𝑛)  =  (𝑐𝑘𝑟

(𝑛)
 )𝑘,𝑟=1
𝑚  𝑎𝑛𝑑 𝐶(𝑛)  =  (𝐵(𝑛))−1 

Proof: The proof is based on the Kakutani criterion [138] and on the exact formula for the 

Hellinger integral 

𝐻(𝜇, 𝜈)  = ∫ √
𝑑𝜇

𝑑𝜌

𝑑𝜈

𝑑𝜌
𝑑𝜌

𝑥

, 

for two Gaussian measure 𝜇 =  𝜇𝐵1 𝑎𝑛𝑑 𝜈 =  𝜇𝐵2 (see [149]): 

𝐻(𝜇𝐵1, 𝜇𝐵2 )  = (
𝑑𝑒𝑡𝐵1 𝑑𝑒𝑡𝐵2

𝑑𝑒𝑡2  
𝐵1 + 𝐵2
2

)

−1/4

= (
𝑑𝑒𝑡𝐶1 𝑑𝑒𝑡𝐶2

𝑑𝑒𝑡2  
𝑐1 + 𝑐2
2

)

−1/4

,                         (2) 

where 𝐶𝑖  =  (𝐵𝑖  )
−1, 𝑖 =  1, 2. 

 Let us consider the one-parameter subgroup 𝑒𝑥𝑝(𝑡𝐸𝑝𝑞)  =  𝐼 +  𝑡𝐸𝑝𝑞 ∈  𝐵(𝑚, 𝑅), 1 ≤  𝑝 <

𝑞 ≤  𝑚, 𝑡 ∈ ℝ. Using (1) we have for the positive definite operator 𝐵 =  𝐵(𝑛) 𝑖𝑛 ℝ𝑚: 

𝑑𝜇𝐵
𝐿𝐼+𝑡𝐸𝑝𝑞  (𝑥)  = √

𝑑𝑒𝑡𝐶

(2𝜋)𝑚
𝑒𝑥𝑝 (−

1

2
(𝐶 𝑒𝑥𝑝(𝑡𝐸𝑝𝑞)𝑥, 𝑒𝑥𝑝(𝑡𝐸𝑝𝑞)𝑥))𝑑 𝑒𝑥𝑝(𝑡𝐸𝑝𝑞)

𝑥 

= √
𝑑𝑒𝑡𝐶

(2𝜋)𝑚
𝑒𝑥𝑝 (−

1

2
(𝑒𝑥𝑝(𝑡𝐸𝑝𝑞)

∗, 𝐶𝑒𝑥𝑝(𝑡𝐸𝑝𝑞)𝑥, 𝑥))𝑑𝑥 = 𝑑𝜇𝐵𝑝𝑞(𝑡)(𝑥)  
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where (𝐵𝑝𝑞(𝑡))−1  =  𝐶𝑝𝑞(𝑡)  =  𝑒𝑥𝑝(𝑡𝐸𝑝𝑞)
∗ 𝐶 𝑒𝑥𝑝(𝑡𝐸𝑝𝑞)  (we note that 𝑑𝑒𝑡 𝐶 =

 𝑑𝑒𝑡𝐶𝑝𝑞(𝑡)). Hence, using (2) we get 

𝐻𝜇 (𝐿𝐵
𝐼+𝑡𝐸𝑝𝑞  , 𝜇𝐵) = (

𝑑𝑒𝑡𝐶𝑝𝑞  (𝑡)𝑑𝑒𝑡𝑐

𝑑𝑒𝑡2  
𝑐𝑝𝑞(𝑡) + 𝑐

2

)

1/4

= (
𝑑𝑒𝑡𝐶 

𝑑𝑒𝑡2  
𝑐𝑝𝑞(𝑡) + 𝑐

2

)

1/2

             (3) 

We shall show that 

𝑑𝑒𝑡 
𝐶𝑝𝑞(𝑡)  + 𝐶

2
=  𝑑𝑒𝑡𝐶 + 

𝑡2

4
𝑐𝑝𝑝𝐴𝑞

𝑞(𝐶),                                        (4) 

where 𝐴𝑞
𝑝
(𝐶), 1 ≤ 𝑝, 𝑞 ≤ 𝑚, denote the cofactors of the matrix C corresponding to the row p 

and the column q. We have 

𝑑𝑒𝑡 
𝐶𝑝𝑞(𝑡) +𝐶

2

𝑑𝑒𝑡𝐶
=
𝑑𝑒𝑡𝐶 + 

𝑡2

4
𝑐𝑝𝑝𝐴𝑞

𝑞
(𝐶)

𝑑𝑒𝑡𝐶
=  1 + 

𝑡2

4
𝑐𝑝𝑝𝑏𝑞𝑞, 

hence 

(
𝑑𝑒𝑡𝐶

𝑑𝑒𝑡 
𝐶𝑝𝑞(𝑡)  + 𝐶

2

)

1/2

= (1 + 
𝑡2

4
𝑐𝑝𝑝𝑏𝑞𝑞)

−1/2

 

and finally, using (3) we get 

𝐻 ((𝜇𝐵
𝑚)𝐿𝐼+𝑡𝐸𝑝𝑞  , 𝜇𝐵

𝑚) = ∏ 𝐻

∞

𝑛=𝑞+1

𝜇
𝐵(𝑛)

𝐿𝐼+𝑡𝐸𝑝𝑞  , 𝜇𝐵(𝑛) = ∏ (1+ 
𝑡2

4
𝑐𝑝𝑝
(𝑛)
𝑏𝑞𝑞
(𝑛)
)

−1/2∞

𝑛=𝑞+1

 

where 

𝐵(𝑛)  = ∑ 𝑏𝑟𝑠
(𝑛)
 𝐸𝑟𝑠

1≤𝑟,𝑠≤𝑚

 𝑎𝑛𝑑 𝐶(𝑛) ∶= (𝐵(𝑛))
−1
 = ∑ 𝑐𝑟𝑠

(𝑛)
 𝐸𝑟𝑠

1≤𝑟,𝑠≤𝑚

 . 

So using the properties of the Hellinger integral for two Gaussian measures we conclude that 

(𝜇𝐵
𝑚)𝐿𝐼+𝑡𝐸𝑝𝑞 ⊥ 𝜇𝐵

𝑚 ∀𝑡 ∈ ℝ \ {0}  ⇔ ∞ ∏ (1 + 
𝑡2

4
𝑐𝑝𝑝
(𝑛)
𝑏𝑞𝑞
(𝑛)
)

−1/2∞

𝑛=𝑞+1

=  0 

⇔ 𝑆𝑝𝑞
𝐿 (𝜇𝐵

𝑚) = ∞. 

To show (4) we set 𝐶𝑝𝑞(𝑡)  =  𝑒𝑥𝑝(𝑡𝐸𝑝𝑞)
∗𝐶 𝑒𝑥𝑝(𝑡𝐸𝑝𝑞). We have for 𝑚 ∈  𝑁 𝑎𝑛𝑑 1 ≤ 𝑝 <

𝑞 ≤  𝑚 using the identity 𝑒𝑥𝑝(𝑡𝐸𝑝𝑞)  =  𝐼 + 𝑡𝐸𝑝𝑞 , 𝑡 ∈  ℝ, 

𝐶𝑝𝑞(𝑡)  = |
|

𝑐11 ⋯                  𝑐1𝑝 ⋯ 𝑐1𝑞 + 𝑡𝑐1𝑝   ⋯         𝑐1𝑚

𝑐1𝑝 . . .                 𝑐𝑝𝑝 . . . 𝑐𝑝𝑞 + 𝑡𝑐𝑝𝑝  . ..       𝑐𝑝𝑚

𝑐1𝑞 + 𝑡𝑐1𝑝
𝑐1𝑚

⋯
 . . .

𝑐𝑝𝑞 + 𝑡𝑐𝑝𝑝
𝑐𝑝𝑚

 . . .
 . . .

𝑐𝑞𝑞  + 2𝑡𝑐𝑝𝑝 + 𝑡
2𝑐𝑝𝑝

 𝑐𝑞𝑚 + 𝑡𝑐𝑞𝑚

. . .

. . .
𝑐𝑞𝑚 + 𝑡𝑐𝑞𝑚 

𝑐𝑚𝑚

|
|   

hence 
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𝑑𝑒𝑡 
𝐶𝑝𝑞(𝑡)+𝐶

2

=
|

|

𝑐11 ⋯                  𝑐1𝑝 ⋯ 𝑐1𝑞  +
𝑡

2
𝑐1𝑝  ⋯         𝑐1𝑚

𝑐1𝑝 . . .                 𝑐𝑝𝑝 . . . 𝑐𝑝𝑞  +
𝑡

2
𝑐𝑝𝑝  . . . 𝑐𝑝𝑚

𝑐1𝑞  +  𝑡𝑐1𝑝
𝑐1𝑚

⋯
 . . .

𝑐𝑝𝑞 +
𝑡

2
𝑐𝑝𝑝

𝑐𝑝𝑚

 . . .
 . . .

𝑐𝑞𝑞  + 2𝑡𝑐𝑝𝑞 +
𝑡2

2
𝑐𝑝𝑝

 𝑐𝑞𝑚 +
𝑡

2
𝑐𝑝𝑚

. . .

. . .
𝑐𝑞𝑚  +

𝑡

2
𝑐𝑝𝑚

𝑐𝑚𝑚

|

|
 

= |
|

𝑐11 ⋯                  𝑐1𝑝 ⋯ 𝑐1𝑞    ⋯         𝑐1𝑚

𝑐1𝑝 . . .                 𝑐𝑝𝑝 . . . 𝑐𝑝𝑞   . ..       𝑐𝑝𝑚

𝑐1𝑞  
𝑐1𝑚

⋯
 . . .

𝑐𝑝𝑞
𝑐𝑝𝑚

 . . .
 . . .

𝑐𝑞𝑞  +
𝑡2

4
𝑐𝑝𝑝

 𝑐𝑞𝑚 

. . .

. . .
𝑐𝑞𝑚 
𝑐𝑚𝑚

|
| = detC +

𝑡2

4
𝑐𝑝𝑝Aq

q
(C).  

This ends the proof of Lemma(4.1.9) , and thus also of (𝑖𝑖𝑖) ⇔ (𝑖𝑣).  
 Approximation of the variables 𝑥𝑝𝑞 

We first show Lemmas (4.1.12) and(4.1.15) , which give a suitable approximation of 𝑥𝑝𝑞 

only on the vector 𝑓 =  1 ∈  𝐿2(𝑋𝑚, 𝜇𝐵
𝑚)  

We shall also use the well-known result (see, for example, [130]) 

𝑚𝑖𝑛
𝑥∈ℝ𝑛

(∑𝑎𝑘𝑥𝑘
2

𝑛

𝑘=1

|∑𝑥𝑘 =  1

𝑛

𝑘=1

) = (∑
1

𝑎𝑘

𝑛

𝑘=1

)

−1

, 𝑎𝑘  >  0, 𝑘 =  1, 2, . . . , 𝑛. 

We use the same result in a slightly different form with 𝑏𝑘 ≠  0, 𝑘 =  1, 2, . . . , 𝑛, 

𝑚𝑖𝑛
𝑥∈ℝ𝑛

(∑𝑎𝑘𝑥𝑘
2

𝑛

𝑘=1

|∑𝑥𝑘𝑏𝑘 =  1

𝑛

𝑘=1

) = (∑
𝑏𝑘
2

𝑎𝑘

𝑛

𝑘=1

)

−1

        (5) 

The minimum is realized for 

𝑥𝑘 =
 𝑏𝑘
𝑎𝑘
 (∑

𝑏𝑘
2

𝑎𝑘

𝑛

𝑘=1

)

−1

. 

For any subset 𝐼 ⊂  ℕ let us denote as before by 〈𝑓𝑛 | 𝑛 ∈  𝐼〉  the closure of the linear space 

generated by the set of vectors (𝑓𝑛 | 𝑛 ∈  𝐼) in a Hilbert space H. 

We note that the distance 𝑑(𝑓𝑛+1;  〈𝑓1, . . . , 𝑓𝑛〉) of the vector 𝑓𝑛+1in H from the hyperplane 

〈𝑓1, . . . , 𝑓𝑛〉  may be calculated in terms of the Gram determinants 𝛤 (𝑓1, 𝑓2, . . . , 𝑓𝑘) 
corresponding to the set of vectors 𝑓1, 𝑓2, . . . , 𝑓𝑘 (see [133]): 

𝑑 𝑓𝑛+1;  〈𝑓1, . . . , 𝑓𝑛〉 =  𝑚𝑖𝑛
𝑡=(𝑡𝑘 )∈ℝ

𝑛
‖𝑓𝑛+1 +∑𝑡𝑘𝑓𝑘

𝑛

𝑘=1

‖

2

= 
𝛤(𝑓1, 𝑓2, . . . , 𝑓𝑛+1)

𝛤 (𝑓1, 𝑓2, . . . , 𝑓𝑛)
,            (6) 

where the Gram determinant is defined by 𝛤 (𝑓1, 𝑓2, . . . , 𝑓𝑛)  =
 𝑑𝑒𝑡 𝛾 (𝑓1, 𝑓2, . . . , 𝑓𝑛) 𝑎𝑛𝑑 𝛾 (𝑓1, 𝑓2, . . . , 𝑓𝑛)  = : 𝛾𝑛 is the Gram matrix 

𝛾 (𝑓1, 𝑓2, . . . , 𝑓𝑛) =

(

 

(𝑓1, 𝑓1) (𝑓1, 𝑓2) . . . (𝑓1, 𝑓𝑛)

(𝑓2, 𝑓1) (𝑓2, 𝑓2) . . . (𝑓2, 𝑓𝑛)

(𝑓𝑛, 𝑓1) (𝑓𝑛, 𝑓2)

. . .

. . . (𝑓𝑛, 𝑓𝑛))

 . 
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Lemma (4.1.10)[123]:We have 𝑑(𝑓𝑛+1;  〈𝑓1, . . . , 𝑓𝑛〉) =  
𝑑𝑒𝑡 𝛾𝑛+1

𝑑𝑒𝑡 𝛾𝑛
= (𝑓𝑛+1, 𝑓𝑛+1) −

(𝛾𝑛
−1  𝑑𝑛+1, 𝑑𝑛+1), where 𝑑𝑛+1  =  ((𝑓1, 𝑓𝑛+1), (𝑓2, 𝑓𝑛+1), . . . , (𝑓𝑛, 𝑓𝑛+1))  ∈  ℝ

𝑛. 

Proof: We may write 

‖∑𝑡𝑘𝑓𝑘

𝑛

𝑘=1

 − 𝑓𝑛+1‖

2

= ∑ 𝑡𝑘𝑡𝑚

𝑛

𝑘,𝑚=1

(𝑓𝑘, 𝑓𝑘) −  2∑ 𝑡𝑘(𝑓𝑘, 𝑓𝑛+1) + (𝑓𝑛+1, 𝑓𝑛+1)

𝑛

𝑘=1

 

= (𝛾𝑛𝑡, 𝑡) −  2(𝑡, 𝑑𝑛+1) + (𝑓𝑛+1, 𝑓𝑛+1), 
where 𝑡 =  (𝑡1, 𝑡2, . . . , 𝑡𝑛)  ∈  ℝ

𝑛. Using (58) for 𝐴𝑛  =  𝛾𝑛 we get 

(𝛾𝑛𝑡, 𝑡) − 2(𝑡, 𝑑𝑛+1)  = (𝛾𝑛(𝑡 − 𝑡0), (𝑡 − 𝑡0)) − (𝛾𝑛
−1 𝑑𝑛+1, 𝑑𝑛+1), 

where 𝑡0  =  𝛾𝑛
−1 𝑑𝑛. Hence we get (see (6)) 

 𝑚𝑖𝑛
𝑡=(𝑡𝑘 )∈ℝ

𝑛
‖𝑓𝑛+1 −∑𝑡𝑘𝑓𝑘

𝑛

𝑘=1

‖

2

𝑚𝑖𝑛
𝑡=(𝑡𝑘 )∈ℝ

𝑛
 (𝛾𝑛𝑡, 𝑡) − 2(𝑡, 𝑑𝑛+1) + (𝑓𝑛+1, 𝑓𝑛+1)

=  (𝑓𝑛+1, 𝑓𝑛+1)( 𝛾𝑛
−1 𝑑𝑛+1, 𝑑𝑛+1) + 𝑚𝑖𝑛

𝑡=(𝑡𝑘 )∈ℝ
𝑛
(𝛾𝑛(𝑡 − 𝑡0), (𝑡 − 𝑡0))

=  (𝑓𝑛+1, 𝑓𝑛+1) ( 𝛾𝑛
−1 𝑑𝑛+1, 𝑑𝑛+1). 

Remark (4.1.11)[123]: In fact a more general result holds. Let us denote by 𝐴𝑛+1 the real 

non-necessarily symmetric matrix in 𝑅𝑛+1  and by 𝐴𝑛  its 𝑛 × 𝑛  block after crossing the 

element in the last column and row, by 𝑣𝑛+1  =  (𝑎1𝑛+1, 𝑎2𝑛+1, . . . , 𝑎𝑛𝑛+1), ℎ𝑛+1  =
 (𝑎𝑛+11, 𝑎𝑛+12, . . . , 𝑎𝑛+1𝑛) vectors 𝑣𝑛+1, ℎ𝑛+1  ∈ ℝ

𝑛. If 𝑑𝑒𝑡𝐴𝑛  ≠  0 then we have 

𝑎𝑛+1𝑛+1  − (𝐴𝑛
−1 𝑣𝑛+1, ℎ𝑛+1) =  

𝑑𝑒𝑡𝐴𝑛+1
𝑑𝑒𝑡𝐴𝑛

.                         (7) 

Proof: It is sufficient to use the identity (Schur–Frobenius decomposition) 

𝐴𝑛+1  = (
𝐴𝑛 𝑣𝑛+1

𝑡

ℎ 𝑛+1 𝑎𝑛+1𝑛+1
 ) = (

𝐴𝑛 0
0 1

) (
𝐼𝑑 𝐴𝑛

−1 𝑣𝑛+1
𝑡

ℎ𝑛+1 𝑎𝑛+1𝑛+1
)  . 

The generators 

𝐴𝑘𝑛 ∶=  𝐴𝑘𝑛
𝑅,𝑚 = 

𝑑

𝑑𝑡
𝑇𝐼+𝑡𝐸𝑘𝑛
𝑅,𝜇𝐵

𝑚

|
𝑡=0

 

of the one-parameter groups 𝐼 + 𝑡𝐸𝑘𝑛  have the following form (on smooth functions of 

compact support): 

𝐴𝑘𝑛  = ∑𝑥𝑟𝑘𝐷𝑟𝑛

𝑘−1

𝑟=1

 + 𝐷𝑘𝑛, 1 ≤  𝑘 ≤  𝑚, 𝑘 <  𝑛, 𝐴𝑘𝑛  = ∑𝑥𝑟𝑘𝐷𝑟𝑛

𝑚

𝑟=1

, 𝑚 <  𝑘 < 𝑛, 

where 

𝐷𝑘𝑛  =
𝜕

𝜕𝑥𝑘𝑛
− 
1

2
(𝑥, (𝐵(𝑛))

−1
𝐸𝑘𝑛) , 1 ≤ 𝑘 < 𝑛.                     (8) 

To simplify the further computations let us consider the corresponding Fourier transforms 𝐹m 

in the variables 𝑥𝑘𝑛, 1 ≤ 𝑘 ≤ 𝑚,𝑚 < 𝑛, 

𝐹𝑚 ∶ 𝐿
2(𝑋𝑚, 𝜇𝐵

𝑚) → 𝐿2(𝑋𝑚, 𝜇𝐶
𝑚). 

We have 

𝐹𝑚𝐷𝑘𝑛𝐹𝑚
−1 =  𝑖𝑦𝑘𝑛 𝑓𝑜𝑟 (𝑘, 𝑛), 1 ≤ 𝑘 ≤  𝑚,𝑚 <  𝑛, 𝑎𝑛𝑑 𝐹𝑚1 =  1. 

Let us set 𝜇𝐶  =⊗𝑛=2
∞   𝜇 𝐶(𝑛) with 𝐶(𝑛)  =  𝐵(𝑛)  for 2 ≤  𝑛 ≤ 𝑚 and 𝐶(𝑛)  =

 (𝐵(𝑛))−1  𝑓𝑜𝑟 𝑛 > 𝑚. 
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We define the Fourier transform 𝐹𝑚 as the infinite tensor product 𝐹𝑚  =⊗𝑛=𝑚+1
∞   𝐹𝑚𝑛 where 

𝐹𝑚𝑛 ∶ 𝐿
2(ℝ𝑚, 𝜇𝐵(𝑛)) → 𝐿

2(ℝ𝑚, 𝜇𝐶(𝑛)) 

is the image of the standard Fourier transform 𝐹𝑚  in the space 𝐿2(ℝ𝑚, 𝑑𝑥), 𝑖. 𝑒. 𝐹𝑚𝑛  =
𝑈(𝐶(𝑛))−1𝐹𝑚𝑈(𝐵(𝑛)), where 

𝑈(𝐵(𝑛)) = (
𝑑𝜇𝐵(𝑛)(𝑥)

𝑑𝑥
)

1
2 𝐿
2(ℝ𝑚, 𝜇𝐵(𝑛)  )

↓
𝐿2(ℝ𝑚, 𝑑𝑥)

𝐹𝑚𝑛
→  

𝐹𝑚

→ 

𝐿2(ℝ𝑚, 𝜇𝐶(𝑛)  )

↓
𝐿2(ℝ𝑚, 𝑑𝑥)

𝑈(𝐶(𝑛)) (
𝑑𝜇𝐶(𝑛)(𝑥)

𝑑𝑥
)
1/2

 

Since the standard Fourier transform 𝐹𝑚 is defined as follows: 

(𝐹𝑚𝑓)(𝑦)  =  
1

√(2𝜋)𝑚
 ∫ 𝑒𝑥𝑝 𝑖(𝑦, 𝑥)𝑓 (𝑥)𝑑𝑥

ℝ𝑚

, 

and, for 𝐷 =  𝐵(𝑛) respectively 𝐷 =  𝐶(𝑛) 

𝑈(𝐷)  = (
𝑑𝜇𝐷(𝑥)

𝑑𝑥
)

1/2

= 
1

((2𝜋)𝑚 𝑑𝑒𝑡𝐷1/4)
 𝑒𝑥𝑝 (−

1

4
(𝐷−1𝑥, 𝑥)) , 

we have finally for 𝐹𝑚𝑛: 

(𝐹𝑚𝑛𝑓 )(𝑦)  = (𝑈(𝐶
(𝑛))

−1
𝐹𝑚𝑈(𝐵(𝑛))𝑓) (𝑦)

=  
1

((2𝜋)𝑚 𝑑𝑒𝑡𝐶(𝑛))1/4
 𝑒𝑥𝑝 (

1

4
((𝐶(𝑛))

−1
𝑦, 𝑦))

1

√(2𝜋)𝑚
  

∫ 𝑒𝑥𝑝 𝑖(𝑦, 𝑥)𝑓 (𝑥)𝑑𝑥

ℝ𝑚

 ((2𝜋)𝑚 𝑑𝑒𝑡𝐵(𝑛))
1/4
 𝑒𝑥𝑝 (−

1

4
 𝐵(𝑛)

−1
 𝑥, 𝑥) 𝑑𝑥

=  
𝑒𝑥𝑝(

1
4
 ((𝐶(𝑛))−1𝑦, 𝑦))

√(2𝜋)𝑚 𝑑𝑒𝑡𝐶(𝑛)
  ∫ 𝑒𝑥𝑝 (𝑖(𝑦, 𝑥) −

1

4
 ((𝐵(𝑛))

−1
 𝑥, 𝑥)) 𝑓 (𝑥)𝑑𝑥

ℝ𝑚

. 

Using Fourier transform 𝐹m we obtain for 𝐴𝑘�̃�  =  𝐹𝑚𝐴𝑘𝑛(𝐹𝑚)
−1:   

𝐴𝑘�̃�  =  𝑖 (∑  𝑥𝑟𝑘𝑦𝑟𝑛  + 𝑦𝑘𝑛

𝑘−1

𝑟=1

) , 1 ≤  𝑘 ≤ 𝑚 < 𝑛,

𝐴𝑘�̃�   =  ∑𝐷𝑟𝑘(𝑦)𝑦𝑟𝑛

𝑚

𝑟=1

  , 𝑚 <  𝑘 < 𝑛,                                                     (9) 

where 

𝐷𝑘𝑛(𝑦)  =  
𝜕

𝜕𝑦𝑘𝑛
− 
1

2
(𝑥, (𝐶(𝑛))

−1
 𝐸𝑘𝑛 ) , 1 ≤  _𝑘 < 𝑛. 

Let us set for 𝑠 =  (𝑠1, . . . , 𝑠𝑟  )  ∈  𝑅𝑟 𝑎𝑛𝑑 1 ≤  𝑟 ≤ 𝑝 < 𝑞 ≤  𝑚 

𝜉𝑛
𝑟𝑝(𝑠) =  𝐹𝑚 (𝐷𝑝𝑛 𝑒𝑥𝑝(∑𝑠𝑙𝐴𝑙𝑛

𝑟

𝑙=1

))1 =  𝑖𝑦𝑝𝑛 𝑒𝑥𝑝 (∑𝑠𝑙𝐴𝑙�̃�

𝑟

𝑙=1

)1.    (10) 

For a function 𝑓 ∶ 𝑋𝑚 → ℂ we set 
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𝑀𝑓 = ∫ 𝑓 (𝑥)𝑑𝜇𝐵
𝑚(𝑥)

𝑋𝑚

. 

To approximate the variables 𝑥𝑝𝑞 , 1 ≤ 𝑝 < 𝑞 ≤  𝑚, we use  

Lemma(4.1.12)[123]:Let 1 ≤  𝑟 ≤  𝑝 <  𝑞 ≤ 𝑚.  For any 𝑠(𝑛) = (𝑠1 
(𝑛)
 , . . . , 𝑠𝑟

(𝑛)
 )  ∈  ℝ𝑟  , 

and for any 𝛼(𝑛)  = (𝛼1
(𝑛)
 , . . . , 𝛼𝑚

(𝑛)
 )  ∈  ℝ𝑚, 𝑛 ∈ ℕ, we have 

𝑥𝑝𝑞  ∈ 〈𝑒𝑥𝑝 (∑𝑠𝑙
(𝑛)
  𝐴𝑙𝑛

𝑟

𝑙=1

)(∑𝛼𝑘
(𝑛)
 𝐴𝑘𝑛

𝑚

𝑘=1

)  1|𝑛 ∈  ℕ,𝑚 < 𝑛〉 ⇔ 𝛴𝑝𝑞
𝑟 (𝑠, 𝛼,𝑚) = ∞, 

where 𝑠 =  (𝑠(𝑛))𝑛=𝑚+1
∞ , 𝛼 =  (𝛼(𝑛))𝑛=𝑚+1

∞ , 𝛼𝑞
(𝑛)
 =  1 and  

𝛴𝑝𝑞
𝑟 (𝑠, 𝛼,𝑚)  

= ∑
|𝑀𝜉𝑛

𝑟𝑝
 (𝑠(𝑛))|2

𝑐𝑝𝑝
(𝑛)
  −  |𝑀𝜉𝑛

𝑟𝑝
 (𝑠(𝑛))|2  + ‖(𝐴𝑞𝑛  − 𝑥𝑝𝑞𝐷𝑝𝑛  + ∑ 𝛼𝑘

(𝑛)
 𝐴𝑘𝑛

𝑚
𝑘=1,𝑘≠𝑝   )1‖

2

∞

𝑛=𝑚+1

.  (11) 

Before proving Lemma(4.1.12) let us make some comments about the procedure for arriving 

at the expressions used for the approximation of the variables 𝑥pq on the left-hand side of the 

equivale. 

 Proof: If we put ∑ 𝑡𝑛𝑀𝜉𝑛
𝑟𝑝
 (𝑠(𝑛))  =  1𝑛   we get 

‖[∑𝑡𝑛
𝑛

 𝑒𝑥𝑝 (∑𝑠𝑙
(𝑛)
 𝐴𝑙𝑛

𝑟

𝑙=1

)(∑𝛼𝑘
(𝑛)

𝑚

𝑘=1

 𝐴𝑘𝑛) − 𝑥𝑝𝑞] 1‖

2

 

= ‖[∑𝑡𝑛
𝑛

 𝑒𝑥𝑝 (∑𝑠𝑙
(𝑛)
 𝐴𝑙𝑛

𝑟

𝑙=1

)(𝐴𝑞𝑛 − 𝑥𝑝𝑞𝐷𝑝𝑛 + 𝑥𝑝𝑞𝐷𝑝𝑛 + ∑ 𝛼𝑘
(𝑛)
 𝐴𝑘𝑛

𝑚

𝑘=1,𝑘≠𝑞

) − 𝑥𝑝𝑞] 1‖

2

= ‖∑𝑡𝑛
𝑛

[𝑥𝑝𝑞 (𝐷𝑝𝑛𝑒𝑥𝑝 (∑𝑠𝑙
(𝑛)
 𝐴𝑙𝑛

𝑟

𝑙=1

) −𝑀𝜉𝑛
𝑟𝑝
 (𝑠(𝑛)))

+ 𝑒𝑥𝑝 (∑𝑠𝑙
(𝑛)
 𝐴𝑙𝑛

𝑟

𝑙=1

)(𝐴𝑞𝑛 − 𝑥𝑝𝑞𝐷𝑝𝑛 + ∑ 𝛼𝑘
(𝑛)
 𝐴𝑘𝑛

𝑚

𝑘=1,𝑘≠𝑞

)] 1‖

2

 

=∑𝑡𝑛
2

𝑛

[‖𝑥𝑝𝑞‖
2
‖(𝐷𝑝𝑛𝑒𝑥𝑝 (∑𝑠𝑙

(𝑛)
 𝐴𝑙𝑛

𝑟

𝑙=1

) −𝑀𝜉𝑛
𝑟𝑝
 (𝑠(𝑛)))

+ 𝑒𝑥𝑝 (∑𝑠𝑙
(𝑛)
 𝐴𝑙𝑛

𝑟

𝑙=1

)(𝐴𝑞𝑛 − 𝑥𝑝𝑞𝐷𝑝𝑛 + ∑ 𝛼𝑘
(𝑛)
 𝐴𝑘𝑛

𝑚

𝑘=1,𝑘≠𝑞

)1‖

2

] 
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=∑𝑡𝑛
2

𝑛

[‖𝑥𝑝𝑞‖
2
(𝑐𝑝𝑝
(𝑛)
− |𝑀𝜉𝑛

𝑟𝑝
 (𝑠(𝑛))|

2
)

+ ‖+𝑒𝑥𝑝(∑𝑠𝑙
(𝑛)
 𝐴𝑙𝑛

𝑟

𝑙=1

)(𝐴𝑞𝑛 − 𝑥𝑝𝑞𝐷𝑝𝑛 + ∑ 𝛼𝑘
(𝑛)
 𝐴𝑘𝑛

𝑚

𝑘=1,𝑘≠𝑞

)1‖

2

] 

 

where we have used the equality ‖𝜉 − 𝑀𝜉‖2  = ‖𝜉‖2  −  |𝑀𝜉|2: 

#‖[𝐷𝑝𝑛 𝑒𝑥𝑝 (∑𝑠𝑙
(𝑛)
 𝐴𝑙𝑛

𝑟

𝑙=1

) −  𝑀𝜉𝑛
𝑟𝑝
𝑠(𝑛)]  1‖

2

= ‖𝐷𝑝𝑛1‖
2
 – |𝑀𝜉𝑛

𝑟𝑝
(𝑠(𝑛))|

2

= 𝑐𝑝𝑝
(𝑛)
− |𝑀𝜉𝑛

𝑟𝑝
(𝑠(𝑛))|

2
. 

Remark(4.1.13)[123]: The operator 𝐴𝑞𝑛  =  ∑ 𝑥𝑟𝑞𝐷𝑟𝑛  + 𝐷𝑞𝑛
𝑞−1
𝑟=1   contains 𝑥pq  for r = p.b. 

Since 𝑀𝐷𝑝𝑛1 =  0 𝑎𝑛𝑑 𝑀𝐷𝑝𝑛 𝑒𝑥𝑝(𝑠𝐴𝑝𝑛)1 ≠  0  we may first think of considering 

𝑒𝑥𝑝(𝑠𝐴𝑝𝑛)𝐴𝑞𝑛1, 1 ≤ 𝑝 <  𝑞 ≤ 𝑚  (similarly as in [146], [147] where the linear 

combinations of 𝐴𝑝𝑛𝐴𝑞𝑛  were used). But this is not sufficient for the approximation. We 

might then try to consider the expression  

𝑒𝑥𝑝(𝑠𝐴𝑝𝑛) (∑𝛼𝑘𝐴𝑘𝑛

𝑚

𝑘=1

)   , 1 ≤ 𝑝 < 𝑚 < 𝑛, 

with 𝛼𝑞  =  1. The calculations show again that these combinations are still not sufficient to 

approximate 𝑥pq . We arrive then at the suggestion to take 

𝑒𝑥𝑝 (∑𝑠𝑙𝐴𝑙𝑛

𝑟

𝑙=1

)   (∑𝛼𝑘𝐴𝑘𝑛

𝑚

𝑘=1

)  , 1 ≤  𝑟 ≤ 𝑝 < 𝑞 ≤ 𝑚 < 𝑛, 

which is the choice made in Lemma (4.1.12). 

c. For approximation of the variable 𝑥pq we use p different combinations, corresponding to 

𝛴𝑝𝑞
𝑟  (𝑠, 𝛼,𝑚), 1 ≤  𝑟 ≤  𝑝. All these combinations are essential, i.e. none of them can be 

omitted. This can be seen by constructing corresponding counterexamples and is in a contrast 

to the previous cases considered in [146], [147] where only one combination of 𝐴𝑝𝑛𝐴𝑞𝑛 were 

used to approximate xpq. 

d. To make the expression 𝛴𝑝𝑞
𝑟  (𝑠, 𝛼,𝑚) in (11) larger (to apply then the criterium in Lemma 

(4.1.12) we chose 𝑠(𝑛)  ∈  ℝ𝑟 such that 

|𝑀𝜉𝑛
𝑟𝑝
(𝑠(𝑛))|

2
 = max

𝑠∈ℝ𝑟
|𝑀𝜉𝑛

𝑟𝑝(𝑠)|
2

 

 (which is possible, |𝑀𝜉𝑛
𝑟𝑝(𝑠)|

2
being continuous and bounded). 

e. With the same aim we chose 𝛼 𝑘
(𝑛)

 in such a way that 
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‖(𝐴𝑞𝑛  − 𝑥𝑝𝑞𝐷𝑝𝑛  + ∑ 𝛼𝑘
(𝑛)
 𝐴𝑘𝑛

𝑚

𝑘=1,𝑘≠𝑞

)1‖

2

= 𝑚𝑖𝑛
(𝑡𝑘 )∈ℝ

𝑚−1
𝐴𝑞𝑛  − 𝑥𝑝𝑞𝐷𝑝𝑛  + ‖ ∑ 𝑡𝑘𝐴𝑘𝑛

𝑚

𝑘=1,𝑘≠𝑞

‖

2

. 

f. The right-hand side of the previous expression is equal (see (6)) to 

𝛤 (g1, g2, . . . , g𝑞
𝑝
 , . . . , g𝑚)

𝛤 (g1, g2, . . . , g𝑞−1, g𝑞−1, . . . , g𝑚)
, 

Where 

 𝑔𝑘 ∶=  𝑔𝑘𝑛 ∶=  𝐴𝑘𝑛1, 1 ≤ 𝑘 ≤ 𝑚, 𝑘 ≠ 𝑞, g𝑞
𝑝
: = g𝑞𝑛

𝑝
∶= (𝐴𝑞𝑛 − 𝑥𝑝𝑞𝐷𝑝𝑛)1.             (12) 

 

Definition (4.1.14)[123]: We shall say that two series∑𝑛 𝑎𝑛 𝑎𝑛𝑑∑𝑛 𝑏𝑛  bn with positive 

members are equivalent and shall denote this by∑𝑛 𝑎𝑛  ∼ ∑𝑛 𝑏𝑛 if they are convergent or 

divergent simultaneously.  We note that if 𝑎𝑛  >  0, 𝑏𝑛  >  0, 𝑛 ∈ ℕ, then we have 

∑
𝑎𝑛

𝑎𝑛  +  𝑏𝑛
𝑛∈ℕ

 ∼ ∑
𝑎𝑛
𝑏𝑛

𝑛∈ℕ

.                           (13) 

Using (5) we get, setting 𝑏 =  (𝑀𝜉𝑛
𝑟𝑝
 (𝑠(𝑛)))𝑛=𝑚+1

𝑚+1+𝑁 ∈  𝑅𝑁 , 𝑁 ∈ ℕ, 

𝑚𝑖𝑛
𝑡∈ℕ𝑁

(‖[ ∑  𝑡𝑛 𝑒𝑥𝑝(∑𝑠𝑙
(𝑛)
 𝐴𝑙𝑛

𝑟

𝑙=1

)(∑𝛼𝑘
(𝑛)
 𝐴𝑘𝑛

𝑚

𝑘=1

) − 𝑥𝑝𝑞

𝑚+1+𝑁

𝑛=𝑚+1

] 1‖

2

|(𝑡, 𝑏) = −1)   

~( ∑
|𝑀𝜉𝑛

𝑟𝑝
(𝑠(𝑛))|

2

𝑐𝑝𝑝
(𝑛)
− |𝑀𝜉𝑛

𝑟𝑝(𝑠(𝑛))|
2
+ ‖(𝐴𝑞𝑛 − 𝑥𝑝𝑞𝐷𝑝𝑛 + ∑ 𝛼𝑘

(𝑛)
 𝐴𝑘𝑛

𝑚
𝑘=1,𝑘≠𝑝 ) 1‖

2

𝑚+1+𝑁

𝑛=𝑚+1

)

−1

 

Due to we shall write C (respectively �̂�) instead of 𝐶(n)  (respectively �̂�(n) ), where 

𝐶(𝑛)  =

(

 
 

𝑐11
(𝑛)

𝑐12
(𝑛)

. . . 𝑐1𝑚
(𝑛)

𝑐12
(𝑛)

𝑐22
(𝑛)

. . . 𝑐2𝑚
(𝑛)

𝑐1𝑚
(𝑛)

𝑐2𝑚
(𝑛)

⋱ 
. . . 𝑐𝑚𝑚

(𝑛)
)

 
 

 

�̂�(𝑛)  =

(

 
 

𝑐11
(𝑛)

𝑐12
(𝑛)

. . . 𝑐1𝑚
(𝑛)

𝑐12
(𝑛)

𝑐11
(𝑛)
+ 𝑐22

(𝑛)
. . . 𝑐2𝑚

(𝑛)

𝑐1𝑚
(𝑛)

𝑐2𝑚
(𝑛)

⋱ 
. . . 𝑐11

(𝑛)
+ 𝑐22

(𝑛)
+⋯+ 𝑐𝑚𝑚

(𝑛)
)

 
 

 

 

Using this remark, notation (13) and Fourier transforms we conclude that 

𝛤 (g1, g2, . . . , g𝑚) =  𝑑𝑒𝑡 �̂�, 𝑖. 𝑒. 𝛤 (g1𝑛, g2𝑛, . . . , g𝑚𝑛) =  𝑑𝑒𝑡 �̂�
(𝑛) ,               (14) 

since (g𝑞 , g𝑝)  =  (�̂�)𝑝𝑞 , 1 ≤  𝑝, 𝑞 ≤ 𝑚 . Indeed for 𝑝 ≠  𝑞  we have (g𝑞𝑛, g𝑝𝑛)  =

 (g𝑝𝑛, g𝑞𝑛)  = (∑ 𝑥𝑟𝑝𝑦𝑟𝑛  + 𝑦𝑝𝑛,
𝑝−1
𝑟=1 ∑ 𝑥𝑠𝑞𝑦𝑠𝑛  + 𝑦𝑞𝑛

𝑞−1
𝑠=1 ) =  (𝑦𝑝𝑛, 𝑦𝑞𝑛)  =  𝑐𝑝𝑞

(𝑛)
 , 
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(g𝑞𝑛, g𝑝𝑛)   = ‖∑𝑥𝑟𝑝𝑦𝑟𝑛  + 𝑦𝑝𝑛

𝑝−1

𝑟=1

‖

2

=∑‖𝑥𝑟𝑝‖
2
‖𝑦𝑟𝑛‖

2  + ‖𝑦𝑝𝑛‖
2

𝑝−1

𝑟=1

=∑ 𝑐𝑟𝑟
(𝑛)
=

𝑝

𝑟−1

(�̂�(𝑛))
𝑝𝑝

 

(we reinserted here the upper index n in  𝑐𝑝𝑞
(𝑛)

 for clarity). 

In the following we shall need a variant of Lemma (4.1.9 )replacing the |𝑀𝜉𝑛
𝑟𝑝
 (𝑠)| by its 

maximum 𝛯𝑛
𝑟𝑝

 . Let us set (see (10) for definition of 𝜉𝑛
𝑟𝑝
 (𝑠)) 

𝛯𝑛
𝑟𝑝
= max

𝑠∈ℝ𝑟
|𝑀𝜉𝑛

𝑟𝑝
 (𝑠)|2 .                                             (15) 

Now we see that using s and α as in parts 4 and 5 of we have 

𝛴𝑝𝑞
𝑟 (𝑠, 𝛼,𝑚) 

=∑ 
max
𝑠(𝑛)∈ℝ𝑟

|𝑀𝜉𝑛
𝑟𝑝
 (𝑠(𝑛))|2

𝑐𝑝𝑝
(𝑛)
  −  max

𝑠(𝑛)∈ℝ𝑟
|𝑀𝜉𝑛

𝑟𝑝
 (𝑠(𝑛))|2 + ‖(𝐴𝑞𝑛  − 𝑥𝑝𝑞𝐷𝑝𝑛  + ∑ 𝛼𝑘

(𝑛)
  𝐴𝑘𝑛

𝑚
𝑘=1,𝑘≠𝑝   )1‖

2

𝑛

  

(13)~∑ 
max
𝑠(𝑛)∈ℝ𝑟

|𝑀𝜉𝑛
𝑟𝑝
 (𝑠(𝑛))|2

𝑐𝑝𝑝
(𝑛)
 +  ‖(𝐴𝑞𝑛  − 𝑥𝑝𝑞𝐷𝑝𝑛  + ∑ 𝛼𝑘

(𝑛)
  𝐴𝑘𝑛

𝑚
𝑘=1,𝑘≠𝑝   )1‖

2

𝑛

  

 (15)∑
𝛯𝑛
𝑟𝑝

𝑐𝑝𝑝
(𝑛)
 + Γ(g1𝑛, g2𝑛, . . . , g𝑞−1𝑛, g𝑞+1𝑛…g𝑚𝑛)𝑛

 

Remark (4.1.13)
=

 ∑
𝛯𝑟𝑝Γ(g1, g2, . . . , g𝑞−1, g𝑞+1, … g𝑚)

𝑐𝑝𝑝Γ(g1, g2, . . . , g𝑞−1, g𝑞+1, … g𝑚) + Γ(g1, g2, . . . , gq
p
, … , g𝑚)𝑛

  

 

=  𝛴𝑝𝑞
𝑟  (𝑚) ∶=∑

𝛯𝑟𝑝Γ(g1, g2, . . . , g𝑞−1, g𝑞+1, … g𝑚)

𝑐𝑝𝑝Γ(g1, g2, … , g𝑚)
𝑛

(14)
=
∑
𝛯𝑟𝑝𝐴𝑞

𝑞
�̂�(𝑛)

𝑑𝑒𝑡�̂�(𝑛)
𝑛

 

For the latter equality we have used the fact that 

𝑐𝑝𝑝𝛤 (g1, g2, . . . , g𝑞−1, g𝑞+1, . . . , g𝑚) +  𝛤 g1, g2, . . . , g𝑞
𝑝
  , . . . , g𝑚 

=  𝛤 (g1, g2, . . . , g𝑚), 
which follows from (25). Indeed it is sufficient to take in (25) 𝐶 = �̂�  − 𝑐𝑝𝑝𝐸𝑞𝑞  𝑎𝑛𝑑 𝜆𝑞  =

 𝑐𝑝𝑝. Then we have 

 𝛤 (g1, g2, . . . , g𝑚)  =  𝑑𝑒𝑡 �̂�  =  𝑑𝑒𝑡( �̂�  − 𝑐𝑝𝑝𝐸𝑞𝑞 + 𝑐𝑝𝑝𝐸𝑞𝑞) 

=  𝑑𝑒𝑡(�̂� – 𝑐𝑝𝑝𝐸𝑞𝑞) + 𝑐𝑝𝑝𝐴𝑞
𝑞
 ( �̂� – 𝑐𝑝𝑝𝐸𝑞𝑞) 

=  𝛤 (g1, g2, . . . , g𝑞
𝑝
  , . . . , g𝑚) + 𝑐𝑝𝑝𝛤 (g1, g2, . . . , g𝑞−1, g𝑞+1, . . . , g𝑚). 

So we have show 𝑑 the following lemma. 

Lemma(4.1.15)[123]: Let 1 ≤  𝑟 ≤ 𝑝 < 𝑞 ≤  𝑚. Then for some 𝑠𝑙  =  (𝑠𝑙
(𝑛)
  )𝑛=𝑚+1,
∞  𝛼𝑘  =

 (𝛼𝑘
(𝑛)
 )𝑛=𝑚+1
∞ , wheres(𝑛)𝑙

(𝑛)
 , 𝛼𝑘

(𝑛)
∈  ℝ, 1 ≤  𝑙 ≤ 𝑟, 1 ≤ 𝑘 ≤  𝑚, we have 

𝑥𝑝𝑞 ∈ 〈exp(∑𝑠𝑙
(𝑛)
 𝐴ln )

𝑟

𝑙=1

)(∑𝛼𝑘
(𝑛)
 𝐴𝑘𝑛

𝑚

𝑘=1

)1|𝑛 ∈ ℕ,𝑚 < 𝑛〉 
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⇔ 𝛴𝑝𝑞
𝑟 (𝑚) =∑

𝛯𝑟𝑝𝐴𝑞
𝑞
�̂�(𝑛)

𝑑𝑒𝑡�̂�(𝑛)
𝑛

= ∞.                               (16) 

 The proof of (𝑖𝑣) ⇒ (𝑥𝑝𝑞  𝔄
𝑚 , 1 ≤  𝑝 ≤  𝑚, 𝑝 <  𝑞) in Theorem (4.1.5) 

Idea.We show firstly that 𝑥𝑝𝑞  𝔄
𝑚  Am for some (𝑝, 𝑞): 1 ≤ 𝑝 < 𝑞 ≤ 𝑚 if conditions (iv) 

are valid. Further we show that this also holds for all such (p, q). For this it is sufficient to 

show that 

         𝛴𝑚  > 𝐶𝑆𝑚 𝑓𝑜𝑟 𝑠𝑜𝑚𝑒  𝐶 > 0,                               (17) 
where 

𝑆𝑚 ∶= ∑ 𝑆𝑝𝑞
𝐿 (𝜇𝑚)

1≤𝑝<𝑞≤𝑚

, 𝑎𝑛𝑑 𝛴𝑚 ∶= ∑ 𝛴𝑝𝑞
𝑟 (𝑚)   

1≤𝑟≤𝑝<𝑞≤𝑚

 (18) 

(see (15) for the definition of 𝛴𝑝𝑞
𝑟 (𝑚)).  Indeed, in this case 𝑆𝑚 = ∞ since 𝑆𝑝𝑞

𝐿 (𝜇𝑚) =

∞∀𝑝, 𝑞: 1 ≤ 𝑝 < 𝑞 ≤  𝑚 by Lemma(4.1.9)hence 𝛴𝑚 = ∞by (17) and finally we conclude 

that 𝛴𝑝𝑞
𝑟 (𝑚) = ∞ for some 𝑟, 𝑝, 𝑞: 1 ≤ 𝑟 ≤ 𝑝 < 𝑞 ≤  𝑚. By Lemma (4.1.15) we get that 

𝑥𝑝𝑞  𝜂 𝔄
𝑚. 

We define the generalization of the characteristic polynomial for matrix 𝐶 ∈
 𝑀𝑎𝑡(𝑚, ℂ) and establish some its properties. These properties are used. 

We estimate 𝛯𝑛
𝑝𝑞
 =  max

𝑡∈ℝ𝑝
|𝑀𝜉𝑛

𝑟𝑝
 (𝑠(𝑛))|2. This estimation is based on Lemma (4.1.23) 

which gives us the exact formula for 

𝑀𝜉𝑛
𝑝𝑞
(𝑡)  = (𝐷𝑞𝑛𝑇𝑒𝑥𝑝(∑𝑟=1

𝑝
 𝑡𝑟𝐸𝑟𝑛)

𝑅,𝜇𝐵
𝑚

1, 1) , 𝑡 =  (𝑡1, 𝑡2, . . . , 𝑡𝑝)  ∈ ℝ
𝑝, 1 ≤  𝑝 ≤  𝑚 

(see (43)), where 𝐷𝑘𝑛 is defined in (8). The latter formula is based of the exact formulas for 

the matrix elements 

∅𝑝(𝑡) ∶= ∅𝑝
(𝑛)
(𝑡)  = (𝑇

𝑒𝑥𝑝(∑𝑟=1
𝑝

 𝑡𝑟𝐸𝑟𝑛)

𝑅,𝜇𝐵
𝑚

1, 1) , 𝑡 =  (𝑡𝑟)𝑟=1
𝑝
 ∈ ℝ𝑝, 1 ≤  𝑝 ≤  𝑚 

 (see (37)) and theirs generalizations (see (41)). We cannot calculate explicitly 

𝛯𝑛
𝑝𝑞
 =  max

𝑡∈ℝ𝑝
|𝑀𝜉𝑛

𝑝𝑞
 (𝑡)|2 

but we are able by Lemmas (4.1.23)  and (4.1.24) to obtain the estimation 𝛯𝑛
 𝑝𝑞
 > 𝛹𝑛

𝑝𝑞
 , 

𝛹𝑛
𝑝𝑞
∶=

(𝑀12...𝑝−1𝑞
12...𝑝−1𝑝

 (𝐶𝑝,𝑞
(𝑛)
 ))2 𝑒𝑥𝑝(−1)

(𝑀12...𝑝−1
12...𝑝−1

 (𝐶𝑝
(𝑛)
 )) (𝑀12...𝑝

12...𝑝
 (𝐶𝑝

(𝑛)
 )) + ∑𝑘=2

𝑝
𝜆𝑘(𝐴𝑘

𝑝
 (𝐶𝑝

(𝑛)
 ))2

 

 (see (45) and (46)). The crucial for proving (17) is Lemma (4.1.25)  dealing with some 

inequalities involving the generalized characteristic polynomials. We use the notations of 

Lemma(4.1.9)  :  

𝑆𝑝𝑞
𝐿 (𝜇𝐵

𝑚) = ∑ 𝑐𝑝𝑝
(𝑛)
 𝑏𝑞𝑞
(𝑛)

∞

𝑛=𝑞+1

= ∑
𝑐𝑝𝑝
(𝑛)
 𝐴𝑞𝑞
(𝑛)
(𝐶𝑚

(𝑛)
)

𝑑𝑒𝑡𝐶𝑚
(𝑛)

∞

𝑛=𝑞+1

= ∑
𝑐𝑝𝑝 𝐴𝑞𝑞

(𝑛)(𝑐𝑚)

𝑑𝑒𝑡𝑐𝑚

∞

𝑛=𝑞+1

 

Let 

𝜆 = (𝜆𝑘)𝑘=1
𝑚 ∈ ℝ𝑚, �̂�  = (�̂�𝑘)𝑘=1

𝑚 = 1, �̂�1 = 0, �̂�𝑘 =∑𝑐𝑟𝑟  , 2 ≤  𝑘 ≤  𝑚,     (19)

𝑘−1

𝑟=1
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𝑓𝑞  =  𝑒 ∑ 𝛹𝑟𝑝, 2 ≤  𝑞 ≤ 𝑚,

1≤𝑟≤𝑝<𝑞

  𝑓2 =  𝑒𝛹
11   =  𝑐11, 

𝑓3  =  𝑒(𝛹
11  +  𝛹12  +  𝛹22), . . . ,                                          (20) 

𝐶𝑚 = (

𝑐11 𝑐12 . . . 𝑐1𝑚
𝑐12 𝑐11 + 𝑐22 . . . 𝑐2𝑚

𝑐1𝑚 𝑐2𝑚

⋱ 
. . . 𝑐11 +⋯+ 𝑐𝑚𝑚

) 

𝐶𝑚 = (

𝑐11 𝑐12 . . . 𝑐1𝑚
𝑐12 𝑐22 . . . 𝑐2𝑚

𝑐1𝑚 𝑐2𝑚

⋱ 
. . . 𝑐𝑚𝑚

)                                        (21)   

Obviously, we have �̂�𝑚  =  𝐶𝑚(�̂�),𝑤ℎ𝑒𝑟𝑒 �̂�  ∈  ℂ
𝑚, is defined in (19)and we use the notation 

𝐶𝑚(𝜆) ∶=  𝐶𝑚  + ∑𝑘=1
𝑚  𝜆𝑘𝐸𝑘𝑘. 

We have the following expressions for 𝑆𝑚 𝑎𝑛𝑑 𝛴𝑚: 

𝑆𝑚 ∶= ∑ 𝑆𝑟𝑘
𝐿 (𝜇𝑚)

1≤𝑟<𝑘≤𝑚

∼ ∑
∑𝑘=2
𝑚 (∑𝑟=2

𝑘−1 𝑐𝑟𝑟)𝐴𝑘
𝑘(𝐶𝑚)

det 𝐶𝑚
= ∑

∑𝑘=2
𝑚 �̂�𝑘𝐴𝑘

𝑘(𝐶𝑚)

det 𝐶𝑚

∞

𝑛=𝑚+1

∞

𝑛=𝑚+1

 

We have replaced the series 

𝑆𝑝𝑞
𝐿 (𝜇𝐵

𝑚) = ∑ 𝑐𝑝𝑝
(𝑛)
 𝑏𝑞𝑞
(𝑛)

∞

𝑛=𝑞+1

 

with the equivalent one 

𝑆𝑝𝑞
𝐿 (𝜇𝐵

𝑚)~ ∑ 𝑐𝑝𝑝
(𝑛)
 𝑏𝑞𝑞
(𝑛)

∞

𝑛=𝑚+1

 

If we use the equality �̂�𝑚  =  𝐶𝑚(�̂�), we get 

𝛴𝑚 ∶= ∑ 𝛴𝑝𝑞
𝑟 (𝑚)

1≤𝑟≤𝑝<𝑞≤𝑚

 = ∑ ∑ 𝛴𝑝𝑞
𝑟 (𝑚)

1≤𝑟≤𝑝<𝑞2≤𝑞≤𝑚

= ∑ ∑ ∑
𝛯𝑛
𝑝𝑞
𝐴𝑞
𝑞
(�̂�𝑚

(𝑛)
)

𝑑𝑒𝑡�̂�𝑚
(𝑛)

𝑛1≤𝑟≤𝑝<𝑞2≤𝑞≤𝑚

 

 

=∑
∑ (∑ 1≤𝑟≤𝑝<𝑞  𝛯𝑟𝑝)𝐴𝑞

𝑞
(𝐶𝑚(�̂�))

𝑚
𝑞=2

𝑑𝑒𝑡𝐶𝑚(�̂�)𝑛

(47)
>
∑
∑ (∑1≤𝑟≤𝑝<𝑞  𝛹

𝑟𝑝)𝐴𝑞
𝑞
(𝐶𝑚(�̂�))

𝑚
𝑞=2

𝑑𝑒𝑡𝐶𝑚(𝜆)
𝑛

 

 
(20)
=
 ∑

𝑒−1∑  𝑓𝑞𝐴𝑞
𝑞
(𝐶𝑚(�̂�))

𝑚
𝑞=2

𝑑𝑒𝑡𝐶𝑚  + ∑  �̂�𝑞𝐴𝑞
𝑞
(𝐶𝑚(�̂�|𝑞|))

𝑚
𝑞=2𝑛

                          (22) 

The implications 𝑆𝑚 = ∞ ⇒ 𝛴𝑚 = ∞ is based on the equality (see (22)) 

𝐴𝑘
𝑘 (𝐶𝑚(𝜆

[𝑘])) =  𝐴𝑘
𝑘(𝐶𝑚) + ∑ ∑𝜆𝑖1𝜆𝑖2 . . . 𝜆𝑖𝑟

𝑚−𝑘

𝑟=1<𝑘<𝑖1<𝑖2<···<𝑖𝑟<𝑚

𝐴𝑘 𝑖1 𝑖2...𝑖𝑟
𝑘 𝑖1 𝑖2...𝑖𝑟(𝐶𝑚) (23)  

and on the following lemma. 
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Lemma (4.1.16)[123]:If 𝑆𝑘𝑛
𝐿  (𝜇𝐵

𝑚) = ∞ for some 1 ≤ 𝑘 <  𝑛 ≤  𝑚  then one of the series 

𝛴𝑝𝑞
𝑟  (𝑚), 1 ≤ 𝑟 ≤  𝑝 <  𝑞 ≤ 𝑚, is divergent and hence by Lemma(4.1.25) we can 

approximate the corresponding variable 𝑥pq . 

Further we can approximate the remaining variables 𝑥𝑘𝑛, 1 ≤  𝑘 ≤  𝑚 <  𝑛, as in [146]. This 

implies the inclusion (𝔄𝑚)′  ⊂  𝐿∞(𝑋𝑚, 𝜇𝐵
𝑚) and so the irreducibility of the representation 

(see “The idea of the proof of irreducibility” at the beginning).  

We define 𝐺𝑚(𝜆)  the generalization of the characteristic polynomial 𝑝𝐶(𝑡)  =  𝑑𝑒𝑡(𝑡𝐼 −
 𝐶), 𝑡 ∈ ℂ, of the matrix 𝐶 ∈  𝑀𝑎𝑡(𝑚, ℂ): 

𝐺𝑚(𝜆)  =  𝑑𝑒𝑡𝐶𝑚(𝜆), 𝜆 ∈  ℂ
𝑚, 𝑤ℎ𝑒𝑟𝑒 𝐶𝑚(𝜆)  =  𝐶 +∑𝜆𝑘𝐸𝑘𝑘

𝑚

𝑘=1

 .             (24) 

We denote by 𝑀𝑘 𝑖1 𝑖2...𝑖𝑟
𝑘 𝑖1 𝑖2...𝑖𝑟(𝐶)  (respectively 𝐴𝑘 𝑖1 𝑖2...𝑖𝑟

𝑘 𝑖1 𝑖2...𝑖𝑟(𝐶)  , 1 ≤  𝑖1  < · · · <  𝑖𝑟  ≤  𝑚, 1 ≤

 𝑗1 < · · · <  𝑗𝑟  ≤  𝑚,  the minors (respectively the cofactors) of the matrix C with 

𝑖1, 𝑖2, . . . , 𝑖𝑟  rows and 𝑗1, 𝑗2, . . . , 𝑗𝑟 columns. By definition 

𝐴12...𝑚
12...𝑚 (𝐶)  = 𝑀ℵ

ℵ(𝐶)  =  1 𝑎𝑛𝑑 𝑀12...𝑚
12...𝑚 (𝐶)  =  𝑀ℵ

ℵ(𝐶)  =  𝑑𝑒𝑡 𝐶. 
Lemma (4.1.17)[123]: For the generalized characteristic polynomial 𝐺𝑚(𝜆) 𝑜𝑓 𝐶 ∈
 𝑀𝑎𝑡(𝑚, ℂ) 𝑎𝑛𝑑 𝜆 = (𝜆1, 𝜆2, . . . , 𝜆𝑚)  ∈  ℂ

𝑚 we have: 

𝐺𝑚(𝜆)  =  𝑑𝑒𝑡 (𝐶 +∑𝜆𝑘𝐸𝑘𝑘

𝑚

𝑘=1

)

=  𝑑𝑒𝑡𝐶 + ∑ ∑𝜆𝑖1𝜆𝑖2 . . . 𝜆𝑖𝑟

𝑚−𝑘

𝑟=1<𝑘<𝑖1<𝑖2<···<𝑖𝑟<𝑚

𝐴𝑘 𝑖1 𝑖2...𝑖𝑟
𝑘 𝑖1 𝑖2...𝑖𝑟(𝐶)         (25)  

Obviously 𝐺𝑚(𝜆) is a polynomial in the variables 

Lemma (4.1.18)[123]:For 𝐶 ∈  𝑀𝑎𝑡(𝑚, ℂ) 𝑎𝑛𝑑 𝜆 ∈  ℂ𝑚 we have 

𝐺𝑚(𝜆) = 𝐴ℵ
ℵ(𝐶𝑚(𝜆)) = 𝑑𝑒𝑡𝐶𝑚(𝜆) = 𝑑𝑒𝑡𝐶𝑚 +∑𝜆𝑟𝐴𝑟

𝑟 (𝐶𝑚(𝜆
[𝑟]))

𝑚

𝑟=1

,    (26) 

𝐴𝑘
𝑘(𝐶𝑚(𝜆)) =  𝐴𝑘

𝑘(𝐶𝑚) + ∑ 𝜆𝑟𝐴𝑟
𝑟 (𝐶𝑚(𝜆

[𝑟]))

𝑚

𝑟=1,𝑟≠𝑘

,                         (27) 

𝐺𝑚(𝜆) = 𝐴ℵ
ℵ(𝐶𝑚(𝜆)) =  𝑑𝑒𝑡𝐶𝑚𝑚(𝜆)𝑑𝑒𝑡𝐶𝑚 +∑𝜆𝑟𝐴𝑟

𝑟 (𝐶𝑚(𝜆
[𝑟]))

𝑚

𝑟=1

               (28) 

𝐴𝑘
𝑘(𝐶𝑚(𝜆)) =  𝐴𝑘

𝑘(𝐶𝑚) + ∑ 𝜆𝑟𝐴𝑟𝑘
𝑟𝑘 (𝐶𝑚(𝜆

[𝑟]))

𝑚

𝑟=1,𝑟≠𝑘

,                  (29) 

where for 𝜆 ∈  𝐶𝑚 𝑎𝑛𝑑 1 ≤  𝑘 ≤  𝑚 we have set 

𝜆[𝑘]  =  (0, . . . , 0, 𝜆𝑘+1, . . . , 𝜆𝑚), 𝜆
{𝑘}  =  (𝜆1, 𝜆2, . . . , 𝜆𝑘, 0, . . . , 0).             (30) 

Proof: We have for m = 2 using (25) 

𝐺2(𝜆)  =  𝑑𝑒𝑡𝐶2  + 𝜆1𝐴1
1(𝐶2) + 𝜆2𝐴2

2(𝐶2) + 𝜆1𝜆2𝐴12
12(𝐶2)

=  𝑑𝑒𝑡𝐶2  + 𝜆1[𝐴1
1(𝐶2) + 𝜆2𝐴12

12(𝐶2)] + 𝜆2𝐴2
2(𝐶2)

=  𝑑𝑒𝑡𝐶2  + 𝜆1𝐴1
1 (𝐶2(𝜆

[124])) + 𝜆2𝐴2
2 (𝐶2(𝜆

[125])) , 
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𝐺2(𝜆)  =  𝑑𝑒𝑡𝐶2  + 𝜆1𝐴1
1(𝐶2) + 𝜆2[𝐴2

2(𝐶2) + 𝜆1𝐴12
12(𝐶2)]

=  𝑑𝑒𝑡𝐶2  + 𝜆1𝐴1
1 (𝐶2(𝜆

{1})) + 𝜆2𝐴2
2 (𝐶2(𝜆

{2})) . 

For m =3 we have 

𝐺3(𝜆)  =  𝑑𝑒𝑡𝐶3  +  𝜆1𝐴1
1(𝐶3) + 𝜆2𝐴2

2(𝐶3) + 𝜆3𝐴3
3(𝐶3) + 𝜆1𝜆2𝐴12

12(𝐶3)  + 𝜆1𝜆3𝐴13
13(𝐶3)

+ 𝜆2𝜆3𝐴23
23(𝐶3) + 𝜆1𝜆2𝜆3𝐴123

123(𝐶3)
=  𝑑𝑒𝑡𝐶2  +  𝜆1[𝐴1

1(𝐶3) + 𝜆2𝐴12
12(𝐶3) + 𝜆3𝐴13

13(𝐶3) + 𝜆2𝜆3𝐴123
123(𝐶3)]

+ 𝜆2[𝐴2
2(𝐶3) + 𝜆3𝐴23

23(𝐶3)] + 𝜆3𝐴3
3(𝐶3)

=  𝑑𝑒𝑡𝐶3  +  𝜆1𝐴1
1 (𝐶3(𝜆

[124])) + 𝜆2𝐴2
2 (𝐶3(𝜆

[125])) + 𝜆3𝐴3
3 (𝐶3(𝜆

[126])) , 

𝐺3(𝜆)  =  𝑑𝑒𝑡𝐶3  + 𝜆1𝐴1
1(𝐶3) + 𝜆2[𝐴2

2(𝐶3) + 𝜆1𝐴12
12(𝐶3)]

+ 𝜆3[𝐴1
1(𝐶3) + 𝜆1𝐴13

12(𝐶3) + 𝜆2𝐴23
23(𝐶3) + 𝜆1𝜆2𝐴123

123(𝐶3)]

=  𝑑𝑒𝑡𝐶3  + 𝜆1𝐴1
1 (𝐶3(𝜆

{1})) + 𝜆2 (𝐴2
2𝐶3(𝜆

{2})) + 𝜆3𝐴3
3 (𝐶3(𝜆

{3})) 

For m > 3 the proof of (26) and (28) is the same. The identity (27) follows from (26) and 

(29) follows from (28).  

The proof of Lemma (4.1.16) is based on Lemmas (4.1.19), (4.1.21) and (4.1.22) concerning 

the properties of a positive matrices. 

Lemma (4.1.19)[123]: (Sylvester [159]) Let C ∈  Mat(n,ℝ) and 1 ≤  p <  𝑛. We consider a 

matrix B =  (bik)p+1
n   defined by b ik = M12...pk

12...pi
 (C).  Then the following Sylvester 

determinant identity holds: 

detB = [M12...p
12...p

 (C)]
n−p−1

 det C. 

Corollary (4.1.20)[123]:If p =  n − 2 we have in particular 

|
An
n(C) An−1

n (C)

An
n−1 (C) An−1

n−1(C)
  | =  An−1n

n−1n(C)Aℵ
ℵ(C). 

For arbitrary 1 ≤ p < 𝑞 ≤  n we have 

|
Ap
p
(C) Aq

p
 (C)

Ap
q
(C) Aq

q
(C)
  | =  Aℵ

ℵ(C)Apq
pq(C)or |

Ap
p(C) Apq

pq(C)

Aℵ
ℵ(C)  Aq

q(C)
 | =  Aq

p
 (C)Ap

q(C).       (31) 

Lemma (4.1.21)[123]:  (Hadamard–Ficher’s inequality [135], [136], see also [150]) For any 

positive definite matrix C ∈  Mat(m,ℝ),m ∈ ℕ, and any two subsets 𝛼 and 𝛽 with ∅ ⊆  α,
β ⊆  {1, . . . , m} the following inequality holds: 

|
𝑀(𝛼) 𝑀(𝛼 ∪  𝛽)

𝑀(𝛼 ∩  𝛽) 𝑀(𝛽)
 | = |

𝐴(�̂�) 𝐴(�̂�  ∪  �̂�)

𝐴(�̂�  ∪  �̂�) 𝐴(�̂�)
𝐴(�̂�)|  ≤ 0,            (32) 

 

where 𝑀(𝛼)  = 𝑀𝛼
𝛼 (𝐶), 𝐴(𝛼)  =  𝐴𝛼

𝛼(𝐶) and �̂�  =  {1, . . . , 𝑚} \ 𝛼. 

More precisely, see [135]; [136]. See also [150]. 

Let us set as before (see (31)) for 𝜆 =  (𝜆1, . . . , 𝜆𝑘)  ∈ ℂ
𝑘 𝑎𝑛𝑑 𝐶 ∈  𝑀𝑎𝑡(𝑘, ℂ) 

𝐺𝑘(𝜆)  =  𝑑𝑒𝑡𝐶𝑘(𝜆), 𝑤ℎ𝑒𝑟𝑒 𝐶𝑘(𝜆)  =  𝐶 +∑𝜆𝑟𝐸𝑟𝑟

𝑘

𝑟=1

 . 

In the following lemma we use the notation for 𝜆 =  (𝜆1, . . . , 𝜆𝑘)  ∈ ℂ
𝑘:  

𝜆]𝑙[  =  (𝜆1, . . . , 𝜆𝑙−1, 0, 𝜆𝑙+1, . . . , 𝜆𝑘), 1 ≤  𝑙 ≤  𝑘, 
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and 𝐺𝑙(𝜆)  = 𝑀12...𝑙
12...𝑙  (𝐶𝑘(𝜆)), 1 ≤ 𝑙 ≤ 𝑘 . For 𝛼  and 𝛽  such that ∅ ⊆ 𝛼 ⊆  {1, 2, . . . , 𝑙}  and 

∅ ⊆ 𝛽 ⊆ {𝑙 + 1, . . . , 𝑘}, with 𝑙 <  𝑘, 𝐶 ∈ Mat (𝑘, ℂ) we set 

 

(𝐴𝛼
𝛼(𝐶))𝛽

𝛽
: =  𝐴𝛼∪𝛽

𝛼∪𝛽
(𝐶), 𝑎𝑛𝑑 𝐺𝑙(𝜆)𝛽

𝛽
: = ∑ 𝜆𝛼𝐴𝛼∪𝛽

𝛼∪𝛽
(𝐶)

∅⊆𝛼{1,2,...,𝑙}

. 

By definition we have 

𝐺𝑙(𝜆)  =  𝐴𝑙+1...𝑘
𝑙+1...𝑘  (𝐶𝑘(𝜆)) = (𝐴∅

∅(𝐶𝑘(𝜆)))
𝑙+1...𝑘

𝑙+1...𝑘
 =  𝐺𝑘(𝜆) 𝑙+1...𝑘 .

𝑙+1...𝑘         (33) 

Lemma (4.1.22)[123]:We have for 1 ≤ 𝑝 ≤  𝑙 ≤  𝑘 𝑎𝑛𝑑 𝐶 ∈  𝑀𝑎𝑡(𝑘, ℂ) 

𝐺𝑘(𝜆)

𝐺𝑙(𝜆)
=  

𝐺𝑘(𝜆
]𝑝[) + 𝜆𝑝𝐺𝑘(𝜆

]𝑝[ )𝑝
𝑝

𝐺𝑘(𝜆
]𝑝[)𝑙+1...𝑘

𝑙+1...𝑘 + 𝜆𝑝𝐺𝑘(𝜆
]𝑝[)𝑝𝑙+1...𝑘.

𝑝𝑙+1...𝑘                    (34) 

For the positive definite matrix C and 𝜆 =  (𝜆1, . . . , 𝜆𝑘)  ∈  ℝ
𝑘 with 𝜆𝑟 ≥  0, 𝑟 =  1, . . . , 𝑘, we 

have 

(𝐺𝑙(𝜆))
2  
𝜕

𝜕𝜆𝑝

𝐺𝑘(𝜆)

𝐺𝑙(𝜆)
= |

𝐺𝑘(𝜆
]𝑝[)𝑝

𝑝

𝐺𝑘(𝜆
]𝑝[)𝑝𝑙+1...𝑘

𝑝𝑙+1...𝑘 
𝐺𝑘(𝜆

]𝑝[)

𝐺𝑘(𝜆
]𝑝[)𝑙+1...𝑘

𝑙+1...𝑘| ≥  0.             (35) 

Proof: We have for 1 ≤ 𝑝 ≤  𝑙 ≤  𝑘 

𝜕𝐺𝑘(𝜆)

𝜕𝜆𝑝
= 

𝜕

𝜕𝜆𝑝
𝑑𝑒𝑡 (𝐶 +∑𝜆𝑟𝐸𝑟𝑟

𝑘

𝑟=1

) =  𝐴𝑝
𝑝
(𝐶(𝜆]𝑝[)) =  𝐺𝑘(𝜆

]𝑝[)
 𝑝

 𝑝
 , 𝑠𝑜          (36) 

𝐺𝑘(𝜆)  − 𝜆𝑝𝐺𝑘(𝜆
]𝑝[)

𝑝

𝑝
= 𝐺𝑘(𝜆)|𝜆𝑝=0 = 𝐺𝑘(𝜆

]𝑝[), 

hence 

𝐺𝑘(𝜆)  =  𝐺𝑘(𝜆
]𝑝[) + 𝜆𝑝𝐺𝑘(𝜆

]𝑝[)
𝑝

𝑝
, 1 ≤  𝑝 ≤ 𝑘. 

 

Similarly, we have 

𝐺𝑙(𝜆) =  𝐺𝑙(𝜆
]𝑝[) +  𝜆𝑝𝐺𝑙(𝜆

]𝑝[)
𝑝

𝑝
(𝜆]𝑝[)

𝑝

𝑝
= 𝐺𝑘(𝜆

]𝑝[)
𝑙+1...𝑘

𝑙+1...𝑘
+ 𝜆𝑝𝐺𝑘 

(𝜆]𝑝[)
𝑝𝑙+1...𝑘

𝑝𝑙+1...𝑘
, 1 ≤  𝑝 ≤  𝑙. 

Finally we get (34). Using the following formula: 

(
𝑎 + 𝑏𝑥

𝑐 +  𝑑𝑥
)
′

= 
𝑏𝑐 − 𝑎𝑑

(𝑐 + 𝑑𝑥)2
 

we conclude that (34) implies the identity in (34). 

To show the inequality in (34) we get 

|
𝐺𝑘(𝜆

]𝑝[)𝑝
𝑝

𝐺𝑘(𝜆
]𝑝[)𝑝𝑙+1...𝑘

𝑝𝑙+1...𝑘
 
 
𝐺𝑘(𝜆

]𝑝[)

𝐺𝑘(𝜆
]𝑝[)𝑙+1...𝑘

𝑙+1...𝑘| = |
𝐴𝑝
𝑝
(𝐶𝑘(𝜆

]𝑝[))

𝐴𝑝𝑙+1...𝑘
𝑝𝑙+1...𝑘

(𝐶𝑘(𝜆
]𝑝[))

 
𝐴∅
∅(𝐶𝑘(𝜆

]𝑝[))

𝐴𝑙+1...𝑘
𝑙+1...𝑘(𝐶𝑘(𝜆

]𝑝[))
|  

= |
𝐴𝛼
𝛼(𝐶)

𝐴𝛼∪𝛽
𝛼∪𝛽
(𝐶)
 
𝐴𝛼∩𝛽
𝛼∩𝛽
(𝐶)

𝐴𝛽
𝛽
(𝐶)

| ≥   0, 

where 𝐶 =  𝐶𝑘(𝜆
]𝑝[), 𝛼 =  {𝑝} 𝑎𝑛𝑑 𝛽 =  {𝑙 + 1, 𝑙 + 2, . . . , 𝑘}.  

Calculation of the matrix elements ∅𝑝(𝑡) for 𝑡 ∈ 𝑅𝑝, their generalizations and 𝛯𝑛
𝑝𝑞

.  
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Let us recall (see (10) and (19)) that �̂�𝑘  = ∑ 𝑐𝑟𝑟 , 2 ≤  𝑟 ≤  𝑚, �̂�1  =  0
𝐾−1
𝑟=1   and 

 𝛯𝑛
𝑝𝑞
= max

𝑡∈ℝ𝑝
‖𝑀𝜉𝑛

𝑝𝑞
 (𝑡)‖

2
, 1 ≤  𝑝 ≤ 𝑞 ≤ 𝑚.       (37) 

To estimate 

max
𝑡∈ℝ𝑝

‖𝑀𝜉𝑛
𝑝𝑞
 (𝑡)‖

2
, =  max

𝑡∈ℝ𝑝
‖𝜉𝑛
𝑝𝑞
 (𝑡)1,1‖

2
, , 

where 𝜉𝑛
𝑝𝑞
 (𝑡) =  𝑖𝑦𝑞𝑛 𝑒𝑥𝑝(∑ 𝑡𝑟  𝐴𝑟�̃�

𝑝
𝑟=1  )  we shall find the exact formulas for the matrix 

elements 

∅𝑝(𝑡) =  𝜑𝑝
(𝑛)
 (𝑡) = 𝑇

𝑒𝑥𝑝(∑ 𝑡𝑟 𝐸𝑟𝑛
𝑝
𝑟=1 1,1)

𝑅,𝜇𝐵
𝑚

, 𝑡 =  (𝑡𝑟  )𝑟=1
𝑝

∈  ℝ𝑝, 1 ≤ 𝑝 ≤  𝑚, (38) 

of the restriction of the representation 𝑇𝑅,𝜇𝐵
𝑚

 on the commutative subgroup 

𝑒𝑥𝑝(∑ 𝑡𝑟  𝐸𝑟𝑛
𝑝
𝑟=1  ) |𝑡 ∈  ℝ𝑝)  ≃ ℝ𝑝 of the group 𝐵0

ℕ and theirs generalization defined below. 

We note that 

𝑒𝑥𝑝(∑𝑡𝑟  𝐸𝑟𝑛

𝑝

𝑟=1

 )  =  𝐼 +∑𝑡𝑟𝐸𝑟𝑛

𝑝

𝑟=1

. 

For 1 ≤  𝑝 ≤ 𝑞, 𝑝, 𝑞 ∈  ℕ we get 

𝜉𝑛
𝑝𝑞
 (𝑡) =  𝑖𝑦𝑞𝑛 𝑒𝑥𝑝(∑𝑡𝑟  𝐴𝑟�̃�

𝑝

𝑟=1

 ) =  𝑖𝑦𝑞𝑛 𝑒𝑥𝑝 𝑖 [∑𝑡𝑟

𝑝

𝑟=1

(∑𝑥𝑘𝑟𝑦𝑘𝑛 + 𝑦𝑟𝑛

𝑟−1

𝑘=1

)]        (39) 

we have used the expression 𝐴𝑟�̃� = ∑ 𝑥𝑘𝑟𝑦𝑘𝑛 + 𝑦𝑟𝑛
𝑟−1
𝑘=1  = ∑ 𝑥𝑘𝑟𝑦𝑘𝑛

𝑟
𝑘=1   (see (9)). We have 

�̃�
𝑒𝑥𝑝(∑ 𝑡𝑟𝐸𝑟𝑛

𝑝
𝑟=1  )

𝑅,𝜇𝐵
𝑚

=  𝑒𝑥𝑝 (∑ 𝑡𝑟  𝐴𝑟�̃�
𝑝

𝑟=1
) =  𝑒𝑥𝑝 𝑖 ∑𝑡𝑟 (∑𝑥𝑘𝑟𝑦𝑘𝑛

𝑟

𝑘=1

)

𝑝

𝑟=1

 

=  𝑒𝑥𝑝 𝑖 [∑ 𝑡𝑟 (∑𝑥𝑘𝑟

𝑝

𝑟=𝑘

)𝑦𝑘𝑛

𝑝

𝑘=1

] 

To obtain 𝜉𝑝𝑝(𝑡) we generalize the function 

�̃�
𝑒𝑥𝑝(∑ 𝑡𝑟𝐸𝑟𝑛

𝑝
𝑟=1  )

𝑅,𝜇𝐵
𝑚

 

in the following way. We replace in the latter identity the vectors (𝑡𝑟  , . . . , 𝑡𝑟  )  ∈
 ℝ𝑝−𝑘+1 𝑏𝑦(𝑡𝑟𝑘)𝑟=𝑘

𝑝
∈ ℝ𝑝−𝑘+1 and denote the result by 𝜉𝑝𝑝(𝑡): 8i 

𝜉𝑝𝑝(𝑡) =  𝜉𝑝𝑝

(

 

[
 
 
 
𝑡11 ⋯
𝑡21
𝑡31

𝑡22
𝑡32 . . .

𝑡𝑝1 𝑡𝑝2 . . . 𝑡𝑝𝑝]
 
 
 

)

 =  𝑒𝑥𝑝 𝑖 [∑ 𝑡𝑟 ( ∑ 𝑥𝑘𝑟𝑡𝑟𝑘 + 𝑡𝑘𝑘

𝑝

𝑟=𝑘+1

)𝑦𝑘𝑛

𝑝

𝑘=1

] (40) 

To obtain 𝜉𝑝𝑞(𝑡) we consider the function 𝜉𝑝𝑞(𝑡 ;  𝑡𝑞𝑞)  =  𝜉𝑝𝑝(𝑡) 𝑒𝑥𝑝(𝑖𝑡𝑞𝑞𝑦𝑞𝑛). We have  
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𝜉𝑝𝑞(𝑡 ;  𝑡𝑞𝑞) =  𝜉𝑝𝑝 (

𝑡11 ⋯
𝑡21
𝑡31

𝑡22
𝑡32 . . .

𝑡𝑝1 𝑡𝑝2 . . . 𝑡𝑝𝑝 𝑡𝑝𝑝

)

≔  𝑒𝑥𝑝 𝑖 [∑( ∑ 𝑥𝑘𝑟  𝑡𝑟𝑘 + 𝑡𝑘𝑘

𝑝

𝑟=𝑘+1

)  𝑦𝑘𝑛 + 𝑡𝑞𝑞𝑦𝑞𝑦𝑛

𝑝

𝑘=1

]. 

Finally we have  

𝜉𝑝𝑝(𝑡)  =  
𝜕𝜉𝑝𝑝(𝑡)

𝜕𝑡𝑝𝑝
|
𝑡𝑘𝑟=𝑡𝑘 ,1≤𝑟≤𝑘≤𝑝

 and 𝜉𝑝𝑞(𝑡)  =  
𝜕𝜉𝑝𝑞(𝑡 ; 𝑡𝑞𝑞)

𝜕𝑡𝑞𝑞
|
𝑡𝑞𝑞=0,𝑡𝑘𝑟=𝑡𝑘 ,1≤𝑟≤𝑘≤𝑝

. 

Let us define ∅𝑝(𝑡)  = ∫ 𝜉𝑝𝑝(𝑡)𝑑𝜇(𝑥, 𝑦), ∅𝑝𝑞(𝑡)  = ∫ 𝜉𝑝𝑞(𝑡)𝑑𝜇(𝑥, 𝑦) , where 𝜇(𝑥, 𝑦)  =

 𝜇𝐼 (𝑥)  ⊗ (⨂
𝑛=𝑚+1 𝜇𝐶(𝑛)(𝑦))
∞   and 𝜇𝐼 (𝑥) is the standard Gaussian measure in ℝ ×ℝ2  × ⋯×

ℝ𝑚. 

Using definition (36) and the previous equalities we have finally 

𝛯𝑝𝑝  = max
𝑡∈ℝ𝑝

 |
𝜕∅𝑝𝑥(𝑡)

𝜕𝑡𝑝𝑝
|
𝑡𝑘𝑟=𝑡𝑘 ,1≤𝑟≤𝑘≤𝑝

2

, 

𝛯𝑝𝑞  = max
𝑡∈ℝ𝑝

 |
𝜕∅𝑝𝑥(𝑡)

𝜕𝑡𝑝𝑝
|
𝑡𝑘𝑟=0,𝑡𝑘 ,1≤𝑟≤𝑘≤𝑝

2

.                                  (41) 

Our aim is to estimate 𝛯𝑝𝑞. We shall use the notation 𝐶𝑘 ∶=  𝐶{1,2,...,𝑘} for Mat(𝑚, ℂ) and 1 ≤

𝑘 ≤ 𝑚 (see notation 𝐶𝛼 𝑓𝑜𝑟 𝜙 ⊆ 𝛼 ⊆  {1, . . . , 𝑚} in Lemma (4.1.8)). 

Lemma (4.1.23)[123]:For 1 ≤  𝑝 ≤  𝑞 ≤  𝑚 and 𝜑𝑝𝑞(𝑡)  = ∫ 𝜉𝑝𝑞(𝑡)𝑑𝜇(𝑥, 𝑦) we have 

∅𝑝𝑞

(

 
 

𝑡11 ⋯
𝑡21
𝑡31

𝑡22
𝑡32 𝑡33

. . .
𝑡𝑝1 𝑡𝑝2 𝑡𝑝3 . . . 𝑡𝑝𝑝; 𝑡𝑝𝑝)

 
 

 

= ∫  𝑒𝑥𝑝 𝑖 [∑( ∑ 𝑥𝑘𝑟  𝑡𝑟𝑘

𝑝

𝑟=𝑘+1

)  𝑦𝑘𝑛 + 𝑡𝑞𝑞𝑦𝑦𝑛

𝑝

𝑘=1

] 𝑑𝜇(𝑥, 𝑦)

ℝ
(𝑃−1)(𝑃−2)

2 +𝑃

 

=
1

√det𝐶1 (𝑡)
𝑒𝑥𝑝 (−

1

2
[(𝐶𝑇, 𝑇) − (𝐶1(𝑡)

−1𝑑, 𝑑)]),                 (42) 

where we set 𝑇 =  (𝑡11, 𝑡22, 𝑡33, . . . , 𝑡𝑝𝑝;  𝑡𝑞𝑞)  ∈  ℝ
𝑝+1, 𝐶 ∈ Mat(𝑝 + 1, ℂ) is defined by 

𝐶 ∶=  𝐶𝑝,𝑞 ∶=  𝐶{1,2,...,𝑝,𝑞} ∶=

(

 
 
 

[
 
 
 
 
 
𝑐11 𝑐12 𝑐13 ⋯ 𝑐1𝑝 𝑐1𝑞
𝑐12

𝑐22 𝑐23 ⋯ 𝑐2𝑝 𝑐2𝑞
𝑐13

𝑐1𝑝
𝑐1𝑞

𝑐23

𝑐2𝑝
𝑐2𝑞

𝑐33

𝑐3𝑝
𝑐3𝑞

⋯
⋱
⋯
⋯

𝑐3𝑝

𝑐𝑝𝑝
𝑐𝑝𝑞

𝑐3𝑞

𝑐𝑝𝑞
𝑐𝑞𝑞]
 
 
 
 
 

)

 
 
 

 

𝑑 = 𝑑21(𝑡 ), 𝑑31(𝑡 ), . . . , 𝑑𝑝1(𝑡); 𝑑32(𝑡 ), 𝑑42(𝑡), . . . , 𝑑𝑝2(𝑡); . . . ;  𝑑𝑝𝑝−1(𝑡) ∈  ℝ
(𝑃−1)(𝑃−2)

2  , 
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𝑑𝑟𝑠 (𝑡)  =  𝑡𝑟𝑠𝑒𝑠(𝑡 ), 1 ≤ 𝑠 < 𝑟 < 𝑝, 𝑒𝑠 (𝑡)  =  (𝐶𝑇 )𝑠  

= ∑𝑐𝑠𝑘𝑡𝑘𝑘  +  𝑐𝑘𝑘𝑥 𝑡𝑘𝑘 , 1 ≤ 𝑠 ≤  𝑝

𝑝

𝑘=1

, 

the operator 

𝐶1(𝑡)  =  1 +  𝐶(𝑡)  ∈  𝑀𝑎𝑡 (
(𝑝 −  1)(𝑝 −  2)

2
, ℂ) 

being defined by 

𝐷(𝑡)−1𝐶1(𝑡)𝐷(𝑡)
−1

=

(

 
 
 
 
 

𝑐11  + 𝑡21
−2 . . .

 . . .  . . .

𝑐11 𝑐12
 . . . . . .

𝑐11  . . .
𝑐12
 . . .
𝑐12
 . . .
𝑐1𝑝−1

 . . .
 . . . . . .
 . . .
 . . .

𝑐11  + 𝑡𝑝1
−2 𝑐12

𝑐12
. . .
𝑐12
. . .
𝑐1𝑝−1

𝑐22  + 𝑡32
−2

. . .
𝑐22 
. . .
𝑐2𝑝−1

. . . 𝑐12

. . . . . .
 . . . 𝑐1𝑝−1
. . . . . .

. . . 𝑐12

. . .

. . .. . .

. . .

. . .

𝑐22
. . .

𝑐22  + 𝑡𝑝2
−2

. . .
𝑐2𝑝−1

. . . 𝑐1𝑝−1

. . .

. . .. . .

. . .

. . .

𝑐2𝑝−1
. . .
𝑐2𝑝−1
. . .

𝑐𝑝−1𝑝−1 + 𝑡𝑝𝑝−1
−2

)

 
 
 
 
 

(43)   

where 𝐷(𝑡𝑧 = 𝑑𝑖𝑎𝑔(𝑡21, . . . , 𝑡𝑝1;  𝑡32, . . . , 𝑡𝑝2𝑝2;  𝑡43, . . . , 𝑡𝑝3𝑝3;  . . . ;  𝑡𝑝𝑝−1). We have  

𝑑𝑒𝑡𝐶1(𝑡) =  1 + ∑ ∑𝛼𝑖1
2 𝛼𝑖2

2  . . . 𝛼𝑖𝑟
2𝑀𝑖1𝑖2…𝑖𝑟

𝑖1𝑖2…𝑖𝑟(𝐶𝑝)

𝑝

𝑟=11≤𝑖1<𝑖22<···<𝑖𝑟≤𝑝

= ∑ 𝑡𝑠𝑘
2

𝑝

𝑠=𝑘+1

.      (44) 

Lemma (4.1.24)[123]:For 1 ≤  𝑝 ≤  𝑞 ≤m we have 

 𝛯𝑝𝑞  ≥  𝛹𝑝𝑞 ,                                                                                             (45) 

where 

𝛹𝑝𝑞  =
(𝑀12...𝑝−1𝑞

12...𝑝−1𝑝
 (𝐶𝑝,𝑞 ))

2 𝑒𝑥𝑝(−1)

(𝑀12...𝑝−1
12...𝑝−1

(𝐶𝑝)𝑀12...𝑝
12...𝑝

 (𝐶𝑝)+∑ �̂�𝑘(𝐴𝑘
𝑝
 (𝐶𝑝))

2𝑝
𝑘=2

.        (46) 

List of formulas for 𝛹𝑝𝑞 for small p and 𝑝 < 𝑞. 

𝛹11  =  𝑐11 𝑒𝑥𝑝(−1),𝛹
1𝑞  =

𝑐1𝑞
2  𝑒𝑥𝑝(−1)

𝑐11
, 1 ≤ 𝑞,                          (47) 

𝛹22  =  
(𝑀12

12 )2 𝑒𝑥𝑝(−1)

𝑐11(𝑀12
12+ 𝑐11

2 )
, 𝛹2𝑞  =  

(𝑀1𝑞
12 )2 𝑒𝑥𝑝(−1)

𝑐11(𝑀12
12+ 𝑐11

2 )
, 2 ≤ 𝑞,                   (48) 

𝛹3𝑞  =
(𝑀12𝑞

123 )2 𝑒𝑥𝑝(−1)

𝑀12
12𝑀123

123+𝑐11(𝑀13
12 )2 + (𝑐11 +𝑐22)(𝑀12

12 )2
, 3 ≤ 𝑞,           (49) 

𝛹4𝑞  =
(𝑀123𝑞

1234 )2 𝑒𝑥𝑝(−1)

𝑀123
123𝑀1234

1234+𝑐11(𝑀124
123 )2 +(𝑐11 + 𝑐22)(𝑀124

123 )2 + (𝑐11 +𝑐22 +𝑐33)(𝑀123
123 )2.

         (50) 

 
Proof of Lemmas (4.1.23) and (4.1.24). For a positive definite operator C in the space Rm we 

have the well-known formulas: 

1 √(2𝜋)𝑚 ∫ 𝑒𝑥𝑝 (−
1

2
(𝐶𝑥, 𝑥)) 𝑑𝑥 =  

1

√𝑑𝑒𝑡𝐶
 .

ℝ𝑚

                         (51) 

Using formula (50) we obtain the following formula for 𝑑 ∈  ℝ𝑚: 
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1

√(2𝜋)𝑚
 ∫ 𝑒𝑥𝑝 (−

1

2
(𝐶𝑥, 𝑥) + (𝑑, 𝑥)) 𝑑𝑥

ℝ𝑚

 =  
1

√𝑑𝑒𝑡𝐶
𝑒𝑥𝑝

(𝐶−1𝑑, 𝑑)

2
, (52) 

and as a particular case for m =1 we have 

1

√2𝜋
 𝑅 ∫ 𝑒𝑥𝑝 (−

1

2
𝑐𝑥2  + 𝑑𝑥)𝑑𝑥

ℝ

 =  
1

√𝑐
 𝑒𝑥𝑝 (

𝑑2

2𝑐
).                 (53) 

To obtain (52) from (51) we use the following formula: 

(𝐶𝑥, 𝑥) − 2(𝑑, 𝑥) = 𝐶(𝑥 − 𝑥0), (𝑥 − 𝑥0)(𝐶−1𝑑,𝑑), where 𝑥0  =  𝐶
−1𝑑.        (54) 

Indeed we find 𝑥0 ∈ ℝ
𝑚 and 𝑑0  ∈ ℝ such that 

(𝐶𝑥, 𝑥) −  2(𝑑, 𝑥)  = (𝐶(𝑥 − 𝑥0), (𝑥 − 𝑥0)) + 𝑑0. 
We have 

(𝐶𝑥, 𝑥) −  2(𝑑, 𝑥)  = (𝐶(𝑥 − 𝑥0), (𝑥 − 𝑥0)) + 𝑑0  
=  (𝐶𝑥, 𝑥)  − 2(𝐶𝑥0, 𝑥) + (𝐶𝑥0, 𝑥0) + 𝑑0, 

so 𝐶𝑥0  =  𝑑  hence 𝑥0  =  𝐶
−1 d and since (𝐶𝑥0, 𝑥0) + 𝑑0  =  0  we conclude that 𝑑0 =

−(𝐶𝑥0, 𝑥0)  = −(𝐶𝐶
−1𝑑, 𝐶−1𝑑) = −(𝐶−1𝑑, 𝑑). 

Fourier transform for the Gaussian measure 𝜇𝐶 in the space ℝm is: 

1

√(2𝜋)𝑚
 ∫ 𝑒𝑥𝑝 𝑖(𝑦, 𝑥)𝑑𝜇𝐶(𝑥)

ℝm

 =  𝑒𝑥𝑝 (−
1

2
(𝐶𝑦, 𝑦)) , 𝑦 ∈ ℝm. 

Let p = 1. Using (51)–(53) we have 

∅1(𝑡11)  = ∫  𝑒𝑥𝑝(𝑖𝑡11𝑦1𝑛)𝑑𝜇(𝑦) 

ℝ

=  𝑒𝑥𝑝 (−
1

2
𝑐11𝑡11

2 ) ; 

∅1𝑞  (𝑡11;  𝑡𝑞𝑞)  = ∫ 𝑒𝑥𝑝 𝑖(𝑡11𝑦1𝑛  +  𝑡𝑞𝑞𝑦𝑞𝑛)𝑑𝜇(𝑦)
ℝ2

 

=  𝑒𝑥𝑝 (−
1

2
𝑐11𝑡11

2 + 2𝑐1𝑞  𝑡11𝑡𝑞𝑞  + 𝑐𝑞𝑞𝑡𝑞𝑞
2 ) ; 

𝑀𝜉1𝑞  (𝑡11)  = ∫ 𝑖𝑦𝑞𝑛 𝑒𝑥𝑝(𝑖𝑡11𝑦1𝑛)𝑑𝜇(𝑦)

ℝ

  =  
𝜕∅1𝑞  (𝑡11;  𝑡𝑞𝑞)

𝜕𝑡𝑞𝑞
|
𝑡𝑞𝑞=0

= −𝑐1𝑞  𝑡 11𝑒𝑥𝑝 (−
1

2
𝑐11
2 𝑡11

2 ) , |𝑀𝜉1,𝑞  (𝑡11)|
2  =  𝑐1𝑞

2  𝑡11
2  𝑒𝑥𝑝(−𝑐11𝑡11

2 ); 

𝛯1𝑞 = max
𝑡11∈ℝ

|𝑀𝜉1𝑞  (𝑡11)|
2  =

𝑐1𝑞
2   𝑒𝑥𝑝(−1)

𝑐11
= 𝛹1𝑞 , 

we have used the obvious result max 

max
𝑥∈ℝ

𝑓 (𝑥) = 𝑓 (
1

𝑎
) =  

1

𝑒𝑎
,𝑤ℎ𝑒𝑟𝑒 𝑓 (𝑥) = 𝑥 𝑒𝑥𝑝(−𝑎𝑥), 𝑎 > 0.          (55) 

This shows (45) for (p, q) = (1, q). 

To show (42) in the general case we note that 
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∑( ∑ 𝑥𝑘𝑟  𝑡𝑟𝑘  +  𝑡𝑘𝑘

𝑝

𝑟=𝑘+1

)

𝑝

𝑘=1

𝑦𝑘𝑛  +  𝑡𝑞𝑞𝑦𝑞𝑛  = (𝑎(𝑥)  + 𝑇, 𝑦)ℝ
𝑝+1 , 

where 

𝑦 =  (𝑦1𝑛, 𝑦2𝑛, . . . , 𝑦𝑝𝑛;  𝑦𝑞𝑛), 𝑇 =  (𝑡11, 𝑡22, . . . , 𝑡𝑝𝑝;  𝑡𝑞𝑞)  ∈  ℝ
𝑝+1, 

𝑎(𝑥)  = (𝑎1(𝑥), 𝑎2(𝑥), . . . , 𝑎𝑝(𝑥);  0) ∈  ℝ
𝑝+1, 𝑎𝑘(𝑥)  = ∑ 𝑥𝑘𝑟  𝑡𝑟𝑘  =  (𝑥𝑡)𝑘𝑘

𝑝

𝑟=𝑘+1

 , 

𝑥 = ∑ 𝑥𝑘𝑟𝐸𝑘𝑟
1<𝑘<𝑟≤𝑚

, 𝑡 = ∑ 𝑡𝑘𝑟𝐸𝑘𝑟  , 1 ≤  𝑘 ≤  𝑝

1<𝑟<𝑘≤𝑚

. 

Using the definition of the Fourier transform we have 

 

∅𝑝𝑞(𝑡 ;  𝑡𝑞𝑞)  = ∫  ∫ 𝑒𝑥𝑝 𝑖 [∑(∑𝑥𝑘𝑟  𝑡𝑟𝑘

𝑝

𝑟=𝑘

 ) 𝑦𝑘𝑛  + 𝑡𝑞𝑞𝑦𝑞𝑛

𝑝

𝑘=1

] 𝑑𝜇(𝑥, 𝑦)

ℝ𝑝+1

 

= ∫𝑒𝑥𝑝 𝑖((𝑥) + 𝑇, 𝑦)𝑑𝜇(𝑥, 𝑦)  = ∫𝑒𝑥𝑝 [−
1

2
(𝐶𝑎(𝑥) + 𝑇), 𝑎(𝑥) +  𝑇)] 𝑑𝜇𝐼 (𝑥) . 

Since 

(𝐶(𝑎(𝑥) + 𝑇), 𝑎(𝑥) +  𝑇) = (𝐶𝑎(𝑥), 𝑎(𝑥)) + 2(𝑎(𝑥), 𝐶𝑇) + (𝐶𝑇 , 𝑇 ), 
we have 

∅𝑝𝑞(𝑡 ;  𝑡𝑞𝑞) = 𝑒𝑥𝑝 [−
1

2
(𝐶𝑇 , 𝑇 )]∫𝑒𝑥𝑝 (−

1

2
[(𝐶𝑎(𝑥), 𝑎(𝑥))

+ 2(𝑎(𝑥), 𝐶𝑇)]) 𝑑𝜇𝐼 (𝑥).                                                              (56) 

To calculate the latter integral we use (52). Let us introduce the notation 

𝑋 =  (𝑥12;  𝑥13, 𝑥23;  . . . ;  𝑥1𝑝, . . . ;  𝑥𝑝−1𝑝)  ∈ ℝ
(𝑝−1)(𝑝−2)

2  . 

We show that 

 

(𝐶𝑎(𝑥), 𝑎(𝑥)) + 2(𝑎(𝑥), 𝐶𝑇) = (𝐶(𝑡)𝑋, 𝑋) + 2(𝑑(𝑡), 𝑋) 
for some 

𝑑(𝑡)  ∈  ℝ
(𝑝−1)(𝑝−2)

2  𝑎𝑛𝑑 𝐶(𝑡)  ∈  𝑀𝑎𝑡 (
(𝑝 − 1)(𝑝 − 2)

2
, ℝ). 

We have 

 

(𝑎(𝑥), 𝐶𝑇) = ∑𝑎𝑘(𝑥)(𝐶𝑇 )𝑘

𝑝

𝑘=1

 = ∑ ∑ 𝑥𝑘𝑟  𝑡𝑟𝑘𝑒𝑘(𝑡)

𝑝

𝑟=𝑘+1

𝑝

𝑘=1

 = ∑ 𝑥𝑘𝑟  𝑡𝑟𝑘𝑒𝑘(𝑡)

1≤𝑘<𝑟≤𝑝

 

= ∑ 𝑥𝑘𝑟𝑑𝑟𝑘(𝑡)

1≤𝑘<𝑟≤𝑝

 = (𝑋, 𝑑(𝑡)), 

where 

𝑑(𝑡)  = (𝑑𝑟𝑘(𝑡))1≤𝑘<𝑟≤𝑝 ∈  ℝ
(𝑝−1)(𝑝−2)

2  , 
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𝑑𝑟𝑘(𝑡)  =  𝑡𝑟𝑘𝑒𝑘(𝑡) 𝑎𝑛𝑑 𝑒𝑘(𝑡)  =  (𝐶𝑇 )𝑘  = ∑𝑐𝑘𝑟  𝑡𝑟𝑟  +  𝑐𝑘𝑞  𝑡𝑞𝑞 , 1 ≤  𝑘 ≤ 𝑝 −  1

𝑝

𝑟=1

. 

Further 

 

(𝐶𝑎(𝑥), 𝑎(𝑥)) = ∑ 𝑐𝑘𝑛𝑎𝑘(𝑥)𝑎𝑛(𝑥)

1≤𝑘,𝑛≤𝑝

= ∑ 𝑐𝑘𝑛
1≤𝑘,𝑛≤𝑝

∑ 𝑥𝑘𝑟𝑡𝑟𝑘

𝑝

𝑟=𝑘+1

∑ 𝑥𝑛𝑠 𝑡𝑠𝑛

𝑝

𝑠=𝑛+1

 

= ∑ ∑ 𝑐𝑘𝑛𝑡𝑟𝑘𝑡𝑠𝑛𝑥𝑘𝑟𝑥𝑛𝑠 
1≤𝑛<𝑠≤𝑝1≤𝑘<𝑟≤𝑝

= (𝐶(𝑡)𝑋, 𝑋), 

where the operator C(t) is defined by its entries: 

 

(𝐶(𝑡))𝑘𝑟,𝑛𝑠 = 𝑐𝑘𝑛𝑡𝑟𝑘𝑡𝑠𝑛 𝑓𝑜𝑟 1 ≤ 𝑘 < 𝑟 ≤ 𝑝𝑎𝑛𝑑 1 ≤  𝑛 < 𝑠 ≤  𝑝.   (57) 
This show the representation (43) for the operator 𝐶1(𝑡). Finally we have 

(𝐶𝑎(𝑥), 𝑎(𝑥)) = (𝐶(𝑡)𝑋, 𝑋)and (𝑎(𝑥), 𝐶𝑇) = (𝑋, 𝑑(𝑡)). 
Putting the latter equalities in (56) we get using (52) 

∅𝑝𝑞(𝑡 ;  𝑡𝑞𝑞)  =  𝑒𝑥𝑝 [−
1

2
(𝐶𝑇 , 𝑇 )] ∫ 𝑒𝑥𝑝 (−

1

2
[(𝐶(𝑡)𝑋, 𝑋) +  2(𝑋, 𝑑(𝑡))]) 𝑑𝜇𝐼 (𝑥) 

= 
1

√𝑑𝑒𝑡𝐶1(𝑡)
 𝑒𝑥𝑝 (−

1

2
[(𝐶𝑇, 𝑇) − (𝐶1(𝑡)

−1𝑑(𝑡), 𝑑(𝑡))]), 

where 𝐶1(𝑡)  =  𝐼 + 𝐶(𝑡). This shows (44) of Lemma (4.1.23). 

We estimate now 𝛯𝑝𝑞. For (p, q) = (2, 2) we get 

∅2(𝑡)  =  
1

√ 𝑑𝑒𝑡𝐶1(𝑡)
𝑒𝑥𝑝 (−

1

2
[(𝐶𝑇 , 𝑇 ) − (𝐶1(𝑡)

−1𝑑(𝑡), 𝑑(𝑡))]) 

= 
1

√1 + 𝑐11𝑡21
2
exp (−

1

2
[𝑐11𝑡11

2 + 2𝑐12𝑡11𝑡22  + 𝑐22𝑡22
2 − 

(𝑐11𝑡11 + 𝑐12𝑡22)
2𝑡21
2

1 + 𝑐11𝑡21
2 ]) , 

where 

𝑇 =  (𝑡11, 𝑡22), 𝑑(𝑡)  =  𝑑21(𝑡)  =  𝑡21𝑒1(𝑡)  =  𝑡21(𝑐11𝑡11  + 𝑐12𝑡22), 
𝑒1(𝑡)  =  𝑐11𝑡11  +  𝑐12𝑡22, 𝑒2(𝑡)  =  𝑐21𝑡11  +  𝑐22𝑡22, 

𝐶 =  𝐶2  = (
𝑐11 𝑐12
𝑐12 𝑐22

) , 𝐶(𝑡) 
(61)
=
 𝑐11𝑡21

2 , 𝐶1(𝑡)  =  1 + 𝑐11𝑡21
2 , 

𝜕∅2(𝑡)

𝜕𝑡11
= [−(𝑐11𝑡11  + 𝑐12𝑡22) + 

(𝑐11𝑡11  +  𝑐12𝑡22)𝑐11𝑡21
2

1 + 𝑐11𝑡21
2 ] 

×
𝑒𝑥𝑝(−

1
2
[(𝐶𝑇 , 𝑇 ) − (𝐶1(𝑡)

−1𝑑(𝑡), 𝑑(𝑡))])

√𝑑𝑒𝑡𝐶1(𝑡)
, 

𝜕∅2(𝑡)

𝜕𝑡22
= [−(𝑐21𝑡11  + 𝑐22𝑡22) +

 (𝑐11𝑡11  +  𝑐12𝑡22)𝑐12𝑡21
2

1 + 𝑐11𝑡21
2 ] 

×
𝑒𝑥𝑝(−

1
2
[(𝐶𝑇 , 𝑇 ) − (𝐶1(𝑡)

−1𝑑(𝑡), 𝑑(𝑡))])

√𝑑𝑒𝑡𝐶1(𝑡)
. 

Let 𝑒1(𝑡)  =  𝑐11𝑡11  + 𝑐12𝑡22  =  0 𝑠𝑜 𝑡11  = −𝑐12𝑡22/𝑐11. In this case 
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(𝐶𝑇 , 𝑇 )  =  𝑐11𝑡11
2 + 2𝑐12𝑡11𝑡22  + 𝑐22𝑡22

2 = (
𝑐12
2

𝑐11
− 2

𝑐12
2

𝑐11
+ 𝑐22) 𝑡22

2 = 
𝑀12
12

𝑐11
𝑡22
2 , 

𝑐12𝑡11 + 𝑐22𝑡22  = −(
𝑐12𝑐12
𝑐11

+ 𝑐22) 𝑡22  =  
𝑐11𝑐22  − 𝑐12

2

𝑐11
=
𝑀12
12

𝑐11
. 

Finally 

|𝑀𝜉22(𝑡)|2  = |𝑀𝑖𝑦2𝑛  𝑒𝑥𝑝(𝑖𝑡11  + 𝑖𝑡22(𝑥12𝑦1𝑛  + 𝑦2𝑛))|
2  = |

𝜕∅2(𝑡)

𝜕𝑡22
|
𝑒1(𝑡)=0,𝑡21=𝑡22

2

 

=
(
𝑀12
12

𝑐11
𝑡22)

2

 𝑒𝑥𝑝 (
𝑀12
12

𝑐11
𝑡22
2 )

1 + 𝑐11𝑡22
2 ≥ 

𝑀12
12

𝑐11
𝑡22
2  𝑒𝑥𝑝 [−(

𝑀12
12

𝑐11
𝑐11) 𝑡22

2 ]. 

We have used the inequality 

1 + 𝑥 ≤  𝑒𝑥𝑝 𝑥, 𝑥 ∈  ℝ.                                                   (58) 
Hence if we denote 𝑡 =  (𝑡11, 𝑡22)  ∈  ℝ

2 we have using (41) 

𝛯22  =  min
𝑡∈ℝ2

|𝑀𝜉22(𝑡|2) > 𝛹22 ∶=  
(𝑀12

12 )2 𝑒𝑥𝑝(−1)

𝑐11(𝑀12
12 + 𝑐11

2 )
. 

This shows (45) for (p, q) = (2, 2). For (2, q), 2<q, we have 

∅2𝑞 (
𝑡11
𝑡21 𝑡22; 𝑡𝑞𝑞

)   = ∫ 𝑒𝑥𝑝 𝑖[𝑡11𝑦1𝑛  + (𝑡21𝑥12𝑦1𝑛  + 𝑡22𝑦2𝑛) + 𝑡𝑞𝑞𝑦𝑞𝑛]

ℝ1+3

𝑑𝜇(𝑥, 𝑦) 

= 
1

√1 + 𝑐11𝑡21
2
𝑒𝑥𝑝 −

1

2
(𝑐11𝑡11

2 + 𝑐22𝑡22
2 + 𝑐𝑞𝑞𝑡𝑞𝑞

2 + 2𝑐12𝑡11𝑡22 

+2𝑐1𝑞  𝑡11𝑡𝑞𝑞  +  2𝑐2𝑞  𝑡22𝑡𝑞𝑞  −
 (𝑐11𝑡11  + 𝑐12𝑡22  + 𝑐1𝑞  𝑡𝑞𝑞)

2𝑡21
2

1 + 𝑐11𝑡21
2  

= 
1

√𝑑𝑒𝑡𝐶1(𝑡)
 𝑒𝑥𝑝 (−

1

2
[(𝐶𝑇 , 𝑇 ) − (𝐶1(𝑡)

−1𝑑(𝑡), 𝑑(𝑡))]) , 

where 

𝑇 = (𝑡11, 𝑡22;  𝑡𝑞𝑞)  ∈  ℝ
3, 𝑑(𝑡)  = 𝑡21(𝑐11𝑡11  + 𝑐12𝑡22  + 𝑐1𝑞  𝑡𝑞𝑞)  = : 𝑡21𝑒1(𝑡)  ∈ ℝ, 

𝑒1(𝑡)  =  𝑐11𝑡11  + 𝑐12𝑡22  + 𝑐1𝑞  𝑡𝑞𝑞 , 𝑒2(𝑡)  =  𝑐21𝑡11  +  𝑐22𝑡22  +  𝑐2𝑞  𝑡𝑞𝑞 , 

𝐶 =  𝐶2,𝑞 = (

𝑐11 𝑐12 𝑐1𝑞
𝑐12 𝑐22 𝑐2𝑞
𝑐1𝑞 𝑐2𝑞 𝑐𝑞𝑞

)  , 𝐶1(𝑡)  =  𝑑𝑒𝑡𝐶1(𝑡)  =  1 + 𝑐11𝑡21
2  , 

 

 

𝜕∅2𝑞  (𝑡 ;  𝑡𝑞𝑞 )

𝜕𝑡𝑞𝑞
|
𝑡𝑞𝑞=0

= [(−(𝑐1𝑞  𝑡11  + 𝑐2𝑞  𝑡22  + 𝑐𝑞𝑞𝑡𝑞𝑞) +
(𝑐11𝑡11  + 𝑐12𝑡22  +  𝑐1𝑞  𝑡𝑞𝑞)𝑐1𝑞  𝑡21

2

1 + 𝑐11𝑡21
2 )

] 

× 𝑒𝑥𝑝 (−
1

2
[(𝐶𝑇 , 𝑇 ) − (𝐶1(𝑡)

−1𝑑, 𝑑)])
1

√𝑑𝑒𝑡𝐶1(𝑡)
 , 
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𝜕∅2𝑞  (𝑡 ;  𝑡𝑞𝑞 )

𝜕𝑡𝑞𝑞
|
𝑡𝑞𝑞=0

= [(−(𝑐1𝑞  𝑡11  + 𝑐2𝑞  𝑡22 ) +
(𝑐11𝑡11  + 𝑐12𝑡22 )𝑐1𝑞  𝑡21

2

1 + 𝑐11𝑡21
2 )

] 

 

× 𝑒𝑥𝑝 (−
1

2
(𝐶𝑇 , 𝑇 ))

1

𝑑𝑒𝑡𝐶1(𝑡)
|
𝑡𝑞𝑞=0

 . 

Let 𝑡𝑞𝑞 = 0. We chose d(t) = 0 so we have 𝑐11𝑡11  + 𝑐12𝑡22 =  0 and 𝑡11  =  −
𝑐12𝑡22

𝑐11
. In this 

case 

(𝐶𝑇 , 𝑇 )  =  𝑐11𝑡11
2 + 2𝑐12𝑡11𝑡22  + 𝑐22𝑡22

2 = (
𝑐12
2

𝑐11
− 2

𝑐12
2

𝑐11
+ 𝑐22) 𝑡22

2 = 
𝑀12
12

𝑐11
𝑡22
2 , 

𝑐1𝑞  𝑡11  +  𝑐2𝑞  𝑡22  = (−
𝑐12𝑐1𝑞
𝑐11

+ 𝑐2𝑞) 𝑡22  =  
𝑐11𝑐2𝑞  −  𝑐12𝑐1𝑞

𝑐11
𝑡22  =

𝑀12
12

𝑐11
𝑡22. 

Finally, if we denote 𝑡 =  (𝑡11, 𝑡22)  ∈ ℝ2, we have 

|𝑀𝜉2𝑞  (𝑡)|2  = 𝑀𝑖𝑦𝑞𝑛 𝑒𝑥𝑝|𝑖𝑡11  + 𝑖𝑡22(𝑥12𝑦 1𝑛 + 𝑦2𝑛)|
2  = |

𝜕∅2𝑞  (𝑡 ;  𝑡𝑞𝑞)

𝜕𝑡𝑞𝑞
|
𝑡𝑞𝑞=0,𝑒1(𝑡)=0

2

 

=

(
𝑀1𝑞
12

𝑐11
𝑡22)

2

 𝑒𝑥𝑝 − (
𝑀12
12

𝑐11
𝑡12
2 )

1 + 𝑐11𝑡22
2

(62)
>
(
𝑀1𝑞
12

𝑐11
𝑡22)

2

𝑒𝑥𝑝 (−(
𝑀12
12

𝑐11
+𝑐11) 𝑡22

2 ) . 

By (55) we conclude using (41) that 

𝛯2𝑞  =  max
𝑡∈ℝ2

|𝑀𝜉2𝑞 (𝑡)|2 ≥ max
𝑡22∈ℝ

|
𝜕∅2𝑞 (𝑡 ; 𝑡𝑞𝑞)

𝜕𝑡𝑞𝑞
|
𝑡𝑞𝑞=0,𝑒1(𝑡)=0

2

 ≥
(𝑀1𝑞

12 )2 𝑒𝑥𝑝(−1)

𝑐11(𝑀12
12+𝑐11

2 )
= 𝛹2𝑞 . 

This shows (45) for (𝑝, 𝑞)  =  (2, 𝑞), 2 < 𝑞. 

For n =3 we have 

∅3 (
𝑡11
𝑡21 𝑡22
𝑡31 𝑡32 𝑡33

   ) =  
1

√𝑑𝑒𝑡𝐶1(𝑡)
 𝑒𝑥𝑝 (−

1

2
[(𝐶𝑇 , 𝑇 ) − (𝐶1(𝑡)

−1𝑑, 𝑑)]) , 

where 

𝑇 =  (𝑡11, 𝑡22, 𝑡33), 𝑑(𝑡)  = ( 𝑑21(𝑡 ), 𝑑31(𝑡 ), 𝑑32(𝑡)), 
𝑑21(𝑡)  =  𝑡21𝑒1(𝑡 ), 𝑑31(𝑡)  =  𝑡31𝑒1(𝑡 ), 𝑑32(𝑡)  =  𝑡32𝑒2(𝑡 ), 

𝑒1(𝑡)  =  𝑐11𝑡11  + 𝑐12𝑡22  +  𝑐13𝑡33, 𝑒2(𝑡)  = 𝑐21𝑡11  +  𝑐22𝑡22  + 𝑐23𝑡33, 

𝐶 =  𝐶3  = (

𝑡11 𝑐12 𝑐13
𝑡12 𝑐22 𝑐23
𝑡13 𝑐23 𝑐33

   ) , 𝐶(𝑡)
(61)
=
(

𝑐11𝑡21
2 𝑐11𝑡21𝑡31 𝑐12𝑡21𝑡32

𝑐11𝑡21𝑡31 𝑐11𝑡31
2 𝑐12𝑡31𝑡32

𝑐12𝑡21𝑡32 𝑐12𝑡31𝑡32 𝑐22𝑡32
2

   ), 

hence 

𝐶1(𝑡)  =  𝐼 +  𝐶(𝑡)  = (

1 + 𝑐11𝑡21
2 𝑐11𝑡21𝑡31 𝑐12𝑡21𝑡32

𝑐11𝑡21𝑡31 1 + 𝑐11𝑡31
2 𝑐12𝑡31𝑡32

𝑐12𝑡21𝑡32 𝑐12𝑡31𝑡32 1 + 𝑐22𝑡32
2

   ) 
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=  𝑑𝑖𝑎𝑔(𝑡21, 𝑡31, 𝑡32) (

𝑡11 + 𝑡21
−2 𝑐11 𝑐12

𝑡11 𝑐11𝑡31
−2 𝑐12

𝑡12 𝑐12 𝑐22 + 𝑡32
−2

   ) , 𝑑𝑖𝑎𝑔(𝑡21, 𝑡31, 𝑡32). 

We show the following inequality for an operator C of order n such that I +C >0: 

𝑑𝑒𝑡(𝐼 + 𝐶)  ≤  𝑒𝑥𝑝 𝑡𝑟 𝐶.                                                    (59) 
Indeed by Hadamard inequality (see [130] or [137]) we have for positive operator C of order 

n 

𝑑𝑒𝑡𝐶 ≤∏𝑐𝑖𝑖

𝑛

𝑖=1

 . 

Using the Hadamard inequality and (58) we have for an operator C such that I +C >0 

 𝑑𝑒𝑡(𝐼 + 𝐶)  ≤∏(1 + 𝑐𝑖𝑖 )
(58)
≤

𝑛

𝑖=1

∏𝑒𝑥𝑝 𝑐𝑖𝑖

𝑛

𝑖=1

 =  𝑒𝑥𝑝 (∑𝑐𝑖𝑖

𝑛

𝑖=1

) =  𝑒𝑥𝑝(𝑡𝑟𝐶), 

where we denote by tr𝐶 the trace of an operator 𝐶 in the space 𝐶𝑛. Using (59) and (57) we 

conclude that 

det(𝐼 + 𝐶(𝑡)) ≤  𝑡𝑟𝐶(𝑡) =  𝑒𝑥𝑝 [∑𝑐𝑘𝑘

𝑝−1

𝑘=1

( ∑ 𝑡𝑟𝑘
2 )

𝑝

𝑟=𝑘+1

] =  𝑒𝑥𝑝(∑𝑐𝑘𝑘

𝑝−1

𝑘=1

𝛼𝑘
2),        (60) 

where 𝛼𝑘
2 = ∑ 𝑡𝑟𝑘

2𝑝
𝑟=𝑘+1   since by (57) we have 

𝑡𝑟𝐶(𝑡)  = ∑ 𝐶(𝑡)𝑘𝑟,𝑘𝑟
1≤𝑘<𝑟≤𝑝

 = ∑ 𝑐𝑘𝑘𝑡𝑟𝑘
2

1≤𝑘<𝑟≤𝑝

=∑𝑐𝑘𝑘

𝑝−1

𝑘=1

∑ 𝑡𝑟𝑘
2

𝑝

𝑟=𝑘+1

.       (61) 

Using (25) we get 

𝑑𝑒𝑡𝐶1(𝑡)  =  𝑡21
2 𝑡31

2 𝑡32
2 (𝑑𝑒𝑡𝐵 + 𝜆1𝐴1

1 + 𝜆1𝐴2
2 + 𝜆3𝐴3

3 + 𝜆1𝜆2𝐴12
12 + 𝜆1𝜆3𝐴13

13 + 𝜆2𝜆3𝐴23
23

+ 𝜆1𝜆2𝜆3𝐴123
123) 

= 𝑡21
2 𝑡31

2 𝑡32
2 [|

𝑐11 𝑐11 𝑐12 
𝑐11 𝑐11 𝑐22 
𝑐12 𝑐12 𝑐22

| + (
1

𝑡21
2 +

1

𝑡31
2 ) |

𝑐11 𝑐22
𝑐12 𝑐22

| 

+ 
1

𝑡21
2 𝑡31

2 𝑐22  + (
1

𝑡21
2 𝑡32

2 +
1

𝑡31
2 𝑡32

2 ) 𝑐11  +  
1

𝑡21
2 𝑡31

2 𝑡32
2 ] 

=  1 + 𝑐11(𝑡21
2 + 𝑡31

2 ) + 𝑐22𝑡32
2 +𝑀12

12(𝑡21
2 + 𝑡31

2 )𝑡32
2 . 

Finally we have 

𝑑𝑒𝑡𝐶1(𝑡) =  1 + 𝑐11𝛼1
2 + 𝑐22𝛼2

2 +𝑀12
12𝛼1

2𝛼2
2, where  𝛼1

2 = 𝑡21
2 + 𝑡31

2 , 𝛼2
2 = 𝑡32

2 . 
For general n we have by analogy (it shows thus (44)) 

𝑑𝑒𝑡𝐶1(𝑡)  =  1 + ∑ 𝛼𝑖1
2 𝛼𝑖2

2  . . . 𝛼𝑖𝑟
2𝑀𝑖1𝑖2...𝑖𝑟

𝑖1𝑖2...𝑖𝑟

𝑛−1

𝑟=1_1≤𝑖1<𝑖2<···<𝑖𝑟≤𝑛−1

(𝐶𝑛),𝑤ℎ𝑒𝑟𝑒 𝛼𝑘
2 = ∑ 𝑡𝑠𝑘

2

𝑛

𝑠=𝑘+1

. 

For n =3 we have 
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𝜕∅3(𝑡)

𝜕𝑡33
= [−

1

2

𝜕(𝐶𝑇, 𝑇 )

𝜕𝑡33

+ 
𝜕(𝐶1(𝑡)

−1𝑑(𝑡), 𝑑(𝑡))

𝜕𝑡33
]
𝑒𝑥𝑝(−

1
2
[(𝐶𝑇 , 𝑇 ) − (𝐶1(𝑡)

−1𝑑(𝑡), 𝑑(𝑡))])

√𝑑𝑒𝑡𝐶1(𝑡)
, 

𝜕∅3(𝑡)

𝜕𝑡33
= (−𝑒3(𝑡)

+ 
𝜕(𝐶1(𝑡)

−1𝑑(𝑡), 𝑑(𝑡))

𝜕𝑡33
)
𝑒𝑥𝑝(−

1
2
[(𝐶𝑇 , 𝑇 ) − (𝐶1(𝑡)

−1𝑑(𝑡), 𝑑(𝑡))])

√𝑑𝑒𝑡𝐶1(𝑡)
𝑑𝑒𝑡𝐶1(𝑡). 

We calculate |𝜕∅3(𝑡)/𝜕𝑡33|
2 under the conditions 𝑒1(𝑡)  =  𝑒2(𝑡)  =  0 on the variables 𝑡 =

(𝑡11, 𝑡22, 𝑡33)  ∈  ℝ
3. It gives us 

{
c11t11  + c12t22  +  c13t33 =  0,
c21t11  + c22t22  +  c23t33  =  0.

 

The solutions are 

𝑡11  =  
𝑀23
12(𝐶3)

𝑀12
12(𝐶3)

𝑡33  =  
𝐴1
3(𝐶3)

𝐴3
3(𝐶3)

𝑡33, 𝑡22  = −
𝑀13
12(𝐶3)

𝑀12
12(𝐶3)

𝑡33  =  
𝐴2
3(𝐶3)

𝐴3
3(𝐶3)

𝑡33.     (62) 

In general, for the matrix 𝐶𝑛 conditions 𝑒1(𝑡)  =  𝑒2(𝑡) =· · ·= 𝑒𝑛−1(𝑡)  =  0 gives us the 

system 

 

{

c11t11  + c12t 22 +· · · +c1ntnn =  0,                             
c21t11  + c22t22  +· · · +c2ntnn  =  0,                              

⋮                       
cn−11t11  + cn−12t 22 +· · · +cn−1ntnn  =  0                                  

           (63) 

and the following solutions: 

𝑡𝑘𝑘 = (−1)
𝑘+𝑛

𝑀12...𝑘−1𝑘+1...𝑛
12...𝑘−1𝑘𝑘+1...𝑛−1 (𝐶𝑛)

𝑀12...𝑛−1
12...𝑛−1(𝐶𝑛)

𝑡𝑛𝑛 =
𝐴𝑘
𝑛(𝐶𝑛)

𝐴𝑛
𝑛(𝐶𝑛)

𝑡𝑛𝑛, 1 ≤ 𝑘 ≤ 𝑛 − 1.           (64) 

If we denote 𝑒𝑘(𝑡)  = ∑ 𝑐𝑘𝑟  𝑡𝑟𝑟
𝑛
𝑟=1   we get 

(𝐶𝑇, 𝑇) = ∑ 𝑐𝑘𝑟  𝑡𝑟𝑟  𝑡𝑘𝑘
1≤𝑘,𝑟≤𝑛

 = ∑𝑒𝑘(𝑡 )𝑡𝑘𝑘

𝑛

𝑘=1

,
1

2

𝜕(𝐶𝑇, 𝑇 )

𝜕𝑡𝑛𝑛
= 𝑒𝑛(𝑡 ).            (65) 

Under conditions (63) we have 

𝑒𝑛(𝑡) =∑𝑐𝑛𝑟

𝑛

𝑟=1

𝐴𝑟
𝑛(𝐶𝑛)

𝐴𝑛
𝑛(𝐶𝑛)

𝑡𝑛𝑛 =
𝑀12...𝑛
12...𝑛(𝐶𝑛)

𝑀12...𝑛−1
12...𝑛−1(𝐶𝑛)

𝑡𝑛𝑛,
𝜕(𝐶1(𝑡)

−1𝑑(𝑡), 𝑑(𝑡))

𝜕𝑡𝑛𝑛
= 0         (66) 

and 

(𝐶𝑇 , 𝑇
(65)
=
∑𝑒𝑘(𝑡 )𝑡𝑘𝑘  =  𝑒𝑛(𝑡 )𝑡𝑛𝑛

𝑛

𝑘=1

 =
𝑀12...𝑛
12...𝑛(𝐶𝑛)

𝑀12...𝑛−1
12...𝑛−1(𝐶𝑛)

𝑡𝑛𝑛
2 .              (67) 

For n = 3 using (66) and (67) we can calculate 

𝑒3(𝑡)  =  
𝑀123
123(𝐶3)

𝑀12
12(𝐶3)

𝑡33, (𝐶𝑇, 𝑇)  =
𝑀123
123(𝐶3)

𝑀12
12(𝐶3)

𝑡33
2 ,
𝜕(𝐶1(𝑡)

−1𝑑(𝑡), 𝑑(𝑡))

𝜕𝑡33
=  0. 

If, in addition, 𝑒1(𝑡)  =  𝑒2(𝑡)  =  0, we have (see (62)) 
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𝑡𝑟𝐶(𝑡)  =  𝑐11(𝑡22
2 + 𝑡33

2 ) + 𝑐22𝑡33
2 = [𝑐11 ((

𝑀123
123(𝐶3)

𝑀12
12(𝐶3)

)
2

+  1) + 𝑐22)] 𝑡33
2 . 

For n =3 we have if e1(𝑡)  =  𝑒2(𝑡)  =  0, using the values for 𝑡22, 𝑒3(𝑡) and (CT , T ) 

|
𝜕∅3(𝑡)

𝜕𝑡33
|

2

= 
𝑒3
2(𝑡) 𝑒𝑥𝑝(−(𝐶𝑇 , 𝑇 ))

𝑑𝑒𝑡𝐶1(𝑡)
(64)
≥
𝑒3
2(𝑡) 𝑒𝑥𝑝(−(𝐶𝑇 , 𝑇 ) −  𝑡𝑟𝐶(𝑡)) 

= (
𝑀123
123(𝐶3)

𝑀12
12(𝐶3)

)

2

𝑡33
2  𝑒𝑥𝑝 [−𝑡33

2 (
𝑀123
123(𝐶3)

𝑀12
12(𝐶3)

+ (𝑐11 + 𝑐22)  +  𝑐11  (
𝑀123
123(𝐶3)

𝑀12
12(𝐶3)

)

2

)] . 

We get by (55) 

max
𝑡33∈ℝ

(
𝑀123
123(𝐶3)

𝑀12
12(𝐶3)

)

2

𝑡33
2  𝑒𝑥𝑝 [−𝑡33

2 (
𝑀123
123(𝐶3)

𝑀12
12(𝐶3)

+ (𝑐11 + 𝑐22)  + 𝑐11  (
𝑀12
12(𝐶3)

𝑀12
12(𝐶3)

)

2

)] 

=

(
𝑀123
123(𝐶3)
𝑀12
12(𝐶3)

)
2

 𝑒𝑥𝑝(−1)

𝑀123
123(𝐶3)

𝑀12
12(𝐶3)

+ (𝑐11 + 𝑐22) + 𝑐11 (
𝑀13
12(𝐶3)

𝑀12
12(𝐶3)

)
2 

= 
(
𝑀123
123(𝐶3)

𝑀12
12(𝐶3)

)

2

 𝑒𝑥𝑝(−1)

𝑀12
12(𝐶3)𝑀123

123(𝐶3)+𝑐11(𝑀13
12(𝐶3))

2 +(𝑐11 + 𝑐22)(𝑀12
12(𝐶3))

2
= 𝛹33. 

Finally we have (see (41)) 

𝛯33  =  max
𝑡∈ℝ2

|𝑀𝜉33(𝑡)|2  ≥  max
𝑡33∈ℝ

|
𝜕∅3(𝑡)

𝜕𝑡33
|
𝑒1(𝑡)=𝑒2(𝑡)=0

2
≥ 𝛹33. 

This shows (45) for (p, q) = (3, 3). 

By analogy we have for general n: 

𝜕∅𝑛(𝑡)

𝜕𝑡𝑛𝑛
= (−

1

2

𝜕(𝐶𝑇, 𝑇 )

𝜕𝑡𝑛𝑛

+  𝜕(𝐶1(𝑡)
−1𝑑(𝑡), 𝑑(𝑡))𝜕𝑡𝑛𝑛)

𝑒𝑥𝑝(−
1
2
[(𝐶𝑇 , 𝑇 ) − (𝐶1(𝑡)

−1𝑑(𝑡), 𝑑(𝑡))])

√𝑑𝑒𝑡𝐶1(𝑡)
, 

𝜕∅𝑛(𝑡)

𝜕𝑡𝑛𝑛
= [−𝑒𝑛(𝑡) +

 𝜕(𝐶1(𝑡)
−1𝑑(𝑡), 𝑑(𝑡))

𝜕𝑡𝑛𝑛
]
𝑒𝑥𝑝(−

1
2
[(𝐶𝑇 , 𝑇 ) − (𝐶1(𝑡)

−1𝑑(𝑡), 𝑑(𝑡))])

√𝑑𝑒𝑡𝐶1(𝑡)
. 

When 𝑡𝑟𝑘  =  𝑡𝑟𝑟  , 𝑛 ≥ 𝑟 ≥  𝑘 ≥ 2, we have by (61) 

𝑡𝑟𝐶(𝑡)  = ∑ 𝑐𝑘𝑘𝑡𝑟𝑘
2

1≤𝑘<𝑟≤𝑛

=∑𝑐𝑘𝑘

𝑛−1

𝑘=1

( ∑ 𝑡𝑟𝑘
2

𝑛

𝑟=𝑘+1

) = ∑𝑐𝑘𝑘

𝑛−1

𝑘=1

( ∑ 𝑡𝑟𝑟
2

𝑛

𝑟=𝑘+1

) . 

When, in addition, 𝑒1(𝑡) =· · ·= 𝑒𝑛−1(𝑡)  =  0 we get (see (59) and definition (20) of �̂�𝑘) 

𝑡𝑟𝐶(𝑡)  = ∑ 𝑐𝑟𝑟

𝑛−1

𝑟=1

∑ 𝑡𝑘𝑘
2

𝑛

𝑘=𝑟+1

=∑∑𝑐𝑟𝑟

𝑘−1

𝑟=1

𝑛

𝑘=2

 𝑡𝑘𝑘
2 =∑ �̂�𝑘𝑡𝑘𝑘

2

𝑛

𝑘=2

=∑ �̂�𝑘

𝑛

𝑘=2

(
𝐴𝑘
𝑛(𝐶𝑛)

𝐴𝑛
𝑛(𝐶𝑛)

)

2

𝑡𝑛𝑛
2 . 

Finally for general n we have if 𝑒1(𝑡) =· · ·= 𝑒𝑛 − 1(𝑡)  =  0 

|
𝜕∅𝑛(𝑡)

𝜕𝑡𝑛𝑛
|

2

= 
𝑒𝑛
2(𝑡) 𝑒𝑥𝑝(−(𝐶𝑇 , 𝑇 ))

𝑑𝑒𝑡𝐶1(𝑡)
(64)
≥
𝑒𝑛
2(𝑡) 𝑒𝑥𝑝(−(𝐶𝑇 , 𝑇 ) −  𝑡𝑟𝐶(𝑡)) 
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= (
𝑀12...𝑛
12...𝑛(𝐶𝑛)

𝑀12...𝑛−1
12...𝑛−1(𝐶𝑛)

)

2

𝑡𝑛𝑛
2  𝑒𝑥𝑝(−𝑡𝑛𝑛

2 (
𝑀12...𝑛
12...𝑛(𝐶𝑛)

𝑀12...𝑛−1
12...𝑛−1(𝐶𝑛)

+
∑ �̂�𝑘(𝐴𝑛𝑘(𝐶𝑛))

2𝑛
𝑘=2

(𝐴𝑛
𝑛(𝐶𝑛))

2
)) . 

Using (55) we get 

𝛯𝑛𝑛
(43)
≥

max
𝑡𝑛𝑛∈ℝ

|
𝜕∅𝑛(𝑡)

𝜕𝑡𝑛𝑛
|
𝑒1(𝑡)=···=𝑒𝑛−1(𝑡)=0

2

≥

(
𝑀12...𝑛
12...𝑛(𝐶𝑛)

𝑀12...𝑛−1
12...𝑛−1(𝐶𝑛)

)
2

𝑒𝑥𝑝(−1)

𝑀12...𝑛
12...𝑛(𝐶𝑛)

𝑀12...𝑛−1
12...𝑛−1(𝐶𝑛)

+
∑ �̂�𝑘(𝐴𝑘

𝑛(𝐶𝑛))
2𝑛

𝑘=2

(𝐴𝑛
𝑛(𝐶𝑛))

2

=
(𝑀12...𝑛

12...𝑛(𝐶𝑛)
2𝑒𝑥𝑝(−1)

𝑀12...𝑛−1
12...𝑛−1(𝐶𝑛)𝑀12...𝑛

12...𝑛(𝐶𝑛) + ∑ �̂�𝑘(𝐴𝑛𝑘(𝐶𝑛))
2𝑛

𝑘=2

Ψ𝑛𝑛. 

Finally for general (𝑛, 𝑞), 𝑛 ≤ 𝑞, we have if 𝑒1(𝑡) =· · ·= 𝑒𝑛−1(𝑡)  =  0, 𝑡𝑞𝑞  =  0, 

|
𝜕∅𝑛(𝑡)

𝜕𝑡𝑛𝑛
|

2

= 
𝑒𝑞
2(𝑡) 𝑒𝑥𝑝(−(𝐶𝑇 , 𝑇 ))

𝑑𝑒𝑡𝐶1(𝑡)
(64)
≥
𝑒𝑞
2(𝑡) 𝑒𝑥𝑝(−(𝐶𝑇 , 𝑇 ) −  𝑡𝑟𝐶(𝑡)) 

where 𝐶 =  𝐶𝑛,𝑞 and T are defined in Lemma (4.1.21). Moreover, the above conditions gives 

us thesame solutions (64) as before, hence using the decomposition of the minor 

𝑀12...𝑛−1𝑞
12...𝑛−1𝑛  (𝐶𝑛,𝑞  ) we have 

𝑒𝑞 (𝑡)  =  (𝐶𝑛,𝑞𝑇 )𝑞 = ∑𝑐𝑞𝑟  𝑡𝑟𝑟

𝑛

𝑟=1

 =∑𝑐𝑞𝑟
𝐴𝑟
𝑛(𝐶𝑛)

𝐴𝑛
𝑛(𝐶𝑛)

𝑡𝑛
𝑛

𝑛

𝑟=1

 =
𝑀12...𝑛−1𝑞
12...𝑛−1𝑛 (𝐶𝑛,𝑞  )𝑡𝑛𝑛

𝐴𝑛
𝑛(𝐶𝑛)

. 

Finally we get if 𝑒1(𝑡) =· · ·= 𝑒𝑛−1(𝑡)  =  0 and 𝑡𝑞𝑞 =  0 

𝛯𝑛𝑞  ≥ max
𝑡𝑛𝑛∈ℝ

|
𝜕∅𝑛𝑞  (𝑡 ;  𝑡𝑞𝑞)

𝜕𝑡𝑞𝑞
|
𝑡𝑞𝑞=0 

2

 ≥ max
𝑡𝑛𝑛∈ℝ

𝑒𝑞
2 (𝑡) 𝑒𝑥𝑝 − (𝐶𝑇 , 𝑇 ) − 𝑡𝑟𝐶(𝑡) 

 

= max
𝑡𝑛𝑛∈ℝ

(
𝑀12...𝑛−1𝑞
12...𝑛−1𝑛 (𝐶𝑛,𝑞  )

𝑀12...𝑛−1
12...𝑛−1 (𝐶𝑛 )

)

2

tnn
2  exp(−tnn

2 (
𝑀12...𝑛
12...𝑛 (𝐶𝑛 )

𝑀12...𝑛−1
12...𝑛−1 (𝐶𝑛 )

+
∑ �̂�𝑘(𝐴𝑘

𝑛(𝐶𝑛))
2𝑛

𝑘=2

(𝐴𝑛
𝑛(𝐶𝑛))

2
)) 

=
(𝑀12...𝑛−1𝑞

12...𝑛−1𝑛 (𝐶𝑛,𝑞  ))
2
𝑒𝑥𝑝(−1)

𝑀12...𝑛−1
12...𝑛−1 (𝐶𝑛 )𝑀12...𝑛

12...𝑛 (𝐶𝑛 ) + ∑ �̂�𝑘(𝐴𝑘
𝑛(𝐶𝑛))

2𝑛
𝑘=2

= 𝛹𝑛𝑞  . 

Lemma (4.1.25)[123]: For �̂�  =  (�̂�𝑟  )𝑟=1
𝑚  ∈  ℝ𝑚, �̂�1  =  0, �̂�𝑘  = ∑ 𝑐 𝑟𝑟 , 2 ≤  𝑘 ≤ 𝑚

𝑘−1
𝑟=1 , we 

have 

𝐼 𝑚
𝑘 : =  𝑓𝑘𝐴𝑘

𝑘(𝐶𝑚(�̂�)) − �̂�𝑘𝐴𝑘
𝑘 (𝐶𝑚(�̂�

[𝑘])) ≥  0, 2 ≤  𝑘 ≤ 𝑚.            (68) 

Let us suppose that Lemma(4.1.25) holds. Using (13), (23)–(68) we have 

𝛴𝑚
(22)
>
∑

𝑒−1∑  𝑓𝑞𝐴𝑞
𝑞
(𝐶𝑚(�̂�))

𝑚
𝑞=2

𝑑𝑒𝑡𝐶𝑚  + ∑  �̂�𝑞𝐴𝑞
𝑞
(𝐶𝑚(�̂�|𝑞|))

𝑚
𝑞=2𝑛

(24)
≥
∑

𝑒−1∑  𝑓𝑞𝐴𝑞
𝑞
(𝐶𝑚(�̂�))

𝑚
𝑞=2

𝑑𝑒𝑡𝐶𝑚  + ∑  𝑓𝑞𝐴𝑞
𝑞
(𝐶𝑚(�̂�))

𝑚
𝑞=2𝑛

 

(13)
∼
 
∑  𝑓𝑞𝐴𝑞

𝑞
(𝐶𝑚(�̂�))

𝑚
𝑞=2

𝑑𝑒𝑡𝐶𝑚

(24)
>
∑
∑  �̂�𝑞𝐴𝑞

𝑞
(𝐶𝑚(�̂�|𝑞|))

𝑚
𝑞=2

𝑑𝑒𝑡𝐶𝑚 
𝑛
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(23)
>
∑
∑  �̂�𝑞𝐴𝑞

𝑞
(𝐶𝑚)

𝑚
𝑞=2

𝑑𝑒𝑡𝐶𝑚 
𝑛

= Sm. 

Finally we have 𝛴𝑚  > 𝑆𝑚 . 

Proof: Firstly, we show by induction the inequalities 𝐼𝑘
𝑘  ≥ 0 𝑓𝑜𝑟 𝑘 ≥ 2. Secondly, we show 

that inequality 𝐼𝑘
𝑘  ≥ 0  and imply the inequality 𝐼𝑚

𝑘  ≥ 0 for 𝑚 ≥  𝑘 where (see (68)): 

𝐼𝑚
𝑘 ∶=  𝑓𝑘𝐴𝑘

𝑘(𝐶𝑚(�̂�)) − �̂�𝑘𝐴𝑘
𝑘 (𝐶𝑚(�̂�

[𝑘])) ≥ 0, 2 ≤  𝑘 ≤  𝑚. 

We shall show also that 𝐼𝑚
2 =  0. In the case m =2 we have 

𝐼2
2 = 𝑓2𝐴2

2(𝐶2(�̂�)) − �̂�2𝐴2
2 (𝐶2(�̂�

[125])) =  0 

since 𝑓2  =  �̂�2  =  𝑐11 by (19), (20) and (47), and 

𝐴2
2(𝐶2(�̂�)) =  𝐴2

2𝐶2(�̂�
[125]) =  𝐴2

2(𝐶2)  =  𝑐11, 
where 

𝐶2(�̂�) (
𝑐11 𝑐12
𝑐12 𝑐11 + 𝑐22

) , 𝐶2(�̂�
[125]) =  𝐶 2 = (

𝑐11 𝑐12
𝑐12 𝑐22

) 

In the case m = 3 we show the following inequalities: 

𝐼3
2 ∶=  𝑓2𝐴2

2(𝐶3(�̂�)) − �̂�2𝐴2
2 (𝐶3(�̂�

[125])) ≥ 0,                  (69) 

𝐼3
3 ∶=  𝑓3𝐴3

3(𝐶3(�̂�)) − �̂�3𝐴3
3 (𝐶3(�̂�

[126])) ≥ 0.                   (70) 

Since (see (21)) 

𝐶3(�̂�)  = (

𝑐11 𝑐12 𝑐13
𝑐12 𝑐11 + 𝑐22 𝑐23
𝑐13 𝑐23 𝑐11 + 𝑐22 + 𝑐33

)  , 𝐶3(�̂�
[125]) = (

𝑐11 𝑐12 𝑐13
𝑐12 𝑐22 𝑐23
𝑐13 𝑐23 𝑐11 + 𝑐22 + 𝑐33

) , 

and 𝐶3(�̂�
[126])  =  𝐶3 we have by (25) 

𝐴2
2(𝐶3(�̂�)) =  𝐴2

2 (𝐶3(�̂�
[126])) =  𝐴2

2(𝐶3) + �̂�3𝐴23
23(𝐶3), 𝐴3

3 (𝐶3(�̂�
[126])) =  𝐴3

3(𝐶3). 

The latter equalities give us 𝐼3
2  =  0. This shows (69). Indeed we have 

𝐼3
2  = �̂�2(𝐴2

2(𝐶3) + �̂�3𝐴23
23(𝐶3)) − �̂�2(𝐴2

2(𝐶3) + �̂�3𝐴23
23(𝐶3)) ≡  0. 

Since 𝑓2  = �̂�2 = 𝑐11 and �̂�1 = 0 we have 𝐴2
2(𝐶𝑚(�̂�))  =  𝐴2

2(𝐶𝑚(�̂�
[125])) hence 

𝐼𝑚
2 ∶=  𝑓2𝐴2

2(𝐶𝑚(�̂�)) −  ˆ�̂�2 𝐴2
2𝐶𝑚 ((�̂�

[125])) ≡  0, 2 ≤ 𝑚.               (71) 

We have 

𝐼3
3 ∶=  𝑓3𝐴3

3(𝐶3(�̂�)) − �̂�3𝐴3
3𝐶3𝐶3(�̂�

[126]) 

= (𝑐11 + 
𝑐12
2

𝑐11
+ 

(𝑀12
12(𝐶3))

2

𝑐11(𝑀12
12(𝐶3) + 𝑐11

2 )
) (𝑀12

12(𝐶3) + 𝑐11
2 ) − (𝑐11  + 𝑐22)𝑀12

12(𝐶3) 

= (c11  +  c12
2 + 

(M12
12(C3))

2

c11M12
12(C3(λ̂))

)M12
12C3(λ̂)  − (c11  +  c22)M12

12(C3), 

we use here the definition of fq  =  e∑ Ψ
rp

1≤r≤p<𝑞   and Ψ
pq

 (see (20), (46)–(48)), 

f 3 =  e(Ψ
11
 +Ψ

12
 +Ψ

22
)c 11 + 

c12
2

c11
+ 

(M12
12(C3))

2

c11(M12
12(C3)+ c11

2 )
. 

We define the function I3
3  (λ) for λ =  (0,λ2) by 

I3
3 (λ) ∶= (c11  +  

c12
2

c11
+ 

(M12
12(C3))

2

c11M12
12(C3(λ))

)M12
12C3(λ) − (c11  +  c22)M12

12(C3) 
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= (c11  +  
c12
2

c11
) (M12

12(C3) +λ2c11) + 
(M12

12(C3))
2

c11
− (c11  +  c22)M12

12(C3). 

Since I3
3  = I3

3(λ̂) it is sufficient to show that I3
3 (λ)  >  0 𝑓𝑜𝑟 λ2 >  0.  

We show that  

I3
3 (0)  =  0 and

∂I3
3 (λ)

∂λ2
>  0. 

Indeed we have M 12
12(C3(0))  = M12

12(C3) hence 

I3
3 (0)  = (c11  +  

c12
2

c11
+ 
M12
12(C3)

c11
)M12

12(C3) − (c11  + c22)M12
12(C3) 

= M12
12(C3) (

c12
2 +M12

12(C3)

c11
− c22) =  0 

and 

∂I3
3 (λ)

∂λ2
= (c11 + 

c12
2

c11
) c11 >  0. 

Finally I3
3(λ)  >  0 𝑓𝑜𝑟 λ2  >  0 so I3

3 = I3
3(λ)  = I3

3(0, c11)  >  0 and (69) is showd. To 

show that Ik
k   ≥ 0 let us denote fq =  e∑ Ψ

rq−1q−1
r=1 . Using (20) we have 

fq  =  e ∑ Ψ
rp

1≤r≤p<𝑞

 =  e ∑ Ψ
rp 

1≤r≤p<𝑞−1

+ e∑Ψ
rq−1

q−1

r=1

 =  fq−1 + fq , f1 ∶=  0,    (72) 

for 2 ≤ q ≤  m. We show by induction that 

Ik
k  =  fkAk

k (Ck(λ̂)) λ̂kAk
k(Ck) ≥  0, 2 ≤ k.                           (73) 

For k = 2 and k = 3 it is showd. Let us suppose that it holds for k. To find the general formula 

for Ik
k (λ) with Ik

k   ≥  Ik 
k  (λ̂) we consider the cases m = 4. 

I4
4 = f4A4

4(C4(λ̂) − λ̂4A4
4(C4)  =  f 3 + f

4 A4
4C4(λ)) − λ̂4A4

4(C4)|λ=λ̂ 

(73)
≥
(
λ̂3A34

34(C4)

A34
34(C4(λ))

+ f 4) A4
4C4(λ) − λ̂4A4

4(C4)|λ=λ̂ 

(49)– (51)
=

(
(c11 + c22)M12

12(C4)

M12
12(C4(λ))

+ 
c13
2

c11
+ 

(M13
12(C4))

2

c11M12
12(C4(λ))

+ 
(M123

123(C4))
2

M12
12(C4)M123

123(C4)  + c11(M13
12(C4))

2  + (c11  +  c22)(M12
12(C4))

2
) 

×M123
123C4(λ) − (c11  +  c22  +  c33)M123

123(C4)|λ=λ̂ 

(54)

>
(
(c11  + c22)M12

12(C4)

M12
12(C4(λ))

+ 
c13
2

c11
+

(M13
12(C4))

2

c11M12
12(C4(λ))

+
(M123

123(C4))
2

M12
12(C4)M123

123(C4(λ))
) 

×M123
123(C4(λ)) − (c11  +  c22  +  c33)M123

123(C4)|λ=λ̂ 

So we have I4
4  >  I4

4 (λ)|λ=λ̂ where I4
4 (λ) is defined by the formula 

I4
4 (λ) ∶= (

(c11  + c22)M12
12(C4)

M12
12(C4(λ))

+ 
c13
2

c11
+ 

(M13
12 (C4))

2

c11M12
12(C4(λ))

+ 
(M123

123(C4))
2

M12
12(C4)M123

123(C4))
) 

×M123
123(C4(λ)) − (c11  + c22 + c33)M123

123(C4) 
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= (a1  +  
a2

M12
12(C4(λ))

)M123
123(C4(λ)) + b1  =  a1M123

123(C4(λ)) + a2
M123
123(C4(λ))

M12
12(C4(λ))

+ b1, 

where 

a1 = 
c13
2

c11
>  0, a2  =  (c11  + c22)M12

12(C4) + 
(M13

12(C4))
2

c11
>  0, 

b1  =  (M123
123(C4))

2M12
12(C4) − (c11  + c22  + c33)M123

123 (C4). 
We show that I4

4(λ)  ≥ 0 for λ =  (0,λ2,λ3), when λ2 ≥ 0,λ3 ≥ 0. It then gives us 

I4
4 ≥ I4

4 (λ̂) ≥  0. We have (see below the proof of Ik
k(0)  =  0, k ≥ 3) 

I4
4(0)  = (

c13
2

c11
+ 
(M13

12(C4))
2

c11M12
12(C4)

+ 
M123
123(C4)

M12
12(C4)

−  c33)M123
123(C4)  =  0. 

Moreover, by inequality (35) of Lemma (4.1.22) we have for λ2 ≥  0,λ3 ≥ 0 

∂I4
4(λ)

∂λ2
= a1

∂M123
123 (C4(λ))

∂λ2
+ a2

∂

∂λ2

M123
123(C4(λ))

M12
12(C4(λ))

≥  0, 

∂I4
4(λ)

∂λ3
= (a1  +  

a2

M12
12(C4(λ))

)
∂M123

123(C4(λ))

∂λ3
≥ 0. 

Let us consider the function 

i4
4 (t)  =  I4

4 (tλ̂)  =  I4
4 (0, tλ̂2, tλ̂3), t ∈ ℝ. 

We have 

i4
4 (0)  = I4

4(0)  =  0 and 
di4
4 (t)

dt
=  
∂I4
4(λ)

∂λ2
λ̂2  +  

∂I4
4 (λ)

∂λ3
λ̂3 ≥ 0 

hence i4
4 (t) ≥≥ 0 by the previous inequalities for t > 0. So 

𝑖4
4 > I4

4(0, λ̂2, λ̂3)  =  𝑖4
4 (t)|t=1 ≥ 0. 

To show that 𝐼𝑘
𝑘(�̂�)  ≥ 0 we show that 

Ik
k (0)  =  0, 2 ≤  k and∂

Ik
k (λ)

∂λp
≥ 0, 2 ≤ p < 𝑘.              (74) 

To define the function 𝐼𝑘+1
𝑘+1(𝜆) with 𝐼𝑘+1

𝑘+1 ≥ 𝐼𝑘+1
𝑘+1(�̂�) we have 

𝐼𝑘+1
𝑘+1 = 𝑓𝑘 + 1𝐴𝑘+1

𝑘+1(𝐶𝑘+1�̂�) − �̂�𝑘+1𝐴𝑘+1
𝑘+1(𝐶𝑘+1) 

(75)
=
(𝑓𝑘 + 𝑓

𝑘+1)𝐴𝑘+1
𝑘+1(𝐶𝑘+1�̂�) − �̂�𝑘+1𝐴𝑘+1

𝑘+1(𝐶𝑘+1)|𝜆=�̂� 

 
(76)

≥
(
�̂�𝑘𝐴𝑘+1

𝑘+1(𝐶𝑘+1)

𝐴𝑘+1
𝑘+1(𝐶𝑘+1𝜆)

+ 𝑒∑Ψ𝑟𝑘
𝑘

𝑟=1

)𝐴𝑘+1
𝑘+1(𝐶𝑘+1𝜆) − �̂�𝑘+1𝐴𝑘+1

𝑘+1(𝐶𝑘+1)|𝜆=�̂� 

 
(54)
≥
(
�̂�𝑘𝐴𝑘𝑘+1

𝑘𝑘+1(𝐶𝑘+1)

𝐴𝑘𝑘+1
𝑘𝑘+1(𝐶𝑘+1𝜆)

+ 𝑒∑Ψ0
𝑟𝑘

𝑘

𝑟=1

)𝐴𝑘+1
𝑘+1(𝐶𝑘+1𝜆) − �̂�𝑘+1𝐴𝑘+1

𝑘+1(𝐶𝑘+1)|𝜆=�̂� ≔ 𝐴𝑘+1
𝑘+1(�̂�) 

where the function 𝐼𝑘+1
𝑘+1(𝜆) is defined by (see definition (55) of 𝛹0

𝑝𝑞
: 

𝐼𝑘+1
𝑘+1(𝜆) = (

�̂�𝑘𝑀12…𝐾−1
12…𝐾−1(𝐶𝐾+1)

𝑀12…𝐾−1
12…𝐾−1(𝐶𝐾+1(𝜆))

+
𝑐1𝑘
2

𝑐11
+∑

(𝑀12…𝐾−1
12…𝐾−1(𝐶𝐾+1))

2

𝑀12…𝑟
12…𝑟(𝐶𝐾+1)𝑀12…𝑟

12…𝑟(𝐶𝐾+1(𝜆))

𝐾

𝑟=2

) 

×𝑀12…𝐾−1
12…𝐾−1(𝐶𝐾+1(𝜆)) − �̂�𝑘+1𝑀12…𝐾

12…𝐾(𝐶𝐾+1) 
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= (
�̂�𝑘𝑀12…𝐾−1

12…𝐾−1(𝐶𝐾+1)

𝑀12…𝐾−1
12…𝐾−1(𝐶𝐾+1(𝜆))

+
𝑐1𝑘
2

𝑐11
+∑

(𝑀12…𝑟−𝑘
12…1𝑟 (𝐶𝐾+1))

2

𝑀12…𝑟−1
12…𝑟−1(𝐶𝐾+1)𝑀12…𝑟

12…𝑟(𝐶𝐾+1(𝜆))

𝐾−1

𝑟=2

) 

×𝑀12...𝑘
12...𝑘(𝐶𝐾+1(𝜆)) +

(�̂�𝑘𝑀12…𝐾
12…𝐾(𝐶𝐾+1))

2

𝑀12…𝐾−1
12…𝐾−1(𝐶𝐾+1)

− �̂�𝑘+1𝑀12…𝐾
12…𝐾(𝐶𝐾+1)  

Finally we have the following expression for 𝐼𝑘+1
𝑘+1(𝜆) with corresponding positive constants 

𝑎𝑟 , 2 ≤  𝑟 ≤  𝑘 − 1 (depending on k) and 𝑏1 ∈ ℝ 

𝐼𝑘+1
𝑘+1(𝜆) = (𝑎1 +∑

𝑎𝑟

𝑀12…𝑟
12…𝑟(𝐶𝐾+1(𝜆))

𝑘−1

𝑟=2

)𝑀12…𝐾
12…𝐾(𝐶𝐾+1(𝜆)) + 𝑏1 

= (𝑎1 +∑
𝑎𝑟
𝐺𝑘(𝜆)

𝑘−1

𝑟=2

)𝐺𝑘(𝜆) + 𝑏1 

By (35) of Lemma (4.1.22) we conclude that for 𝜆𝑟 ≥  0, 2 ≤  𝑟 ≤ 𝑘, holds 

 

𝐼𝑘+1
𝑘+1(𝜆)

𝜕𝜆𝑘
= (𝑎1 +∑

𝑎𝑟
𝐺𝑘(𝜆)

𝑘−1

𝑟=2

)
 𝜕𝐺𝑘(𝜆)

𝜕𝜆𝑘
≥ 0, 

𝐼𝑘+1
𝑘+1(𝜆)

𝜕𝜆𝑘
= 𝑎1

 𝜕𝐺𝑘(𝜆)

𝜕𝜆𝑘
+∑𝑎𝑟

𝜕

𝜕𝜆𝑝

𝐺𝑘(𝜆)

𝐺𝑟(𝜆)
≥ 0, 2 ≤ 𝑝 ≤ 𝑘

𝑘−1

𝑟=2

.                   (75) 

For k = 3, k = 4 and k =5 we have 

𝐼3
3 (0)  = 𝑀12

12 (
𝑐12
2

𝑐11
+ 
𝑀12
12

𝑐11
− 𝑐22) =  0, 

𝐼4
4(0) = 𝑀123

123 𝑐13
2

𝑐11
+ 

(𝑀13
12)

2

𝑐11𝑀12
12 + 

𝑀123
123

𝑀12
12 − 𝑐33, 

𝐼5
5(0)  = 𝑀1234

1234 (
𝑐14
2

𝑐11
+ 
(𝑀14

12)2

𝑐11𝑀12
12 + 

(𝑀124 
123)2

𝑀12
12𝑀123

123 + 𝑀1234
1234𝑀123

123 − 𝑐44) 

. 

We show that 𝑘 + 1 (0)  =  0. Indeed, we get 

𝐼𝑘+1
𝑘+1(0)  = 𝑀12...𝑘

12...𝑘 (
𝑐1𝑘
2

𝑐11
+ 
(𝑀1𝑘

12)2

𝑐11𝑀12
12 + 

(𝑀12𝑘
123)2

𝑀12
12𝑀123

123 +· · · +
(𝑀12...𝑘−2𝑘 

12...𝑘−2𝑘−1)2

𝑀12...𝑘−2
12...𝑘−2𝑀12...𝑘−1

12...𝑘−1 + 
𝑀12...𝑘
12...𝑘

𝑀12...𝑘−1
12...𝑘−1

− 𝑐𝑘𝑘) . 

Since by Corollary (4.1.20) we have 

|
𝐴𝑘−1
𝑘−1(𝐶𝑘) 𝐴𝑘

𝑘−1(𝐶𝑘)

𝐴𝑘−1
𝑘 (𝐶𝑘) 𝐴𝑘

𝑘(𝐶𝑘)
| =  𝐴∅

∅(𝐶𝑘)𝐴𝑘−1𝑘
𝑘−1𝑘(𝐶𝑘) or 

 

|
𝐴𝑘−1
𝑘−1(𝐶𝑘) 𝐴𝑘

𝑘−1(𝐶𝑘)

𝐴∅
∅(𝐶𝑘) 𝐴𝑘

𝑘(𝐶𝑘)
|  = (𝐴𝑘−1

𝑘 (𝐶𝑘))
2
, 

we conclude that 



131 

|
𝑀12...𝑘−1
12...𝑘−1(𝐶𝑘)  𝑀12...𝑘−2

12...𝑘−2(𝐶𝑘)

𝑀12...𝑘
12...𝑘 (𝐶𝑘) 𝑀12...𝑘−2𝑘

12...𝑘−2𝑘  (𝐶𝑘)
| = (𝑀12...𝑘−2𝑘

12...𝑘−2𝑘−1 (𝐶𝑘))
2
. 

Hence 

(𝑀12...𝑘−2𝑘
12...𝑘−2𝑘−1 (𝐶𝑘))

2

𝑀12...𝑘−2
12...𝑘−2 (𝐶𝑘)𝑀12...𝑘−1

12...𝑘−1(𝐶𝑘)
+ 
𝑀12...𝑘
12...𝑘  (𝐶𝑘)

𝑀12...𝑘−1
12...𝑘−1(𝐶𝑘)

=
𝑀12...𝑘−2𝑘
12...𝑘−2𝑘  (𝐶𝑘)

𝑀12...𝑘−2
12...𝑘−2(𝐶𝑘)

, 

and 

𝐼𝑘+1 
𝑘+1 (0)  = 𝑀12...𝑘

12...𝑘 (
𝑐1𝑘
2

𝑐11
+ 
(𝑀1𝑘

12)2

𝑐11𝑀12
12 + 

(𝑀12𝑘
123)2

𝑀12
12𝑀123

123 +· · · +
(𝑀12…𝑘−3𝑘

12…𝑘−3𝑘−2 )
2

𝑀12...𝑘−3
12...𝑘−3𝑀12...𝑘−2

12...𝑘−2 +
𝑀12...𝑘−2𝑘
12...𝑘−2𝑘

𝑀12...𝑘−2
12...𝑘−2

− 𝑐𝑘𝑘 . ) 

If we change k with k − 1 in the last expression we obtain the right-hand part (up to a 

positivefactor) of the expression for 𝐼𝑘
𝑘(0). 

Finally we have showd (74) for 𝐼𝑘+1
𝑘+1 (𝜆). Let us consider the function 

𝑖𝑘+1 
𝑘+1 (𝑡)  =  𝐼𝑘+1

𝑘+1 (𝑡�̂�), 𝑡 ∈ ℝ. 

We have 

𝑖𝑘+1 
𝑘+1 (0) =  𝐼𝑘+1

𝑘+1(0) =  0 𝑎𝑛𝑑
𝑑𝑖𝑘+1
𝑘+1 (𝑡)

𝑑𝑡
= ∑

𝜕𝐼𝑘+1
𝑘+1(𝜆)

𝜕𝜆𝑝

𝑘

𝑝=2

�̂�𝑝 >  0 

by (34) and Remark (4.1.22)  So 

𝐼𝑘
𝑘 > 𝐼𝑘

𝑘(�̂�)  =  𝑖𝑘
𝑘 (𝑡)|

𝑡=1
 ≥ 0. 

We recall (see (33)) that for 𝜆 =  (𝜆1, . . . , 𝜆𝑚)  ∈  ℂ
𝑚 and 1 ≤ 𝑘 ≤  𝑚 we denote 

𝜆[𝑘] = (0, . . . , 0, 𝜆𝑘+1, . . . , 𝜆𝑚), 𝜆
{𝑘}  =  (𝜆1, . . . , 𝜆𝑘, 0, . . . , 0). 

𝐺𝑚(𝜆)  =  𝐴∅
∅(𝐶𝑚(𝜆)) = ∑ 𝜆𝛿𝐴𝛿

𝛿(𝐶)

∅⊆𝛿⊆{1,2,...,𝑚}

, 

we get 

𝐴𝑘
𝑘(𝐶𝑚(𝜆)) = ∑ 𝜆𝛿𝐴𝑘∪𝛿

𝑘∪𝛿(𝐶𝑚)

∅⊆𝛿⊆{1,2,...,𝑘−1,𝑘+1,...𝑚}

.                        (76) 

 

If we put 𝐶𝑚(𝜆
[𝑘]) = 𝐶𝑚 + ∑ 𝜆𝑟𝐸𝑟𝑟

𝑚
𝑟=𝑘+1   in (76) we get 

𝐴𝑘
𝑘 (𝐶𝑚(𝜆

[𝑘])) = ∑ 𝜆𝛿𝐴𝑘∪𝛿
𝑘∪𝛿(𝐶𝑚)

∅⊆𝛿⊆{𝑘+1,𝑘+2,...,𝑚}

.                    (77) 

Similarly, if we put 𝐶𝑚(𝜆)  =  𝐶𝑚(𝜆
{𝑘}) + ∑ 𝜆𝑟𝐸𝑟𝑟

𝑚
𝑟=𝑘+1   we get 

𝐴𝑘𝑘
𝑘 (𝐶𝑚(𝜆)) = ∑ 𝜆𝛿𝐴𝑘∪𝛿

𝑘∪𝛿 (𝐶𝑚(𝜆
{𝑘}))                       (78)

∅⊆𝛿⊆{𝑘+1,𝑘+2,...,𝑚}

 

 

Using (72) we have 

𝑓𝑘 ≥ �̂�𝑘𝐴𝑘
𝑘(𝐶𝑘) (𝐴𝑘

𝑘 (𝐶𝑘(�̂�)))
−1

= �̂�𝑘𝐴𝑘𝑘+1...𝑚
𝑘𝑘+1...𝑚(𝐶𝑚)  (𝐴𝑘𝑘+1...𝑚

𝑘𝑘+1...𝑚(𝐶𝑚(�̂�)))
−1
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hence 𝐼𝑚
𝑘 = 𝑓𝑘𝐴𝑘

𝑘 (𝐶𝑚(�̂�)) − �̂�𝑘𝐴𝑘
𝑘(𝐶𝑚(𝜆

[𝑘]))  ≥  𝐼𝑚
𝑘 (�̂�),  where the function 𝐼𝑚

𝑘 (�̂�)  is 

defined by 

𝐼𝑚
𝑘  (�̂�) ∶=  �̂�𝑘 (𝐴𝑘𝑘+1...𝑚

𝑘𝑘+1...𝑚(𝐶𝑚(�̂�)))
−1
𝐴𝑘𝑘+1...𝑚
𝑘𝑘+1...𝑚 ((𝐶𝑚)𝐴𝑘

𝑘 (𝐶𝑚(�̂�))) �̂�𝑘𝐴𝑘
𝑘 (𝐶𝑚(�̂�

[𝑘])) 

= �̂�𝑘 (𝐴𝑘𝑘+1...𝑚
𝑘𝑘+1...𝑚(𝐶𝑚(�̂�)))

−1

|
𝐴𝑘𝑘+1...𝑚
𝑘𝑘+1...𝑚(𝐶𝑚) 𝐴𝑘

𝑘(𝐶𝑚(�̂�
[𝑘]))

𝐴𝑘𝑘+1...𝑚
𝑘𝑘+1...𝑚(𝐶𝑚(�̂�)) 𝐴𝑘

𝑘(𝐶𝑚(�̂�))
|  

  
(75), (76)

=
  ˆ�̂�𝑘 (𝐴𝑘𝑘+1...𝑚

𝑘𝑘+1...𝑚(𝐶𝑚(�̂�)))
−1

 

× ∑ �̂�𝛿
∅⊆𝛿⊆{𝑘+1,𝑘+2,...,𝑚}

|
𝐴𝑘𝑘+1...𝑚
𝑘𝑘+1...𝑚(𝐶𝑚) 𝐴𝑘∪𝛿

𝑘∪𝛿(𝐶𝑚)

𝐴𝑘𝑘+1...𝑚
𝑘𝑘+1...𝑚(𝐶𝑚(�̂�)) 𝐴𝑘∪𝛿

𝑘∪𝛿(𝐶𝑚(�̂�
[𝑘]))

| . 

Using (75) or (76) we conclude for 𝜆 =  (0, 𝜆2, . . . , 𝜆𝑚)  ∈ ℂ
𝑚 

𝐴𝑘𝑘+1...𝑚
𝑘𝑘+1...𝑚(𝐶𝑚(𝜆)) = ∑ 𝜆𝛾𝐴𝛾 ∪{𝑘,𝑘+1,...𝑚}

𝛾 ∪{𝑘,𝑘+1,...𝑚}

∅⊆𝛾 ⊆{2,3,...,𝑘−1}

(𝐶𝑚), 

𝐴𝑘∪𝛿
𝑘∪𝛿 (𝐶𝑚(𝜆

{𝑘})) = ∑ 𝜆𝛾𝐴𝛾 ∪{𝑘}∪𝛿
𝛾 ∪{𝑘}∪𝛿

∅⊆𝛾 ⊆{2,3,...,𝑘−1}

(𝐶𝑚). 

Finally we obtain 𝐴𝛾 ∪{𝑘}∪𝛿
𝛾 ∪{𝑘}∪𝛿

(𝐶𝑚) 

𝐼𝑚
𝑘 (�̂�)  =  �̂�𝑘 (𝐴𝑘𝑘+1...𝑚

𝑘𝑘+1...𝑚𝐶𝑚(𝐶𝑚(�̂�)))
−1
 ∑ �̂�𝛿
∅⊆𝛿⊆{𝑘+1,𝑘+2,...,𝑚}

 

× ∑ �̂�𝑘
∅⊆𝛾 ⊆{2,3,...,𝑘−1}

|
𝐴𝑘𝑘+1...𝑚
𝑘𝑘+1...𝑚(𝐶𝑚) 𝐴𝛾 ∪{𝑘,𝑘+1,...,𝑚}

𝛾 ∪{𝑘,𝑘+1,...,𝑚}
(𝐶𝑚)

𝐴𝑘∪𝛿
𝑘∪𝛿(𝐶𝑚) 𝐴𝛾 ∪{𝑘}∪𝛿

𝛾 ∪{𝑘}∪𝛿
(𝐶𝑚)

| ≥  0 

due to the Hadamard–Fisher’s inequality (Lemma (4.1.21)), for 𝛼 =  {𝑘, 𝑘 +  1, . . . , 𝑚} and 

𝛽 =  𝛾 ∪ {𝑘}  ∪  𝛿. This completes the proof of Lemma (4.1.10).  

Corollary (4.1.26)[260]: For the measure 𝜇𝐵
𝑚+1 we have 

(𝜇𝐵
𝑚+1)𝑅𝑡2  ∼  𝜇𝐵

𝑚+1, ∀𝑡2 ∈  𝐵0
ℕ 

(with ∼ meaning equivalence). 

Proof: The right action 𝑅𝑡2 for 𝑡2  ∈  𝐵0
ℕ changes linearly only a finite number of coordinates 

of the point 𝑥2 ∈  𝑋𝑚+1.  
Now we can define the representation associated with the right action 

𝑇𝑅,𝜇𝐵
𝑚+1
  ∶ 𝐵0

ℕ → 𝑈 (𝐿2 (𝑋𝑚+1, 𝜇𝐵
𝑚+1)) 

in the natural way, i.e. 

(𝑇
𝑡2
𝑅,𝜇𝐵

𝑚+1

 𝑓) (𝑥2)  = (𝑑𝜇𝐵
𝑚+1 (𝑅𝑡2

−1 (𝑥2)) /𝑑𝜇𝐵
𝑚+1(𝑥2))

1/2
𝑓(𝑅𝑡2

−1 (𝑥2)) . 

Corollary (4.1.27)[260]: We have 𝑑(𝑓𝑛+1
2 ;  〈𝑓1

2, . . . , 𝑓𝑛
2〉) =  

𝑑𝑒𝑡 𝛾𝑛+1

𝑑𝑒𝑡 𝛾𝑛
= (𝑓𝑛+1

2 , 𝑓𝑛+1
2 ) −

(𝛾𝑛
−1  𝑑𝑛+1, 𝑑𝑛+1), where 𝑑𝑛+1  =  ((𝑓1

2, 𝑓𝑛+1
2 ), (𝑓2

2, 𝑓𝑛+1
2 ), . . . , (𝑓𝑛

2, 𝑓𝑛+1
2 ))  ∈  ℝ𝑛. 

Proof: We may write 
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‖∑𝑡𝑘𝑓𝑘
2

𝑛

𝑘=1

 − 𝑓𝑛+1
2 ‖

2

= ∑ 𝑡𝑘𝑡𝑚

𝑛

𝑘,𝑚=1

(𝑓𝑘
2, 𝑓𝑘

2) −  2∑ 𝑡𝑘(𝑓𝑘
2, 𝑓𝑛+1

2 ) + (𝑓𝑛+1
2 , 𝑓𝑛+1

2 )

𝑛

𝑘=1

 

= (𝛾𝑛𝑡, 𝑡) −  2(𝑡, 𝑑𝑛+1) + (𝑓𝑛+1
2 , 𝑓𝑛+1

2 ), 
where 𝑡 =  (𝑡1, 𝑡2, . . . , 𝑡𝑛)  ∈  ℝ

𝑛. Using (58) for 𝐴𝑛  =  𝛾𝑛 we get 

(𝛾𝑛𝑡, 𝑡) − 2(𝑡, 𝑑𝑛+1)  = (𝛾𝑛(𝑡 − 𝑡0), (𝑡 − 𝑡0)) − (𝛾𝑛
−1 𝑑𝑛+1, 𝑑𝑛+1), 

where 𝑡0  =  𝛾𝑛
−1 𝑑𝑛. Hence we get (see (6)) 

 𝑚𝑖𝑛
𝑡=(𝑡𝑘 )∈ℝ

𝑛
‖𝑓𝑛+1

2 −∑𝑡𝑘𝑓𝑘
2

𝑛

𝑘=1

‖

2

𝑚𝑖𝑛
𝑡=(𝑡𝑘 )∈ℝ

𝑛
 (𝛾𝑛𝑡, 𝑡) − 2(𝑡, 𝑑𝑛+1) + (𝑓𝑛+1

2 , 𝑓𝑛+1
2 )

=  (𝑓𝑛+1
2 , 𝑓𝑛+1

2 )( 𝛾𝑛
−1 𝑑𝑛+1, 𝑑𝑛+1) + 𝑚𝑖𝑛

𝑡=(𝑡𝑘 )∈ℝ
𝑛
(𝛾𝑛(𝑡 − 𝑡0), (𝑡 − 𝑡0))

=  (𝑓𝑛+1
2 , 𝑓𝑛+1

2 ) ( 𝛾𝑛
−1 𝑑𝑛+1, 𝑑𝑛+1). 

Corollary (4.1.28)[260]:Let 𝜖 ≥ 0. For any 𝑠(𝑛) = (𝑠1 
(𝑛)
 , . . . , 𝑠1+𝜖

(𝑛)
 )  ∈  ℝ1+𝜖  , and for any 

𝛼(𝑛)  = (𝛼1
(𝑛)
 , . . . , 𝛼1+4𝜖

(𝑛)
 )  ∈  ℝ1+4𝜖, 𝑛 ∈ ℕ, we have 

𝑥(1+2𝜖)(1+3𝜖)  ∈ 〈𝑒𝑥𝑝 (∑𝑠𝑙
(𝑛)
  𝐴𝑙𝑛

1+𝜖

𝑙=1

)(∑ 𝛼𝑘
(𝑛)
 𝐴𝑘𝑛

1+4𝜖

𝑘=1

)  1|𝑛 ∈  ℕ, 1 + 4𝜖 < 𝑛〉

⇔ 𝛴(1+2𝜖)(1+3𝜖)
1+𝜖 (𝑠, 𝛼, 1 + 4𝜖) = ∞, 

where 𝑠 =  (𝑠(𝑛))𝑛=2+4𝜖
∞ , 𝛼 =  (𝛼(𝑛))𝑛=2+4𝜖

∞ , 𝛼1+3𝜖
(𝑛)

 =  1 and  
𝛴(1+2𝜖)(1+3𝜖)
1+𝜖 (𝑠, 𝛼, 1 + 4𝜖)  

= ∑
|𝑀𝜉𝑛

(1+𝜖)(1+2𝜖)
 (𝑠(𝑛))|2

𝑐(1+2𝜖)(1+2𝜖)
(𝑛)

  −  |𝑀𝜉𝑛
(1+𝜖)(1+2𝜖)

(𝑠(𝑛))|2  + ‖(𝐴(1+3𝜖)𝑛  − 𝑥(1+2𝜖)(1+3𝜖)𝐷(1+2𝜖)𝑛  + ∑ 𝛼𝑘
(𝑛)
 𝐴𝑘𝑛

1+4𝜖
𝑘=1,𝑘≠1+2𝜖   )1‖

2

∞

𝑛=2+4𝜖

.  (79) 

Before proving Corollary (4.1.28) let us make some comments about the procedure for 

arriving at the expressions used for the approximation of the variables 𝑥(1+2𝜖)(1+3𝜖) on the left-

hand side of the equivale. 

 Proof: If we put ∑ 𝑡𝑛𝑀𝜉𝑛
(1+𝜖)(1+2𝜖)

 (𝑠(𝑛))  =  1𝑛   we get 

‖[∑𝑡𝑛
𝑛

 𝑒𝑥𝑝 (∑𝑠𝑙
(𝑛)
 𝐴𝑙𝑛

1+𝜖

𝑙=1

)(∑ 𝛼𝑘
(𝑛)

1+4𝜖

𝑘=1

 𝐴𝑘𝑛) − 𝑥(1+2𝜖)(1+3𝜖)] 1‖

2

 

= ‖[∑𝑡𝑛
𝑛

 𝑒𝑥𝑝 (∑𝑠𝑙
(𝑛)
 𝐴𝑙𝑛

1+𝜖

𝑙=1

)(𝐴(1+3𝜖)𝑛 − 𝑥(1+2𝜖)(1+3𝜖)𝐷(1+2𝜖)𝑛 + 𝑥(1+2𝜖)(1+3𝜖)𝐷(1+2𝜖)𝑛

+ ∑ 𝛼𝑘
(𝑛)
 𝐴𝑘𝑛

1+4𝜖

𝑘=1,𝑘≠1+3𝜖

) − 𝑥(1+2𝜖)(1+3𝜖)] 1‖

2

= ‖∑𝑡𝑛
𝑛

[𝑥(1+2𝜖)(1+3𝜖) (𝐷(1+2𝜖)𝑛𝑒𝑥𝑝 (∑𝑠𝑙
(𝑛)
 𝐴𝑙𝑛

1+𝜖

𝑙=1

) −𝑀𝜉𝑛
(1+𝜖)(1+2𝜖)

 (𝑠(𝑛)))

+ 𝑒𝑥𝑝(∑𝑠𝑙
(𝑛)
 𝐴𝑙𝑛

1+𝜖

𝑙=1

)(𝐴(1+3𝜖)𝑛 − 𝑥(1+2𝜖)(1+3𝜖)𝐷(1+2𝜖)𝑛 + ∑ 𝛼𝑘
(𝑛)
 𝐴𝑘𝑛

1+4𝜖

𝑘=1,𝑘≠1+3𝜖

)] 1‖

2
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=∑𝑡𝑛
2

𝑛

[‖𝑥(1+2𝜖)(1+3𝜖)‖
2
‖(𝐷(1+2𝜖)𝑛𝑒𝑥𝑝 (∑𝑠𝑙

(𝑛)
 𝐴𝑙𝑛

1+𝜖

𝑙=1

) −𝑀𝜉𝑛
(1+𝜖)(1+2𝜖)

 (𝑠(𝑛)))

+ 𝑒𝑥𝑝(∑𝑠𝑙
(𝑛)
 𝐴𝑙𝑛

1+𝜖

𝑙=1

)(𝐴(1+3𝜖)𝑛 − 𝑥(1+2𝜖)(1+3𝜖)𝐷(1+2𝜖)𝑛

+ ∑ 𝛼𝑘
(𝑛)
 𝐴𝑘𝑛

1+4𝜖

𝑘=1,𝑘≠1+3𝜖

)1‖

2

] 

=∑𝑡𝑛
2

𝑛

[‖𝑥(1+2𝜖)(1+3𝜖)‖
2
(𝑐(1+2𝜖)(1+2𝜖)
(𝑛)

− |𝑀𝜉𝑛
(1+𝜖)(1+2𝜖)

 (𝑠(𝑛))|
2

)

+ ‖+𝑒𝑥𝑝(∑𝑠𝑙
(𝑛)
 𝐴𝑙𝑛

1+𝜖

𝑙=1

)(𝐴(1+3𝜖)𝑛 − 𝑥(1+2𝜖)(1+3𝜖)𝐷(1+2𝜖)𝑛

+ ∑ 𝛼𝑘
(𝑛)
 𝐴𝑘𝑛

1+4𝜖

𝑘=1,𝑘≠1+3𝜖

)1‖

2

] 

 

where we have used the equality ‖𝜉 − 𝑀𝜉‖2  = ‖𝜉‖2  −  |𝑀𝜉|2: 

#‖[𝐷(1+2𝜖)𝑛 𝑒𝑥𝑝(∑𝑠𝑙
(𝑛)
 𝐴𝑙𝑛

1+𝜖

𝑙=1

) −  𝑀𝜉𝑛
(1+𝜖)(1+2𝜖)

𝑠(𝑛)]  1‖

2

= ‖𝐷(1+2𝜖)𝑛1‖
2
 – |𝑀𝜉𝑛

(1+𝜖)(1+2𝜖)
(𝑠(𝑛))|

2

= 𝑐(1+2𝜖)(1+2𝜖)
(𝑛)

− |𝑀𝜉𝑛
(1+𝜖)(1+2𝜖)

(𝑠(𝑛))|
2
. 

Corollary (4.1.29)[260]: For 𝐶 ∈  𝑀𝑎𝑡(1 + 2𝜖, ℂ) and 𝜆2  ∈  ℂ1+2𝜖 we have 

𝐺1+2𝜖(𝜆
2) = 𝐴ℵ

ℵ(𝐶1+2𝜖(𝜆
2)) = 𝑑𝑒𝑡𝐶1+2𝜖(𝜆

2) = 𝑑𝑒𝑡𝐶1+2𝜖 + ∑ 𝜆𝑟
2𝐴𝑟
𝑟 (𝐶1+2𝜖(𝜆

2[𝑟]))

1+2𝜖

𝑟=1

, (80) 

𝐴1+𝜖
1+𝜖(𝐶1+2𝜖(𝜆

2)) =  𝐴1+𝜖
1+𝜖(𝐶1+2𝜖) + ∑ 𝜆𝑟

2𝐴𝑟
𝑟 (𝐶1+2𝜖(𝜆

2[𝑟]))

1+2𝜖

𝑟=1,𝑟≠1+𝜖

,                         (81) 

𝐺1+2𝜖(𝜆
2) = 𝐴ℵ

ℵ(𝐶1+2𝜖(𝜆
2)) =  𝑑𝑒𝑡𝐶1+2𝜖(𝜆

2)𝑑𝑒𝑡𝐶1+2𝜖 + ∑ 𝜆𝑟
2𝐴𝑟
𝑟 (𝐶1+2𝜖(𝜆

2[𝑟]))

1+2𝜖

𝑟=1

 (82) 

𝐴1+𝜖
1+𝜖(𝐶1+2𝜖(𝜆

2)) =  𝐴1+𝜖
1+𝜖(𝐶1+2𝜖) + ∑ 𝜆𝑟

2𝐴𝑟(1+𝜖)
𝑟(1+𝜖)

(𝐶1+2𝜖(𝜆
2[𝑟]))

1+2𝜖

𝑟=1,𝑟≠1+𝜖

,                  (83) 

where for 𝜆2 ∈  𝐶1+2𝜖 and 𝜖 ≥ 0 we have set 

𝜆2[1+𝜖]  =  (0, . . . , 0, 𝜆2+𝜖
2 , . . . , 𝜆1+2𝜖

2 ), 𝜆2{1+𝜖}  =  (𝜆1
2, 𝜆2

2, . . . , 𝜆1+𝜖
2 , 0, . . . , 0).             (84) 

Proof: We have for 𝑚 = 2 using (25) 
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𝐺2(𝜆
2)  =  𝑑𝑒𝑡𝐶2  + 𝜆1

2𝐴1
1(𝐶2) + 𝜆2

2𝐴2
2(𝐶2) + 𝜆1

2𝜆2
2𝐴12
12(𝐶2)

=  𝑑𝑒𝑡𝐶2  + 𝜆1
2[𝐴1

1(𝐶2) + 𝜆2
2𝐴12
12(𝐶2)] + 𝜆2

2𝐴2
2(𝐶2)

=  𝑑𝑒𝑡𝐶2  + 𝜆1
2𝐴1
1 (𝐶2(𝜆

2[124])) + 𝜆2
2𝐴2
2 (𝐶2(𝜆

2[125])) , 

𝐺2(𝜆
2)  =  𝑑𝑒𝑡𝐶2  + 𝜆1

2𝐴1
1(𝐶2) + 𝜆2

2[𝐴2
2(𝐶2) + 𝜆1

2𝐴12
12(𝐶2)]

=  𝑑𝑒𝑡𝐶2  + 𝜆1
2𝐴1
1 (𝐶2(𝜆

2{1})) + 𝜆2
2𝐴2
2 (𝐶2(𝜆

2{2})) . 

For 𝜖 = 1 we have 

𝐺3(𝜆
2)  =  𝑑𝑒𝑡𝐶3  +  𝜆1

2𝐴1
1(𝐶3) + 𝜆2

2𝐴2
2(𝐶3) + 𝜆3

2𝐴3
3(𝐶3) + 𝜆1

2𝜆2
2𝐴12
12(𝐶3)  + 𝜆1

2𝜆3
2𝐴13
13(𝐶3)

+ 𝜆2
2𝜆3
2𝐴23
23(𝐶3) + 𝜆1

2𝜆2
2𝜆3
2𝐴123
123(𝐶3)

=  𝑑𝑒𝑡𝐶2  +  𝜆1
2[𝐴1

1(𝐶3) + 𝜆2
2𝐴12
12(𝐶3) + 𝜆3

2𝐴13
13(𝐶3) + 𝜆2

2𝜆3
2𝐴123
123(𝐶3)]

+ 𝜆2
2[𝐴2

2(𝐶3) + 𝜆3
2𝐴23
23(𝐶3)] + 𝜆3

2𝐴3
3(𝐶3)

=  𝑑𝑒𝑡𝐶3  +  𝜆1
2𝐴1
1 (𝐶3(𝜆

2[124])) + 𝜆2
2𝐴2
2 (𝐶3(𝜆

2[125])) + 𝜆3
2𝐴3
3 (𝐶3(𝜆

2[126])) , 

𝐺3(𝜆
2)  =  𝑑𝑒𝑡𝐶3  + 𝜆1

2𝐴1
1(𝐶3) + 𝜆2

2[𝐴2
2(𝐶3) + 𝜆1

2𝐴12
12(𝐶3)]

+ 𝜆3
2[𝐴1

1(𝐶3) + 𝜆1
2𝐴13
12(𝐶3) + 𝜆2

2𝐴23
23(𝐶3) + 𝜆1

2𝜆2
2𝐴123
123(𝐶3)]

=  𝑑𝑒𝑡𝐶3  + 𝜆1
2𝐴1
1 (𝐶3(𝜆

2{1})) + 𝜆2
2 (𝐴2

2𝐶3(𝜆
2{2})) + 𝜆3

2𝐴3
3 (𝐶3(𝜆

2{3})) 

For 𝜖 > 1 the proof of (80) and (82) is the same. The identity (81) follows from (80) and (83) 

follows from (82).  

 

Section (4.2): Infinite-Dimensional  Groups 

The induced representations were introduced and studied for finite groups by 

F.G.Frobenius. The aim is to develop the concept of induced representations for infinite- 

dimensional groups. 

We devoted to the notion of induced representations elaborated for a locally compact 

groups by G.W.Mackey [1], [11] and to the Kirillov orbit methods [163] for the nilpotent Lie 

groups B(n,ℝ). 
We extend the notion of the induced representations for infinite-dimensional groups. 

We start the orbit method for infinite-dimensional “nilpotent” group B0
ℤ , construct the 

induced representations corresponding to the generic orbits and study its irreducibility. 

We remind the Gauss decomposition of n ×  n matrices and Gauss decomposition of infinite 

order matrices More precisely, we give the well-known definition of the induced 

representations for a locally compact groups we remind the Kirillov orbit method for finite-

dimensional nilpotent group 𝐺𝑛 =  𝐵(𝑛, ℝ). The induced representations, corresponding to a 

generic orbits of the group 𝐺𝑛. 

We give a new proof of the irreducibility of the induced representations corresponding 

to a generic orbits in order to extend the proof of the irreducibility for infinite-dimensional 

“nilpotent” group 𝐵0
ℤ . 

We remind the definition of the regular and quasiregular representations of infinite-

dimensional groups. As in the case of a locally compact group these representations are the 

particular cases of the induced representations. This gives us the hint how to define the 

induced representations for infinite-dimensional groups. The definition is done in the 

questions concerning the development of the orbit method for infinite-dimensional 

“nilpotent” group 𝐵0
ℕ and 𝐵0

ℤ are discussed in  
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The completions of the initial groups G are necessary to the definition of the induced 

representations for the initial infinite-dimensional group. The completions of the inductive 

limit 𝐺 =  lim
→𝑛
𝐺𝑛  of matrix groups 𝐺𝑛 are studied in We show that the Hilbert-Lie groups 

appear naturally in the representation theory of the infinite-dimensional matrix group. We 

define a family of the Hilbert-Lie group 𝐺𝐿2(𝑎) (resp. 𝐵2(𝑎)), a Hilbert completions of the 

group 𝐺𝐿0(2∞,ℝ)  =  lim
→𝑛
𝐺𝐿(2𝑛 −  1,ℝ)(𝑟𝑒𝑠𝑝. 𝐵0

ℤ  =  −lim
→𝑛
 𝐵(2𝑛 −  1,ℝ)).  

We show that any continuous representation of the group 𝐺𝐿0(2∞,ℝ) (𝑟𝑒𝑠𝑝. 𝐵0
ℤ) is in 

fact continuous in some stronger topology, namely in a topology of a suitable Hilbert -Lie 

group 𝐺𝐿2(𝑎) (resp. 𝐵2(𝑎)) depending on the representation. 

We construct the induced representations of the group 𝐵0
ℤ corresponding to a generic 

orbits. The irreducibility of these representations is studied .The very first steps to describe 

some part of the dual for the group ℕ and 𝐵0
ℤ are mentioned induced representations. The 

induced representation In 𝑑
𝐺
𝐻
𝑆 is the unitary representation of a group G associated with a 

unitary representation S : H → U(V ) of a closed subgroup H of the group G. For details, see 

[140], Suppose that X = H \ G is a right G−space and that s : X → G is a Borel section of the 

projection p : G → X = HΓ: g 7→ Hg. For Lie group, such a mapping s can be chosen to be 

smooth almost everywhere. Then every element g ∈ G can be uniquely written in the form 

 𝑔 =  ℎ𝑠(𝑥), ℎ ∈  𝐻, 𝑥 ∈  𝑋,                                                     (85) 
and thus G (as a set) can be identified with 𝐻 ×  𝑋. Under this identification, the 

Haar measure on G goes into a measure equivalent to the product of a quasi-invariant 

measure on X and a Haar measure on 𝐻. If a quasi-invariant measure 𝜇𝑠 on X is appropriately 

chosen, then the following equalities are valid 

𝑑𝑟(𝑔) =
∆𝐺(ℎ)

∆𝐻(ℎ)
𝑑𝜇𝑠(𝑥)𝑑𝑟(ℎ),               (86) 

𝑑𝜇𝑠(𝑥𝑔)

𝑑𝜇𝑠(𝑥)
=
∆𝐻(ℎ(𝑥, 𝑔))

∆𝐺(ℎ(𝑥, 𝑔))
,                                 (87) 

where ∆𝐺 is a modular function on the group G and ℎ(𝑥, 𝑔)  ∈  𝐻 is defined by the relation  

𝑠(𝑥)𝑔 =  ℎ(𝑥, 𝑔)𝑠(𝑥𝑔).                   (88) 
Recall that a modular function on a group G is a homomorphism 𝐺 ∋  𝑡 ↦  ∆𝐺(𝑡)  ∈
 𝑅+ defined by the equality ℎ𝐿𝑡  = ∆𝐺(𝑡)ℎ, where h is the right Haar measure on G, L is the 

left action of the group G on itself and ℎ𝐿𝑡(𝐶)  =  ℎ(𝑡𝐶). 
Remark (4.2.1)[161]: If the group G is unimodular, i.e ∆𝐺  ≡  1, and it is possible to select a 

subgroup K that is complementary to H in the sense that almost every element of G can be 

uniquely written in the form 

 𝑔 =  ℎ𝑘, ℎ ∈  𝐻, 𝑘 ∈  𝐾,                      (89) 
then it is natural to identify X = H\G with K and to choose s as the embedding of K in G 

 𝑠 ∶  𝐾 ↦  𝐺.                  (90) 
In such a case, the formula (86) assume the form 

 𝑑g =  ∆𝐻(ℎ)
−1𝑑𝑟(ℎ)𝑑𝑟(𝑘).                               (91) 

If both G and H are unimodular (or, more generally, if ∆𝐺(ℎ) and ∆H(ℎ) coincide for h ∈ H), 

then there exist a G-invariant measure on X=H\G. If it is possible to extend ∆H  to a 
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multiplicative function on the group G, then there exist a quasi-invariant measure on X which 

is multiplied by the factor 
∆H(𝑔)

∆𝐺(𝑔)
 under translation by g. 

Now we can define In 𝑑 
𝐺
𝐻
𝑆 (see [140]). Let S : H → U(V ) be a unitary representation 

of a subgroup H of the group G in a Hilbert space V and let μ be a measure on X satisfying 

condition (87). Let H denote the space of all vector-valued functions f on X with values in V 

such that 

‖𝑓‖2 ∶= ∫ ‖𝑓(𝑥)‖𝑉
2  𝑑𝜇(𝑥)  < ∞

𝑋
. 

Let us consider the representation T given by the formula 

[𝑇(𝑔)𝑓](𝑥)  =  𝐴(𝑥, 𝑔)𝑓(𝑥𝑔)  =  𝑆(ℎ) (
𝑑𝜇𝑠(𝑥𝑔)

𝑑𝜇𝑠(𝑥)
)
1/2

𝑓(𝑥𝑔),          (92) 

where 

 𝐴(𝑥, 𝑔) = [
∆𝐻(ℎ)

∆𝐺(ℎ)
]

1

2
𝑆(ℎ),                                     (93) 

and where the element ℎ =  ℎ(𝑥, 𝑔) is defined by formula (88). 

Definition(4.2.2)[161]: The representation T is called the unitary induced representation and 

is denoted by Ind𝐻
𝐺  𝑆. 

Orbit method for finite-dimensional nilpotent group 𝐵(𝑛,ℝ). See Kirillov [139] and [140]. 

”Fix the group 𝐺𝑛 =  𝐵(𝑛, ℝ) of all upper triangular real matrices of order n with ones on the 

main diagonal. (The Kirillov notation for the group 𝐵(𝑛, ℝ) is 𝑁 + (𝑛,ℝ)). 
The basic result of the method of orbits, applied to nilpotent Lie groups, is the description of 

a one-to-one correspondence between two sets: 

(a) the set �̂� of all equivalence classes of irreducible unitary representations of a connected 

and simply connected nilpotent Lie group G, 

(b) the set 𝑂(𝐺) of all orbits of the group G in the space 𝑔∗ dual to the Lie algebra g with 

respect to the coadjoint representation. 

To construct this correspondence, we introduce the following definition. A subalgebra 

ℎ ⊂  𝑔 is subordinate to a functional 𝑓 ∈  𝑔∗ if 
〈𝑓, [𝑥, 𝑦]〉  =  0 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑥, 𝑦 ∈  ℎ, 

i.e. if h is an isotropic subspace with respect to the bilinear form defined by 𝐵𝑓(𝑥, 𝑦) =

 〈𝑓, [𝑥, 𝑦]〉 on 𝑔. 

Lemma(4.2.3)[161]: (Lemma 7.7, [140]). The following conditions are equivalent: 

(a) a subalgebra h is subordinate to the functional f, 

(b) the image of h in the tangent space 𝑇𝑓Ω to the orbit Ω in the point f is an isotropic 

subspace, 

(c) the map 

𝑥 ↦ 〈𝑓, 𝑥〉 
is a one-dimensional real representation of the Lie algebra h. 

If the conditions of Lemma (4.2.3) are satisfied, we define the one-dimensional unitary 

representation 𝑈𝑓,𝐻 of the group 𝐻 =  𝑒𝑥𝑝 ℎ by the formula  

𝑈𝑓,𝐻(𝑒𝑥𝑝 𝑥)  =  𝑒𝑥𝑝 2𝜋𝑖〈𝑓, 𝑥〉. 
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Theorem(4.2.4)[161]:(Theorem 7.2, [140]). (a) Every irreducible unitary representation T of 

a 

connected and simply connected nilpotent Lie group G has the form 

𝑇 = Ind𝐻
𝐺  𝑈𝑓,𝐻 , 

where H ⊂ G is a connected subgroup and 𝑓 ∈  𝑔∗; 
(b) the representation 𝑇𝑓,𝐻 = Ind𝐻

𝐺𝑈𝑓,𝐻 is irreducible if and only if the Lie algebra h of the 

group H is a subalgebra of g subordinate to the functional f with maximal possible dimension; 

 (c) irreducible representations 𝑇𝑓1,𝐻1  and 𝑇𝑓2,𝐻2are equivalent if and only if the functional 𝑓1 

and 𝑓2belong to the same orbit of 𝑔∗.” 

Example(4.2.5)[161]:  Let us consider the Heisenberg group 𝐺3 =  𝐵(3,ℝ), its Lie algebra g 

and the dual space 𝑔∗. Fix the notations 

𝑔 =  𝐵(3,ℝ)  = {(
1 𝑥12 𝑥13
0 1 𝑥23
0 0 1

)} , 

𝑔 =  𝐵(3,ℝ)  = {(
1 𝑥12 𝑥13
0 1 𝑥23
0 0 1

)} , 𝑔 ∗ =  𝑛 − (3,ℝ)  = {(
0 0 0
𝑦21 0 0
𝑦31 𝑦32 0

)} . 

The adjoint action Ad ∶  G →  Aut(g) of the group G on its Lie algebra g is: 

𝑔 ∋  𝑥 ↦  𝐴𝑑𝑡(𝑥) ∶=  𝑡𝑥𝑡
−1  ∈  𝑔, 𝑡 ∈  𝐺,                                            (94) 

the pairing between the 𝑔 and 𝑔∗: 

𝑔∗ ×  𝑔 ∋  (𝑦, 𝑥)  ↦  〈𝑦, 𝑥〉 ∶=  𝑡𝑟(𝑥𝑦)  = ∑ 𝑥𝑘𝑛𝑦𝑛𝑘 ∈ ℝ

1≤𝑘<𝑛≤3

.                      (95) 

Since 𝑡𝑟(𝑡𝑥𝑡−1𝑦)  =  𝑡𝑟(𝑥𝑡−1𝑦𝑡) the coadjoint action of G on the dual 𝑔∗ to 𝑔 is 

𝑔∗  ∋  𝑦 ↦  𝐴𝑑𝑡
∗  (𝑦) ∶=  (𝑡−1𝑦𝑡)− ∈  𝑔∗, 𝑡 ∈  𝐺,                                       (96) 

where (z)− means that we take lower triangular part of the matrix z. 

To calculate 𝐴𝑑𝑡
∗  (𝑦) explicitly for n = 3, we have 

𝑡−1𝑦𝑡 = (
1 𝑥12 𝑥13
0 1 𝑥23
0 0 1

)

−1

(
0 0 0
𝑦21 0 0
𝑦31 𝑦32 0

) (
1 𝑥12 𝑥13
0 1 𝑥23
0 0 1

) 

 

 = (
1 𝑡12 𝑥13 + 𝑡12𝑡23
0 1 −𝑡23
0 0 1

) (
0 0 0
𝑦21 𝑦21𝑡12 𝑦21𝑡13
𝑦31 𝑦31𝑡12 + 𝑦32 𝑦31𝑡13 + 𝑦32𝑡23

) , 

 

hence 

𝐴𝑑𝑡
∗ (𝑦) ∶=  (𝑡−1𝑦𝑡)−  = (

0 0 0
𝑦21−𝑡23𝑦31 0 0

𝑦31 𝑦31𝑡12 + 𝑦32 0
) . 

We have two type of the orbits O: 

(I) if 𝑦31 =  0, then (
𝑦21
0 𝑦32

) ≃ (y21, y32) for fixed y21, y32 is 0-dimensional orbit; 

(II) if 𝑦31 ≠  0, then (
ℝ
𝑦31 ℝ

)is 2-dimensional orbits. 
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In the case (I) fixe the point 𝑓 =  (𝑦21, 𝑦32), the subordinate subalgebra h coinside 

with all 𝑔 , since [𝑔, 𝑔]  = 〈𝐸13〉: =  {𝑡𝐸13 | 𝑡 ∈ ℝ}.  Corresponding one-dimensional 

representation of the algebra ℎ =  𝑔 is 

𝑔 ∋  𝑥 ↦  〈𝑓, 𝑥〉  =  𝑡𝑟(𝑥𝑓)  =  𝑡𝑟 [(
1 𝑥12 𝑥13
0 0 𝑥23
0 0 1

) (
0 0 0
𝑦21 0 0
𝑦31 𝑦32 0

)]

=  𝑥12𝑦21  +  𝑥23𝑦32  ∈ ℝ. 
The corresponding representation of the group G is 

𝐺 ∋  𝑒𝑥𝑝(𝑥)  ↦  𝑒𝑥𝑝(2𝜋𝑖〈𝑓, 𝑥〉)  ∈  𝑆
1.                                                 (97) 

So we have 1-dimensional representation 

𝐺3 ∋  𝑒𝑥𝑝(
1 𝑥12 𝑥13
0 0 𝑥23
0 0 1

) ⟼  𝑒𝑥𝑝(2𝜋𝑖(𝑥12𝑦21  +  𝑥23𝑦32))  ∈  𝑆
1. 

We note that  

𝑒𝑥𝑝(𝑥)  =  (
1 𝑥12 𝑥13
0 0 𝑥23
0 0 1

) = (
1 𝑥12 𝑥13 +

1

2
𝑥12𝑥23

0 0 𝑥23
0 0 1

). 

In the case 2) we have two subordinate subalgebras of the maximal dimension 

ℎ1  = (
0 0 𝑥13
0 0 𝑥23
0 0 0

) , 𝑎𝑛𝑑 ℎ2  = (
0 𝑥12 𝑥13
0 0 0
0 0 0

) . 𝑆𝑒𝑡 𝑓 = (
0 0 0
𝑦21 0 0
𝑦31 𝑥13 0

) . 

The corresponding one-dimensional representations of the subalgebras ℎ𝑖 , 𝑖 =  1, 2 are  

ℎ1  ∋  𝑥 ↦  〈𝑓, 𝑥〉 =  𝑥13𝑦31  +  𝑥23𝑦32  ∈ ℝ, 
 ℎ2  ∋  𝑥 ↦  〈𝑓, 𝑥〉  =  𝑥12𝑦21  +  𝑥13𝑦31  ∈ ℝ. 

The corresponding representations S of the subgroups 𝐻1 and 𝐻2 respectively are: 

𝐻1  ∋ (
1 0 𝑥13
0 1 𝑥23
0 0 1

) =  𝑒𝑥𝑝(𝑥)  ↦  𝑒𝑥𝑝(2𝜋𝑖(𝑥13𝑦31 + 𝑥23𝑦32))  ∈  𝑆
1, 

𝐻2  ∋ (
1 𝑥12 𝑥13
0 1 0
0 0 1

) =  𝑒𝑥𝑝(𝑥)  ↦  𝑒𝑥𝑝(2𝜋𝑖(𝑥12𝑦21 + 𝑥13𝑦31))  ∈  𝑆
1 In the case 𝐻1  we 

have the decomposition 𝐺3 = ℝ
2 ⋉ 𝐵(2,ℝ)  ≃  𝐻1 ⋉ℝ, indeed we have 

𝐺3  ∋ (
1 𝑥12 𝑥13
0 1 𝑥23
0 0 1

) = (
1 0 𝑥13
0 1 𝑥23
0 0 1

)(
1 𝑥12 0
0 1 0
0 0 1

) ∈  ℝ2 ⋉  𝐵(2,ℝ), 

hence the space 𝑋 =  𝐻1\𝐺3  is isomorphic to 𝐵(2,ℝ)  ≃ ℝ and s can be choosing as the 

embedding 𝑠 ∶  𝐵(2,ℝ)  →  𝐵(3,ℝ). 

𝐵(2, 𝑅)  ∋  ( 
1 𝑥
0 1

 )  = : 𝑥 ↦  𝑠(𝑥)  = (
1 𝑥 0
0 1 0
0 0 1

) ∈  𝐵(3,ℝ). 

For general n we have 

𝐵(𝑛 +  1ℝ)  = ℝ2 ⋉  𝐵(𝑛,ℝ).                                                     (98) 
To calculate the right action of G on X i.e. to find h(x, t) such that 

𝑠(𝑥)𝑡 =  ℎ(𝑥, 𝑡)𝑠(𝑥𝑡), 
we have for 𝑥 ∈  𝐵(2,ℝ) and 𝑡 ∈  𝐵(3,ℝ)  
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𝑠(𝑥)𝑡 = (
1 𝑥 0
0 1 0
0 0 1

) (
1 𝑡12 𝑡13
0 1 𝑡23
0 0 1

) = (
1 𝑥 + 𝑡12 𝑥13 + 𝑥𝑡23
0 1 𝑡23
0 0 1

)

= (
1 0 𝑥13 + 𝑥𝑡23
0 1 𝑡23
0 0 1

)(
1 𝑥 + 𝑡12 0
0 1 0
0 0 1

) 

=  ℎ(𝑥, 𝑡)𝑠(𝑥𝑡), hence ℎ(𝑥, 𝑡)  = (
1 0 𝑥13 + 𝑥𝑡23
0 1 𝑡23
0 0 1

) 

Finally, the induced unitary representation Ind𝐻1
𝐺  𝑆 have the following form in the Hilbert 

space 𝐿2(ℝ, 𝑑𝑥) (𝑐𝑎𝑠𝑒 𝐻1 𝑎𝑛𝑑 𝑓 =  𝑦31𝐸31): 

𝑓(𝑥) ↦  𝑆(ℎ(𝑥, 𝑡))𝑓(𝑥𝑡) =  𝑒𝑥𝑝(2𝜋𝑖(𝑡13  +  𝑡23𝑥)𝑦31)𝑓(𝑥 +  𝑡12).                       (99) 
In the Kirillov [140] notations we have: 

𝑓(𝑥) →  𝑒𝑥𝑝(2𝜋𝑖(𝑐 +  𝑏𝑥) ⋋)𝑓(𝑥 +  𝑎), 𝑦31  = ⋋, (
1 𝑡12 𝑡13
0 1 𝑡23
0 0 1

) = (
1 𝑎 𝑐
0 1 𝑏
0 0 1

) . 

We show following 𝐴. Kirillov [140] how the orbit method works for the nilpotent group 

B(n,ℝ) and small 𝑛. 

For general n ∈ ℕ the coadjoint action of the group Gn on g is as follows 

t =  I + ∑ tkmE km,y 

1≤k<𝑚≤n

= ∑ tkmE km,𝑡
−1

1≤m<𝑘≤n

∶=  I + ∑ tkm
−1 Ekm

1≤k<𝑚≤n

 

hence 

(𝑡𝑦𝑡−1)𝑝𝑞  = ∑(𝑡𝑦)𝑝𝑚𝑡𝑚𝑞
−1

𝑞

𝑚=1

= ∑∑𝑡𝑝𝑟𝑦𝑟𝑚𝑡𝑚𝑞,
−1  1 ≤  𝑝, 𝑞 ≤  𝑛,

𝑛

𝑟=𝑝

𝑞

𝑚=1

 

and 

𝐴𝑑𝑡
∗ (𝑦) =  (𝑡−1𝑦𝑡)−  =  𝐼 + ∑ (𝑡−1𝑦𝑡)𝑝𝑞𝐸𝑝𝑞

1≤𝑞<𝑝≤𝑛

.                      (100) 

Example (4.2.6)[161]: Generic orbits for the group 𝐺 =  𝐵(𝑛, ℝ) (see [140], Example 7.9). 

“The form of the action 𝐴𝑑𝑡
∗ (𝑦)  =  (𝑡 − 1𝑦𝑡)− implies, that 𝐴𝑑𝑡

∗ , 𝑡 ∈  𝐺 acts as follows: to 

a given column of 𝑦 ∈  𝑔∗, a linear combination of the previous columns is added and to a 

given row of y, a linear combination of the following rows is added. More generally, the 

minors ∆𝑘, 𝑘 =  1, 2, . . . , [
𝑛

2
 ] , consisting of the last 𝑘  rows and first 𝑘  columns of 𝑦  are 

invariant of the action. It is possible to show that if all the numbers 𝑐𝑘 are different from 

zeros, then the manifold given by the equation 

∆𝑘 =  𝑐𝑘 , 1 ≤  𝑘 ≤  [
𝑛

2
]                                        (101) 

is a G-orbit in 𝑔∗. Hence generic orbits have codimension equal to [
𝑛

2
] and dimension equal to 

𝑛(𝑛−1)

2
 − [

𝑛

2
 ]. To obtain a representation for such an orbit, we can take a matrix y of the form  

𝑦 =  ( 
0 0
Λ 0

) , 
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 where Λ is the matrix of order [
𝑛

2
 ] such that all nonzero elements are contained in the anti-

diagonal. It is easy to find a subalgebra of dimension [
𝑛

2
 ] × [

𝑛+1

2
 ]  subordinate to the 

functional y. It consist of all matrices of the form 

( 
0 𝐴
0 0

) , 

where A is an [
𝑛

2
 ]  ×  [

𝑛+1

2
 ]𝑜𝑟 [

𝑛+1

2
 ]  ×  [

𝑛

2
 ] matrix.” 

Example(4.2.7)[161]: Let 𝐺 =  𝐵(5,ℝ), 𝑔 =  𝑛+(5,ℝ), 𝑔
∗  =  𝑛−(5, ℝ) . We write the 

repre-sentations for generic orbit corresponding to the point  𝑦 =  𝑦51𝐸51  +  𝑦42𝐸42 ∈  𝑔
∗. 

Set ℎ3 = {𝑡
− 𝐼  | 𝑡 ∈  𝐻3} where 

𝐺 =

{
 
 

 
 

(

 
 

1 𝑥12 𝑥13 𝑥14 𝑥15
0
0
0

1
0
0

𝑥23
1
0

𝑥24
𝑥34
1

𝑥25
𝑥35
𝑥45

0 0 0 0 1 )

 
 

}
 
 

 
 

 , 𝐻3  =

{
 
 

 
 

(

 
 

1 0 0 𝑡14 𝑡15
0
0
0

1
0
0

0
1
0

𝑡24
𝑡34
1

𝑡25
𝑡35
0

`0 0 0 0 1 )

 
 

}
 
 

 
 

 

= 𝑔∗

{
 
 

 
 

(

 
 

0 0 0 0 0
𝑦21
𝑦31
𝑦41

0
𝑦32
𝑦42

0
0
𝑦43

0
0
0

0
0
0

𝑦51 𝑦52 𝑦53 𝑦54 0)

 
 

}
 
 

 
 

 

The corresponding representation S of the subgroup 𝐻3 of the maximal dimension is: 

𝐻3  ∋  𝑡 ↦  𝑒𝑥𝑝(2𝜋𝑖〈𝑦, (𝑡 −  𝐼)〉)  =  𝑒𝑥𝑝(2𝜋𝑖[𝑡15𝑦51  +  𝑡24𝑦42])  ∈  𝑆
1. 

For the group 𝐵(5,ℝ) holds the following decomposition 

𝐵(5,ℝ)  =  𝐵3𝐵(3)𝐵
(3) 𝑖. 𝑒. 𝑥 =  𝑥3𝑥(3)𝑥

(3),                            (102) 
where 

𝐵(3) =

{
 
 

 
 

(

 
 

1 𝑥12 𝑥13 0 0
0
0
0

1
0
0

𝑥23
1
0

0
0
1

0
0
0

0 0 0 0 1)

 
 

}
 
 

 
 

 , 𝐵(3)  =

{
 
 

 
 

(

 
 

1 0 0 𝑡14 𝑡15
0
0
0

1
0
0

0
1
0

𝑡24
𝑡34
1

𝑡25
𝑡35
0

0 0 0 0 1 )

 
 

}
 
 

 
 

 

= 𝐵3

{
 
 

 
 

(

 
 

1 0 0 0 0
0
0
0

1
0
0

0
1
0

0
0
1

0
0
𝑥54

0 0 0 0 1 )

 
 

}
 
 

 
 

 

We calculate h(x, t) in the relation 𝑠(𝑥)𝑡 =  ℎ(𝑥, 𝑡)𝑠(𝑥𝑡), but first we fix the section 𝑠 ∶
 𝑋 =  𝐻\𝐺 ⟼  𝐺 of the projection p : G → X. To define the section 𝑠 ∶  𝑋 ↦ 𝐺 we show 

that in addition to the decomposition (102) the following decomposition 𝐵(5,ℝ)  =
 𝐵(3)𝐵3𝐵

(3)  also holds. Indeed, to find ℎ ∈  𝐻3  =  𝐵
(3)  such that 𝑥 =  ℎ𝑥3𝑥

(3), we get 

𝑥3𝑥(3)𝑥
(3)  =  ℎ𝑥3𝑥

(3), hence 
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 ℎ =  𝑥3𝑥(3)𝑥3
−1  =

(

 
 

1 0 0 𝑥14 𝑥15
0
0
0

1
0
0

0
1
0

𝑥24
𝑥34
1

𝑥25
𝑥35
𝑥45

0 0 0 0 1 )

 
 
  

(

 
 

1 0 0 0 0
0
0
0

1
0
0

0
1
0

0
0
1

0
0

−𝑥45
0 0 0 0 1 )

 
 

=  

(

 
 

1 0 0 𝑥14 𝑥15 − 𝑥14𝑥45
0
0
0

1
0
0

0
1
0

𝑥24
𝑥34
1

𝑥25 − 𝑥24𝑥45
𝑥35 − 𝑥34𝑥45

0
0 0 0 0 1 )

 
 
 ∈  𝐵(3). 

We have two different decompositions 

𝐵3𝐵(3)𝐵
(3)  ∋  𝑥3𝑥(3)𝑥

(3) =  ℎ𝑥3𝑥
(3)  ∈  𝐵(3)𝐵3𝐵

(3), 𝑤𝑖𝑡ℎ ℎ =  𝑥3𝑥(3)𝑥3
−1 . 

Remark (4.2.8)[161]: For an arbitrary 𝑛,𝑚 ∈  ℕ, 1 <  𝑚 <  𝑛, we have for the group 𝐺𝑛  =
𝐵(𝑛,ℝ) 𝑡wo decompositions: 

 

𝐺𝑛 = 𝐵𝑚𝐵(𝑚)𝐵
(𝑚)  ∋  𝑥𝑚𝑥(𝑚)𝑥

(𝑚)  =  ℎ𝑥𝑚𝑥
(𝑚)  ∈  𝐵(𝑚)𝐵𝑚𝐵

(𝑚), ℎ
= 𝑥𝑚𝑥(𝑚)𝑥𝑚

−1 , (103) 
where 

𝐵𝑚  =  {𝐼 + ∑ 𝑥𝑘𝑟𝐸𝑘𝑟
𝑚<𝑘<𝑟≤𝑛

}, 𝐵(𝑚)  =  {𝐼 + ∑ 𝑥𝑘𝑟𝐸𝑘𝑟
1≤𝑘≤𝑚<𝑟≤𝑛

}, 𝐵(𝑚)  

=  {𝐼 + ∑ 𝑥𝑘𝑟𝐸𝑘𝑟
1≤𝑘<𝑟≤𝑚

}. 

Since 𝑋 =  𝐵(𝑚)\𝐺𝑛 is isomorphic to 𝐵𝑚𝐵
(𝑚) by decomposition (103), the section scan be 

choosing, by Remark(4.2.1) , as the embedding 

𝐵𝑚𝐵
(𝑚)  ∋  𝑥𝑚𝑥

(𝑚)  ↦  𝑠(𝑥𝑚𝑥
(𝑚))  =  𝑥𝑚𝑥

(𝑚)  ∈  𝐵𝑚𝐵(𝑚)𝐵
(𝑚). 

Since 𝑠(𝑥)𝑡 =  ℎ(𝑥, 𝑡)𝑠(𝑥𝑡) , we have ℎ(𝑥, 𝑡)  =  𝑠(𝑥)𝑡(𝑠(𝑥𝑡))−1 . It remains to calculate 

𝑠(𝑥)𝑡 and 𝑠(𝑥𝑡). 
Remark(4.2.9)[161]: We have 

ℎ(𝑥, 𝑡)  −  𝐼 = {
0, 𝑓𝑜𝑟 𝑡 ∈  𝐵𝑚𝐵

(𝑚)

𝑥(𝑚)(𝑡 −  𝐼)𝑥𝑚
−1 , 𝑓𝑜𝑟 𝑡 ∈  𝐵(𝑚)

. 

Indeed, let 𝑡 =  𝑡𝑚𝑡(𝑚)  ∈  𝐵𝑚𝐵
(𝑚)  . then 𝑠(𝑥)𝑡 =  𝑥𝑚𝑥

(𝑚)𝑡𝑚𝑡
(𝑚) = 𝑥𝑚𝑡𝑚𝑥

(𝑚)𝑡(𝑚)We 

get also 𝑥𝑡 =  𝑥𝑚𝑥
(𝑚)𝑡𝑚𝑡

(𝑚)  =  𝑥𝑚𝑡𝑚𝑥
(𝑚)𝑡(𝑚), 𝑠𝑜 𝑠(𝑥𝑡)  =  𝑥𝑚𝑡𝑚𝑥

(𝑚)𝑡(𝑚) , hence 

𝑠(𝑥)𝑡 =  𝑠(𝑥𝑡)  and we get  ℎ(𝑥, 𝑡) = 𝑒 . For 𝑡 ∶=  𝑡(𝑚)  ∈  𝐵(𝑚)  and 𝑥 =  𝑥𝑚𝑥
(𝑚)  ∈

 𝐵𝑚𝐵(𝑚) we get 

𝑠(𝑥)𝑡 =  𝑥𝑚𝑥
(𝑚)𝑡 =  𝑥𝑚𝑥

(𝑚)𝑡(𝑥(𝑚))−1𝑥 (𝑚) =  𝑥𝑚�̃�(𝑚)𝑥
(𝑚)  =  ℎ𝑥𝑚𝑥

(𝑚)  
=  ℎ(𝑥, 𝑡)𝑠(𝑥𝑡), 

 where �̃�(𝑚)  =  𝑥(𝑚)𝑡(𝑥(𝑚))−1. Then we get by (103) 

ℎ(𝑥, 𝑡)  =  ℎ =  𝑥𝑚�̃�(𝑚)𝑥𝑚
−1  =  𝑥𝑚𝑥

(𝑚)𝑡(𝑥(𝑚))
−1
𝑥𝑚
−1   =  𝑥𝑚𝑥

(𝑚)𝑡(𝑥𝑚𝑥
(𝑚))

−1
,      (104) 

ℎ(𝑥, 𝑡)  = ( 
𝑥(𝑚) 0
0 𝑥𝑚

) ( 
1 𝑡 − 𝐼
0 1

) ( 
(𝑥(𝑚))

−1
 0

0 𝑥𝑚
−1
) = ( 1 𝑥

(𝑚) (𝑡 − 𝐼)𝑥𝑚
−1

0 1
)

= (
1 𝐻(𝑥, 𝑡)
0 1

),                                                                                                           (105) 
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where 

(𝑥, 𝑡) ∶=  𝑥(𝑚)(𝑡 −  𝐼)𝑥𝑚
−1 .                                                  (106) 

Denote by 𝐸𝑘𝑟(𝑡) ∶=  𝐼 + 𝑡𝐸𝑘𝑟 , 𝑡 ∈ ℝ the one-parameter subgroups of the groups 𝐵(𝑛, ℝ). 

We would like to find the generators 𝐴𝑘𝑛 = 
𝑑

𝑑𝑡
 𝑇𝐼+𝑡𝐸𝑘𝑛|𝑡=0 of the induced representation 𝑇t 

(112). 

Set for 𝐺 𝑛 = 𝐵𝑚𝐵(𝑚)𝐵
(𝑚) 𝑎𝑛𝑑 1 ≤  𝑘 ≤  𝑚 <  𝑟 ≤  𝑛 

𝑆𝑘𝑟(𝑡𝑘𝑟): = 〈 𝑦, (ℎ(𝑥, 𝐸𝑘𝑟(𝑡𝑘𝑟))–  𝐼)〉, 
then 

𝐴𝑘𝑟  =  
𝑑

𝑑𝑡
 𝑒𝑥𝑝(2𝜋𝑖𝑆𝑘𝑟(𝑡))|𝑡=0  =  2𝜋𝑖𝑆𝑘𝑟(1).                 (107) 

Let us denote by 𝕊 the following matrix: 

𝕊 =  (𝑆𝑘𝑟)1≤𝑘≤𝑚<𝑟≤𝑛, 𝑤ℎ𝑒𝑟𝑒 𝑆𝑘𝑟  =  𝑆𝑘𝑟(1), 𝑡ℎ𝑒𝑛 𝕊 =  (2𝜋𝑖)
−1(𝐴𝑘𝑟)𝑘,𝑟 .   (108) 

Lemma(4.2.10)[161]:Let 𝐵 =  (𝑏𝑘𝑟) 𝑘,𝑟=1
𝑛  ∈  𝑀𝑎𝑡(𝑛, ℂ). Define the matrix 𝐶 =

 (𝑐𝑘𝑟)𝑘,𝑟=1
𝑛 ∈  𝑀𝑎𝑡(𝑛, ℂ) by 

            𝑐 𝑘𝑟 =  𝑡𝑟(𝐸𝑘𝑟𝐵), 1 ≤  𝑘, 𝑟 ≤  𝑛, then we have  =  𝐵𝑇 ,                      (109) 
where 𝐸𝑘𝑟  are matrix units and 𝐵𝑇  means transposed matrix to the matrix B. The equality 

𝐶 = 𝐵𝑇  holds also in the case when B is an arbitrary 𝑚 × 𝑛  rectangular matrix. The 

statement is true also for matrices 𝐵 ∈  𝑀𝑎𝑡(∞, ℂ). 
Proof. Indeed, we have 𝑡𝑟(𝐸𝑘𝑟𝐵)  =  𝑏𝑟𝑘. 

We calculate now the matrix 𝕊(𝑡)  =  (𝑆𝑘𝑟(𝑡𝑘𝑟))𝑘,𝑟  and the matrix 𝕊 =  (𝑆𝑘𝑟(1))𝑘,𝑟  using 

Lemma(4.2.10)  Using (106) we have  

〈𝑦, ℎ(𝑥, 𝑡)  −  𝐼 〉 =  𝑡𝑟 (𝐻(𝑥, 𝑡)𝑦) =  𝑡𝑟((𝑚)𝑡0𝑥𝑚
−1 𝑦) = 𝑡𝑟(𝑡0𝑥𝑚

−1 𝑦𝑥(𝑚)) =

 𝑡𝑟 (𝑡0𝐵(𝑥, 𝑦)) , where 𝑡0  =  𝑡 –  𝐼 and  

𝐵(𝑥, 𝑦)  =  𝑥𝑚
−1  𝑦𝑥(𝑚)  ≅  (

1 0
0 𝑥𝑚

−1) (
0 0
𝑦 0

) = (
0 0

𝑥𝑚
−1𝑦𝑥(𝑚) 0

).                (110) 

By definition we have 

𝑆𝑘𝑟(𝑡𝑘𝑟)  =  〈𝑦, (ℎ(𝑥, 𝐸𝑘𝑟(𝑡𝑘𝑟))  −  𝐼)〉 =  𝑡𝑟(𝑡𝑘𝑟𝐸𝑘𝑟𝐵(𝑥, 𝑦)), 
hence by Lemma(4.2.10)  and (4.2.3) (110) we conclude that 

𝕊 =  (𝑆𝑘𝑟(1))𝑘𝑟  =  (𝑡𝑟 (𝐸𝑘𝑟𝐵(𝑥, 𝑡)))𝑘,𝑟  =  𝐵
𝑇  (𝑥, 𝑦)  =  (𝑥(𝑚))𝑇 𝑦𝑇  (𝑥𝑚

−1 )𝑇  

= (0 (𝑥(𝑚))𝑇 𝑦𝑇  (𝑥𝑚
−1 )𝑇

0 0
).                                                                      (111) 

So the induced representation In𝑑
𝐺
𝐻
 (𝑆) ∶  𝐺 →  𝑈(𝐿2(𝑋, 𝜇)) corresponding to the point 𝑦 ∈

 𝑔∗ has the following form 

 (𝑇𝑡𝑓)(𝑥) = 𝑆(ℎ(𝑥, 𝑡)) (
𝑑𝜇(𝑥𝑡)

𝑑𝜇(𝑥)
)

1
2

 𝑓(𝑥𝑡), 𝑓 ∈  𝐿2(𝑋, 𝜇), 𝑥 ∈  𝑋 =  𝐻\𝐺, 𝑡 ∈  𝐺,      (112) 

where 

 𝕊(ℎ(𝑥, 𝑡))  =  𝑒𝑥𝑝(2𝜋𝑖〈𝑦, (ℎ(𝑥, 𝑡)  −  𝐼)〉)  =  𝑒𝑥𝑝2𝜋𝑖𝑡𝑟 ((𝑡 −  𝐼)𝐵(𝑥, 𝑦)).          (113) 
We calculate B(x, y) and S for different groups 𝐺n. For 𝐺5 we get by (110): 
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𝐺5 =

(

 
 

1 𝑥12 𝑥13 𝑥14 𝑥15
0
0
0

1
0
0

𝑥23
1
0

𝑥24
𝑥34
1

𝑥25
𝑥35
𝑥45

0 0 0 0 1 )

 
 
, 𝑦 =   

(

 
 

0 0 0 0 0
0
0
0

0
0
𝑦42

0
0
0

0
0
0

0
0
0

𝑦51 0 0 0 0)

 
 
, 𝑥(3)

= (
1 𝑥12 𝑥13
0 1 𝑥23
0 0 1

) , 𝑥3 = (
1 𝑥45
0 1

) , 

𝐵(𝑥, 𝑦) =  (1 𝑥45
−1

0 1
) (

0 𝑦24 0
𝑦25 0 0

)(
1 𝑥12 𝑥13
0 1 𝑥23
0 0 1

) 

= (
𝑥45
−1𝑦51 𝑦42 + 𝑥45

−1𝑦51𝑥12 𝑦42𝑥23 + 𝑥45
−1𝑦51𝑥13

𝑦51 𝑦51𝑥12 𝑦51𝑥13
) , 

hence by (111) we have 

𝕊 ∶= 𝐵(𝑥, 𝑦)𝑇 = (1 𝑥45
−1

0 1
) (

0 𝑦42 0
𝑦51 0 0

)(
1 𝑥12 𝑥13
0 1 𝑥23
0 0 1

)

= (

𝑥45
−1𝑦51 𝑦51

𝑦42+𝑥45
−1𝑦51𝑥12 𝑦51𝑥12

𝑦42𝑥23 + 𝑦51𝑥12 𝑦51𝑥13

)                                                     (114) 

Remark(4.2.11)[161]: For the matrix 𝑥 =  𝐼 + ∑ 𝑥𝑘𝑛𝐸𝑘𝑛  ∈  𝐵(𝑚,ℝ)1≤𝑘<𝑛≤𝑚   we denote 

by 𝑥𝑘𝑛
−1  the matrix elements of the matrix 𝑥−1, 𝑖. 𝑒. 𝑥−1  = : 𝐼 + ∑ 𝑥𝑘𝑛

−1𝐸𝑘𝑛  ∈1≤𝑘<𝑛≤𝑚

 𝐵(𝑚,ℝ) . 
The explicit expressions for 𝑥𝑘𝑛

−1 are as follows (see [165]) 𝑥𝑘𝑘+1
−1 = −𝑥𝑘𝑘+1, 

𝑥𝑘𝑛
−1  = −𝑥𝑘𝑛 + ∑ (−1)𝑟−1

𝑛−𝑘−1

𝑟=1

∑ 𝑥𝑘𝑖1𝑥𝑖1𝑖2  . . . 𝑥𝑖𝑟𝑛, 𝑘 < 𝑛 − 1

𝑘<𝑖1<𝑖2<...<𝑖𝑟<𝑛

.           (115) 

The generators 𝐴𝑘𝑛  =  
𝑑

𝑑𝑡
 𝑇𝐼+𝑡𝐸𝑘𝑛|𝑡=0 of the one-parameter subgroups 𝐸𝑘𝑛(𝑡) ∶=  𝐼 +

 𝑡𝐸𝑘𝑛, 𝑡 ∈ ℝ generated by the representation 𝑇t (112) are as follows (see (108) and(114)): 

𝐴12  =  𝐷12, 𝐴13  =  𝐷13, 𝐴23  =  𝑥12𝐷13  +  𝐷23, 𝐴45  =  𝐷45,                 (116) 

                      𝑆 =
1

2𝜋𝑖
(

𝐴14 𝐴15
𝐴24 𝐴25
𝐴34 𝐴35

) = (

𝑥45
−1𝑦51 𝑦51

𝑦42+𝑥45
−1𝑦51𝑥12 𝑦51𝑥12

𝑦42𝑥23 + 𝑥45
−1𝑦51𝑥12 𝑦51𝑥13

)                (117) 

Where 𝐷𝑘𝑛 =
𝜕

𝜕𝑥𝑘𝑛
  For example, to obtain the expression 𝐴23 = 𝑥12𝐷13  +  𝐷23 we notethat 

𝐵(3,ℝ) ∋  𝑥(𝐼 +  𝑡𝐸23) = (
1 𝑥12 𝑥13
0 1 𝑥23
0 0 1

)(
1 0 0
0 1 𝑡
0 0 1

) = (
1 𝑥12 𝑥13 + 𝑡𝑥12
0 1 𝑥23 + 𝑡
0 0 1

) 

Here we denote by 𝑘𝑛 =  𝐷𝑘𝑛(ℎ) the operator of the partial derivative corresponding to the 

shift 𝑥 ↦  𝑥 + 𝑡𝐸𝑘𝑛 on the group 𝐵𝑚 × 𝐵
(𝑚) ∋  𝑥 =  (𝑥𝑘𝑛)𝑘,𝑛 and the Haar measure h: 

(𝐷𝑘𝑛(ℎ)𝑓)(𝑥) =
𝑑

𝑑𝑡
(
𝑑ℎ(𝑥 +  𝑡𝐸𝑘𝑛)

𝑑ℎ(𝑥)
)

1
2

𝑓(𝑥 +  𝑡𝐸𝑘𝑛) |𝑡=0, 𝐷𝑘𝑛(ℎ):=
𝜕

𝜕𝑥𝑘𝑛
            (118) 
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Example(4.2.12)[161]:Let 𝐺 =  𝐵(4, 𝑅)  = {

1 𝑥23 𝑥24 𝑥25
0
0

1
0

𝑥34
1

𝑥35
𝑥25

0 0 0 1

} .The representations for 

genericorbit corresponding to the point 𝑦 =  𝑦43𝐸 43 + 𝑦52𝐸52  ∈  𝑔
∗ . 

We calculate S in two different ways. First using (110) we get 

 B(x, y) =  xm
−1 yx (m) = (1 𝑥45

−1

0 1
) (

1 y43
y52 0

) (
1 x23
0 1

) = (
x45
−1y52 y43 + x45

−1x23
y52 x23y52

) , 

1

2𝜋𝑖
(
𝐴24 𝐴25
𝐴34 𝐴34

) = 𝕊 = 𝐵𝑇(𝑥, 𝑦) = (
1 0
𝑥23 1

) (
0 𝑦52
𝑦43 0

) (
1 0
𝑥45
−1 1

)

= (
x45
−1y52 y52

y43 + x45
−1y52x23 y52x23

) 

𝐴23 = 𝐷23,   𝐴45 = 𝐷45 

From the other hand, by (105) we get ℎ(𝑥, 𝑡)  = (
1 𝐻(𝑥, 𝑡)
0 1

), where 

 

𝐻(𝑥, 𝑡) = 𝑥(3)(𝑡 − 𝐼)𝑥3
−1  = (

1 𝑥23
0 1

) (
𝑡24 𝑡25
𝑡34 𝑡35

) (1 𝑥45
−1

0 1
)

= (
𝑡24 + 𝑥23𝑡34 (𝑡24 + 𝑥23𝑡34)𝑥45 + 𝑡25 + 𝑥23𝑡35

𝑡34 𝑡34𝑥45
−1 + 𝑡25 + 𝑡35

)                         (119) 

Therefore, 

〈𝑦, (ℎ(𝑥, 𝑡) − 𝐼)〉  =  ℎ(𝑥, 𝑡)34𝑦43 + ℎ(𝑥, 𝑡)25𝑦52  
=  𝑡34𝑦43 + [(𝑡24 + 𝑥23𝑡34)𝑥45

−1 + 𝑡25 + 𝑥23𝑡35]𝑦52, 
Hence 

             𝕊2 (
𝑠24(𝑡24) 𝑠25(𝑡25)

𝑠34(𝑡34) 535(𝑡35)
) = (𝑡) ≔ (

𝑡24𝑥45
−1𝑦52 𝑡25𝑦52

𝑡34𝑦43 + 𝑥23𝑡34𝑥45
−1𝑦52 𝑥23𝑡35𝑦52

) , 

𝕊2 ≔ 𝕊2(1) (
𝑠24 𝑠25
𝑠34 535

) = (
𝑥45
−1𝑦52 𝑦52

𝑦43 + 𝑥45
−1𝑦52𝑥23 𝑦52𝑥23

)

= (
1 0
𝑥23 1

) (
0 𝑦25
𝑦43 0

) (
1 0
𝑥45
−1 1

)                                               (120) 

Example (4.2.13)[161]: Let 𝐺 =  𝐵(6,ℝ), 𝑔 =  𝑛+(6,ℝ), 𝑔
∗ = 𝑛−(6,ℝ).  We write the 

representations for generic orbit corresponding to the point 𝑦 =  𝑦43𝐸43  +  𝑦52𝐸52  +
 𝑦61𝐸61 ∈  𝑔

∗.Set 
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𝐺6  =

{
 
 

 
 

(

  
 

1 𝑥12 𝑥13 𝑥14 𝑥15 𝑥16
0 1
0 0
0 0

𝑥23
1
0

𝑥24
𝑥34
1

𝑥25
𝑥35
𝑥45

𝑥26
𝑥36
𝑥46

0 0
0 0

0
0
0
0
1
0

𝑥56
1 )

  
 
,

}
 
 

 
 

,𝐻3 =

{
 
 

 
 

(

  
 

1 0 0 𝑥14 𝑥15 𝑥16
0 1
0 0
0 0

0
1
0

𝑥24
𝑥34
1

𝑥25
𝑥35
0

𝑥26
𝑥36
0

0 0
0 0

0
0
0
0
1
0

0
1 )

  
 

}
 
 

 
 

,

𝑦 =

(

 
 
 

1 0 0 0 0 0
0 0
0 0
0 0

0
0
𝑦43

0
0
0

0
0
0

0
0
0

0 𝑦52
𝑦51 0

0
0
0
0
0
0

0
1)

 
 
 

 

ℎ3  =  {𝑡 −  𝐼 | 𝑡 ∈  𝐻3}. The corresponding representations S of the subgroup 𝐻3 is:  

𝐻3 ∋ 𝑒𝑥𝑝(𝑡 − 𝐼)  = 𝑡 ↦ 𝑒𝑥𝑝(2𝜋𝑖〈𝑦, (𝑡 − 𝐼)〉) = 𝑒𝑥𝑝(2𝜋𝑖[𝑡34𝑦43 + 𝑡𝑦52 + 𝑡16𝑦61]) ∈  𝑆
1. 

For the group B(6,R) holds the following decomposition 

𝐵(6,ℝ)  =  𝐵3𝐵(3)𝐵
(3)𝑖. 𝑒. 𝑥 =  𝑥3𝑥(3)𝑥

(3),             (121) 
where 

𝑥(3) =

(

  
 

1 𝑥12 𝑥13 0 0 0
0 1
0 0
0 0

𝑥23
1
0

0
0
1

0
0
0

0
0
0

0 0
0 0

0
0
0
0
1
0

0
1)

  
 
, 𝑥(3) =

(

  
 

1 𝑥12 𝑥13 𝑥14 𝑥15 𝑥16
0 1
0 0
0 0

𝑥23
1
0

𝑥24
𝑥34
1

𝑥25
𝑥35
𝑥45

𝑥26
𝑥36
𝑥46

0 0
0 0

0
0
0
0
1
0

𝑥56
1 )

  
 
,

𝑥3 =

(

  
 

1 0 0 0 0 0
0 1
0 0
0 0

0
1
0

0
0
1

0
0
𝑥45

0
0
𝑥46

0 0
0 0

0
0
0
0
1
0

𝑥56
1 )

  
 
. 

 

We get by (110) and (111) 

𝐵(𝑥, 𝑦)  = (
1 𝑥45

−1 𝑥46
−1

0 1 𝑥56
−1

0 0 1

)(

0 0 𝑦43
0 𝑦52 0
𝑦61 0 0

)(
1 𝑥12 𝑥13
0 1 𝑥23
0 0 1

) 

= (

𝑥46
−1𝑦61 𝑥45

−1𝑦52 + 𝑥46
−1𝑦61𝑥12 𝑦43 + 𝑥45

−1𝑦52𝑥23 + 𝑥46
−1𝑦61𝑥13

𝑥56
−1𝑦61
𝑦61

𝑦52 + 𝑥56
−1𝑦61𝑥12

𝑦61𝑥12

𝑦52𝑥23 + 𝑥56
−1𝑦61𝑥13

𝑦61𝑥13

) , 

hence 

𝕊 = 𝐵𝑇(𝑥, 𝑦) = (
1 0 0
𝑥12 1 0
𝑥13 𝑥23 1

)(

0 0 𝑦61
0 𝑦52 0
𝑦43 0 0

)(

1 0 0
𝑥45
−1 1 0

𝑥46
−1 𝑥56

−1 1
) 
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= (

𝑥46
−1𝑦61 𝑥56

−1𝑦61 𝑦61
𝑥45
−1𝑦52𝑥46

−1𝑦61𝑥12 𝑦52𝑥46
−1𝑦61𝑥12 𝑦61𝑥12

𝑦43 + 𝑥45
−1𝑦52𝑥23 + 𝑥46

−1𝑦61𝑥13 𝑦52𝑥23 + 𝑥46
−1𝑦61𝑥13 𝑦61𝑥13

) 

Using again (108), (112) and Remark (4.2.9) we get the following expressions for the 

generators 𝐴𝑘𝑛  =  
𝑑

𝑑𝑡
 𝑇𝐼+𝑡𝐸𝑘𝑛|𝑡=0 of one-parameter subgroups 𝐼 + 𝑡𝐸𝑘𝑛, 𝑡 ∈  ℝ: 

                   𝐴12 = 𝐷12, 𝐴13 = 𝐷13, 𝐴23  =  𝑥12𝐷13 + 𝐷23,                         (122) 
                  𝐴45  =  𝐷45, 𝐴64  =  𝐷46, 𝐴56  =  𝑥45𝐷46  +  𝐷56,                      (123) 

 𝕊 =
1

2𝜋𝑖
(

𝐴14 𝐴15 𝐴16
𝐴24  𝐴25 𝐴26
𝐴34  𝐴35 𝐴36

) = (

𝑥46
−1𝑦61 𝑥56

−1𝑦61 𝑦61
𝑥45
−1𝑦52𝑥46

−1𝑦61𝑥12 𝑦52𝑥46
−1𝑦61𝑥12 𝑦61𝑥12

𝑦43 + 𝑥45
−1𝑦52𝑥23 + 𝑥46

−1𝑦61𝑥13 𝑦52𝑥23 + 𝑥46
−1𝑦61𝑥13 𝑦61𝑥13

) (124) 

We recall the expressions for 𝐵(𝑥, 𝑦) and hence for 𝕊 =  𝐵(𝑥, 𝑦)𝑇 for small n. For n = 4we 

have 

𝐵(𝑥, 𝑦)  =  𝑥𝑚
−1 𝑦𝑥(𝑚) = (1 𝑥45

−1

0 1
) (

0 𝑦43
𝑦52 0

) ( 
1 𝑥23
0 1

)  = (
𝑥45
−1𝑦52 𝑦43 + 𝑥45

−1𝑦52𝑥23
𝑦52 𝑦52𝑥23

) 

𝕊 =  ( 
1 0
𝑥23 1

 ) (
0 𝑦52
𝑦43 0

) (
1 0
𝑥45
−1 1

) = (
𝑥45
−1𝑦52 𝑦52

𝑦43 + 𝑥45
−1𝑦52𝑥23 𝑦52𝑥23

) . 

For 𝐺2
3 ≃  𝐵(6,ℝ) (see (2.41) for the notation 𝐺𝑛

𝑚 ) holds: 

𝐵(𝑥, 𝑦)  = (
1 𝑥45

−1 𝑥46
−1

0 1 𝑥46
−1

0 0 1

)(

0 0 𝑦43
0 𝑦52 0
𝑦61 0 0

)(
1 𝑥12 𝑥13
0 1 𝑥23
0 0 1

) 

= (

𝑥46
−1𝑦61 𝑥45

−1𝑦52 + 𝑥46
−1𝑦61𝑥12 𝑦43 + 𝑥45

−1𝑦52𝑥23 + 𝑥46
−1𝑦61𝑥13

𝑥56
−1𝑦61
𝑦61

𝑦52 + 𝑥56
−1𝑦61𝑥12

𝑦61𝑥12

𝑦52𝑥23 + 𝑥56
−1𝑦61𝑥13

𝑦61𝑥13

) , 

Hence 

𝕊 = (

𝑥46
−1𝑦61 𝑥56

−1𝑦61 𝑦61
𝑥45
−1𝑦52𝑥46

−1𝑦61𝑥12 𝑦52𝑥46
−1𝑦61𝑥12 𝑦61𝑥12

𝑦43 + 𝑥45
−1𝑦52𝑥23 + 𝑥46

−1𝑦61𝑥13 𝑦52𝑥23 + 𝑥46
−1𝑦61𝑥13 𝑦61𝑥13

) 

= (
1 0 0
𝑥12 1 0
𝑥13 𝑥23 1

)(

0 0 𝑦61
0 𝑦52 0
𝑦43 0 0

)(

1 0 0
𝑥45
−1 1 0

𝑥46
−1 𝑥56

−1 1
) 

For 𝐺3
3 ≃  𝐵(8,ℝ) holds: 

(

 
 
 
 
 

1
0
0

𝑥01
1
0

𝑥02
𝑥12
1

𝑥03
𝑥13
𝑥23

0 0 0 1

𝑥04
𝑥14
𝑥24

𝑥05
𝑥15
𝑥25

𝑥06
𝑥16
𝑥26

𝑥07
𝑥17
𝑥27

𝑥34 𝑥35 𝑥36 𝑥37

0 0 0 0
0
0
0

0
0
0

0
0
0

0
0
0

1 𝑥45
−1 𝑥46

−1 𝑥47
−1

0
0
0

1
0
0

𝑥56
−1

1
0

𝑥57
−1

𝑥67
−1

1 )

 
 
 
 
 

, 𝑦 =

(

 
 
 
 
 

0
0
0

0
0
0

0    
0    
0    

0
0
0

0 0 0    0

0
0
0

0
0
0

0
0
0

0
0
0

0 0 0 0
0 0 0 𝑦43
0
0
𝑦70

0
𝑦61
0

𝑦52
0

0
0
0

0 0 0 0
0
0
0

0
0
0

0
0
0

0
0
0)

 
 
 
 
 

 

As before we have 
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𝐵(𝑥, 𝑦)  =

(

 

1 𝑥45
−1 𝑥46

−1 𝑥47
−1

0
0
0

1
0
0

𝑥56
−1

1
0

𝑥57
−1

𝑥67
−1

1 )

 (

0 0 0 𝑦43
0
0
𝑦70

0
𝑦61
0

𝑦52 0
0
0

)(

1
0
0

𝑥01
1
0

𝑥02
𝑥12
1

𝑥03
𝑥13
𝑥23

0 0 0 1

) 

𝕊 =  (𝑥(𝑚))𝑇 𝑦𝑇  (𝑥𝑚
−1 )𝑇  =

(

 

1 0 0 0
𝑥45
−1

𝑥46
−1

𝑥47
−1

1
𝑥56
−1

𝑥57
−1

0
1
𝑥67
−1

0
0
1)

   

 New proof of the irreducibility of the induced representations corre-sponding to a generic 

orbits. 

The condition of “maximal possible dimension” is difficult to extend for the infinite- 

dimensional case. That is why we give another proof of the irreducibility of the induced 

representation of a nilpotent group 𝐵(𝑛,ℝ) that will be extended for the infinite-dimensional 

analog 𝐵0
ℤ  of the group 𝐵(𝑛, ℝ). 

Let us consider a sequence of a Lie groups 𝐺𝑛
𝑚  and its Lie algebras 𝑔𝑛

𝑚  , 𝑚 ∈  ℤ, 𝑛 ∈
ℕ defined as follows 

𝐺𝑛
𝑚 = {𝐼 + ∑ 𝑥𝑘𝑛𝐸𝑘𝑛

𝑚−𝑛≤𝑘<𝑛≤𝑚+𝑛+1

} , 𝑔𝑛
𝑚  =  { ∑ 𝑥𝑘𝑛𝐸𝑘𝑛

𝑚−𝑛≤𝑘<𝑛≤𝑚+𝑛+1

}.            (125) 

We note that for any 𝑚 ∈ ℕ holds 𝐵 0
ℤ  = lim

→𝑛
𝐺𝑛
𝑚 . We have the decomposition (see(93)) 

𝐺𝑛
𝑚  =  𝐵𝑚,𝑛𝐵(𝑚, 𝑛)𝐵

(𝑚,𝑛), 

where 

𝐵𝑚,𝑛  =  {𝐼 + ∑ 𝑥𝑘𝑟𝐸𝑘𝑟
(𝑘,𝑟)∈∆𝑚,𝑛

}, 𝐵(𝑚, 𝑛)  =  {𝐼 + ∑ 𝑥𝑘𝑟𝐸𝑘𝑟
(𝑘,𝑟)∈∆(𝑚,𝑛)

}, 

𝐵(𝑚,𝑛)  =  {𝐼 + ∑ 𝑥𝑘𝑟𝐸𝑘𝑟
(𝑘,𝑟)∈∆(𝑚,𝑛)

}, 

and 

∆(𝑚, 𝑛)  =  {(𝑘, 𝑟)  ∈  ℤ2 | 𝑚 −  𝑛 ≤  𝑘 ≤  𝑚 <  𝑟 ≤  𝑚 +  𝑛 +  1}, 
∆𝑚,𝑛 =  {(𝑘, 𝑟)  ∈ ℤ

2 | 𝑚 +  1 ≤  𝑘 <  𝑟 ≤  𝑚 +  𝑛 +  1}, 

∆(𝑚,𝑛) =  {(𝑘, 𝑟)  ∈ ℤ2 | 𝑚 −  𝑛 ≤  𝑘 <  𝑟 ≤  𝑚}. 
The corresponding elements of the group 𝐺𝑛

𝑚 are as follows 

 

(

 
 
 
 
 
 

1 𝑥𝑚−𝑛,𝑚−𝑛+1 ⋯

0 1 ⋯
0 0 ⋯

𝑥𝑚−𝑛,𝑚−1
𝑥𝑚−𝑛+1,,𝑚−1

1

𝑥𝑚−𝑛,𝑚 𝑡𝑚−𝑛,𝑚+1 𝑡𝑚−𝑛,𝑚+2 ⋯ 𝑥𝑚−𝑛,𝑚−𝑛+1

𝑥𝑚−𝑛+1,𝑚 𝑡𝑚−𝑛+1,𝑚+1 𝑡𝑚−𝑛+1,𝑚+2 ⋯ 𝑡𝑚−𝑛+1,𝑚+𝑛+1

𝑥𝑚−1,𝑚 𝑡𝑚−1,𝑚+1 𝑡𝑚−1,𝑚+2 ⋯ 𝑡𝑚−1,𝑚𝑛+1

0 0 ⋯
0 0 ⋯
0 0 ⋯

0
0
0

1 𝑡𝑚,𝑚+1 𝑡𝑚,𝑚2 ⋯ 𝑡𝑚,𝑚+𝑛+1
0 1 𝑥𝑚+1,𝑚+2 ⋯ 𝑥𝑚+1,𝑚+𝑛+1

0 0 1 ⋯ 𝑥𝑚+2,𝑚+𝑛+1
0 0 ⋯
0 0 ⋯

0
0

0 0 0 ⋯ 𝑥𝑚+𝑛,𝑚+𝑛+1
0 0 0 ⋯ 1 )

 
 
 
 
 
 

 

The induced representation of the group 𝐺𝑛
𝑚  is defined in the space 𝐿2(𝑋, 𝑑𝜇)  by the 

following formula 
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(𝑇𝑡
𝑚,𝑦𝑛

 𝑓)(𝑥) = 𝑆(ℎ(𝑥, 𝑡)) (
𝑑𝜇(𝑥𝑡)

𝑑𝜇(𝑥)
)

1
2

𝑓(𝑥𝑡), 𝑓 ∈  𝐿2(𝑋, 𝜇), 𝑥 ∈ 𝑋 = 𝐻\𝐺, 𝑡 ∈ 𝐺    (126) 

where 𝑋 =  𝐵(𝑚, 𝑛)\𝐺𝑛
𝑚 ≅ 𝐵𝑚,𝑛  ×  𝐵

(𝑚,𝑛) (see (88)), 

𝑑𝜇(𝑥𝑚, 𝑥
(𝑚)) =  𝑑𝑥𝑚  ⊗  𝑑𝑥(𝑚)  = ⊗(𝑘,𝑛)∈∆𝑚,𝑛 𝑑𝑥𝑘𝑛  ⊗ ⊗(𝑘,𝑛)∈∆(𝑚,𝑛) 𝑑𝑥𝑘𝑛         (127) 

be the Haar measure on the group  𝐵𝑚,𝑛 × 𝐵
(𝑚,𝑛) . Denote by 𝐻𝑚,𝑛  =  𝐿2(𝐵 ×

𝐵(𝑚,𝑛), 𝑑𝑥𝑚  ⊗  𝑑𝑥(𝑚)). 
Lemma (4.2.14)[161]:Two von Neumann algebra 𝔄S  and 𝔄𝑥  in the space 𝐻𝑚,𝑛  generated 

respectively by the sets of unitary operators 𝑈𝑘𝑟(𝑡) and 𝑉𝑘𝑟(𝑡) coincides, where 

(𝑈𝑘𝑟(𝑡)𝑓)(𝑥)  =  𝑒𝑥𝑝(2𝜋𝑖𝑆𝑘𝑟(𝑡))𝑓(𝑥), (𝑉𝑘𝑟(𝑡)𝑓)(𝑥) ∶=  𝑒𝑥𝑝(2𝜋𝑖𝑡𝑥𝑘𝑟)𝑓(𝑥), 

𝔄𝑆 = (𝑈𝑘𝑟(𝑡)  =  𝑇𝐼+𝑡𝐸𝑘𝑟
𝑚,𝑦𝑛

=  𝑒𝑥𝑝(2𝜋𝑖𝑆𝑘𝑟(𝑡)) | 𝑡 ∈ ℝ, (𝑘, 𝑟)  ∈  ∆(𝑚, 𝑛))
′′
, 

𝔄𝑥 = (𝑉𝑘𝑟(𝑡) ∶=  𝑒𝑥𝑝(2𝜋𝑖𝑡𝑥𝑘𝑟) | 𝑡 ∈ ℝ, (𝑘, 𝑟)  ∈ ∆𝑚,𝑛⋃∆(𝑚,𝑛))
′′

.        (128) 

Proof: Using the decomposition (see (110) and (111)) 

𝕊𝑛
(𝑚)
 =  (𝑥𝑚 

−1𝑦𝑥(𝑚))𝑇  =  (𝑥(𝑚))𝑇  𝑦𝑇  (𝑥𝑚
−1 )𝑇                  (129) 

we conclude that 𝔄𝑆 ⊆ 𝔄𝑥. Indeed, we get 𝑉𝑘𝑟(𝑡) := exp(2𝜋𝑖𝑡𝑥𝑘𝑟)  ∈ 𝔄
𝑥 hence the operators 

𝑥𝑘𝑟  of multiplication by the independent variable 𝑓(𝑥)  ↦  𝑥𝑘𝑟𝑓(𝑥) in the space 𝐻𝑚,𝑛  are 

affiliated with the von Neumann algebra 𝔄𝑥 𝑖. 𝑒. 𝑥𝑘𝑟  𝜂 𝔄
𝑥 for (𝑘, 𝑟)  ∈ ∆𝑚,𝑛⋃∆

(𝑚,𝑛). 

Definition(4.2.15)[161]: Recall (c.f. e.g. [162]) that a non necessarily bounded self-adjoint 

operator A in a Hilbert space H is said to be affiliated with a von Neumann algebra M of 

operators in this Hilbert space H, if exp(itA) ∈ M for all 𝑡 ∈ ℝ. One then writes 𝐴 𝜂 𝑀. 

By (115) the matrix elements 𝑥𝑘𝑟
−1  of the matrix 𝑥𝑚

−1  ∈  𝐵𝑚,𝑛  are also affiliated 

𝑥𝑘𝑟
−1 𝜂 𝐴𝑥. Using (129) we conclude that the matrix elements 𝑆𝑘𝑟 , ∈ Δ(𝑚, 𝑛) of the matrix 

𝕊𝑛
(𝑚)
  are affiliated: 𝑆𝑘𝑟𝜂 𝔄

𝑥, (𝑘, 𝑟)  ∈ ∆(𝑚, 𝑛), so 𝔄𝑆  ⊆  𝔄𝑥. 

To show that 𝔄𝑆 ⊇ 𝔄𝑥 we find the expressions of the matrix element of the matrix 𝑥(𝑚)  ∈

 𝐵(𝑚,𝑛) 𝑎𝑛𝑑 𝑥 𝑚
−1  ∈  𝐵𝑚,𝑛 in terms of the matrix elements of the matrix 𝕊𝑛

(𝑚)
  =

 (𝑆𝑘𝑟)(𝑘,𝑟)∈∆(𝑚,𝑛) . To do that we connect the above decomposition 𝕊𝑛
(𝑚)

=

 (𝑥(𝑚))𝑇 𝑦𝑇  (𝑥𝑚
−1 )𝑇 and the Gaussian decomposition C=LDU (see Theorem (4.2.34).  

Let us denote by J the n × n anti-diagonal matrix 𝐽 = ∑ 𝐸𝑚−𝑟,𝑚+𝑟+1
𝑛−1
 𝑟=0    Using 𝐽 2 =  𝐼 and 

(113) we get 

 𝕊𝐽 =  𝐵𝑇  (𝑥, 𝑦)𝐽 =  (𝑥(𝑚))
𝑇
 𝑦𝑇 (𝑥𝑚

−1 )𝑇  𝐽 =  (𝑥(𝑚))
𝑇
 (𝑦𝑇𝐽)(𝐽(𝑥𝑚

−1 )𝑇  𝐽).      (130) 

The latter decomposition (130) is in fact the Gauss decomposition of the matrix 𝕊𝐽 i.e.we get 

𝕊𝐽 =  𝐿𝐷𝑈,where 𝐿 =  (𝑥(𝑚))𝑇 , 𝐷 =  𝑦𝑇𝐽, 𝑈 =  𝐽(𝑥𝑚
−1 )𝑇  𝐽. 

Using the Theorem (4.2.34) we can find the matrix elements of the matrix 𝑥(𝑚)  ∈  𝐵(𝑚,𝑛) and 

𝑥𝑚
−1  ∈  𝐵𝑚,𝑛 in terms of the matrix elements of the matrix 𝕊𝑛

(𝑚)
 , hence we can also find the 

matrix elements of the matrix 𝑥𝑚  ∈  𝐵𝑚,𝑛. This finish the proof of the lemma.  

We give below the expressions for 𝕊𝑛𝐽. For m = 3 and n = 1 i.e. for 𝐺1
3 we have(remind that 

𝐽2  =  𝐼 ) 

𝕊2  =  ( 
1 0
𝑥23 1

) (
0 𝑦52
𝑦43 0

) (
1 0
𝑥45
−1 1

) =  ( 
1 0
𝑥23 1

) (
𝑦52 0
0 𝑦43

) (𝑥45
−1 1
1 0

) , 
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𝕊2𝐽 =  ( 
1 0
𝑥23 1

) (
𝑦52 0
0 𝑦43

) (1 𝑥45
−1

0 1
) 

For 𝐺2
3 we get 

𝕊3 = (
1 0 0
𝑥12 1 0
𝑥13 𝑥23 1

)(

𝑦61 0 0
0 𝑦52 0
0 0 𝑦43

) (
𝑥46
−1 𝑥56

−1 1

𝑥45
−1 1 0
1 0 0

) 

𝕊3 𝐽 = (
1 0 0
𝑥12 1 0
𝑥13 𝑥23 1

)(

𝑦61 0 0
0 𝑦52 0
0 0 𝑦43

)(
1 𝑥56

−1 𝑥46
−1

0 1 𝑥45
−1

0 0 1

) . 

For 𝐺3
3we have   

𝕊4  = (

1 0 0 0
𝑥01 1 0 0
𝑥02
𝑥03

𝑥12
𝑥13

1
𝑥23

0
1

)(

𝑦70 0 0 0
0 𝑦61 0 0
0
0
0
0

𝑦52
0

0
𝑦43

)

(

 

𝑥47
−1 𝑥57

−1 𝑥67
−1 1

𝑥46
−1 𝑥56

−1 0 0

𝑥45
−1

1

1
0

0
0

0
0)

 , 

 

𝕊4 𝐽 = (

1 0 0 0
𝑥01 1 0 0
𝑥02
𝑥03

𝑥12
𝑥13

1
𝑥23

0
1

)(

𝑦70 0 0 0
0 𝑦61 0 0
0
0
0
0

𝑦52
0

0
𝑦43

)

(

 

1 𝑥57
−1 𝑥67

−1 𝑥47
−1

0 1 𝑥56
−1 𝑥46

−1

0
0
0
0

1
0

𝑥45
−1

1 )

 , (131) 

Theorem(4.2.16)[161]:The induced representation 𝑇𝑚,𝑦𝑛  of the group 𝐺𝑛
𝑚  defined by 

formula (126), corresponding to generic orbit 𝑂𝑦𝑛 , generated by the point 𝑦𝑛 ∈  (𝑔𝑚𝑛 ) ∗

, 𝑦𝑛 = 𝑃𝑛 − 1𝑟 = 0 𝑦𝑚 + 𝑟 + 1,𝑚 − 𝑟𝐸𝑚 + 𝑟 + 1,𝑚 − 𝑟  is irreducible. Moreover the 

generators of one-parameter groups Akr  =  
d

dt
 TI+tEkr
m,yn 

|t=0 are as follows 

A kr = ∑ xksDrs  + Dkr

k−1

s=m−n

, (k, r)  ∈  ∆(m,n), Akr  = ∑  xksDrs  + Dkr, (k, r)  ∈ ∆m,n

k−1

s=m+1

, 

(2𝜋𝑖)−1(𝐴𝑘𝑟)(𝑘,𝑟)∈∆(𝑚,𝑛)  =  𝑆𝑛
(𝑚)
 =  (𝑆𝑘𝑟)(𝑘,𝑟)∈∆(𝑚,𝑛)  = (𝑥𝑚

−1 𝑦𝑥(𝑚))
𝑇
. 

The irreducibility of the induced representation of the group 𝐺𝑛
𝑚 is based on the following 

lemma. 

Proof: The irreducibility follows from the Kirillov results . To give another proof of the 

irreducibility of the induced representation consider the restriction 𝑇𝑚,𝑦𝑛 |𝐵(𝑚,𝑛)  of this 

representation to the commutative subgroupB(m, n) of the group 𝐺𝑛
𝑚 . Note that 

𝔄𝑥 = (𝑒𝑥𝑝(2𝜋𝑖𝑡𝑥𝑘𝑟) | 𝑡 ∈ ℝ, (𝑘, 𝑟)  ∈ ∆𝑚,𝑛⋃∆(𝑚,𝑛))
′′

= 𝐿∞(𝐵𝑚,𝑛 × 𝐵
(𝑚,𝑛), 𝑑𝑥𝑚⊗𝑑𝑥(𝑚)). 

By Lemma(4.2.14) the von Neumann algebra 𝔄𝑆  generated by this restriction coincides 

with 𝐿∞(𝐵𝑚,𝑛 × 𝐵
(𝑚,𝑛), 𝑑𝑥𝑚⊗𝑑𝑥(𝑚)). Let now a bounded operator A in a Hilbert space 

𝑚,𝑛commute with the representation 𝑇𝑚,𝑦𝑛. Then A commute by the above arguments with 

 𝐿∞(𝐵𝑚,𝑛 × 𝐵
(𝑚,𝑛), 𝑑𝑥𝑚⊗𝑑𝑥(𝑚)) , therefore the operator A itself is an operator of 

multiplication by some essentially bounded function 𝑎 ∈  𝐿∞ 𝑖. 𝑒. (𝐴𝑓)(𝑥)  =  𝑎(𝑥)𝑓(𝑥) for 
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𝑓 ∈  𝐻𝑚,𝑛. Since A commute with the representation 𝑇𝑚,𝑦𝑛 i.e. [𝐴, 𝑇𝑡
𝑚,𝑦𝑛

 ]  =  0 for all 𝑡 ∈

 𝐵𝑚,𝑛  ×  𝐵
(𝑚,𝑛) we conclude that  

𝑎(𝑥)  =  𝑎(𝑥𝑡) (𝑚𝑜𝑑 𝑑𝑥𝑚  ⊗  𝑑𝑥(𝑚)) 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑡 ∈  𝐵𝑚,𝑛  ×  𝐵
(𝑚,𝑛). 

Since the measure dh =  dxm  ⊗  dx(m) is the Haar measure on G =  Bm,n  ×  B
(m,n), this 

measure is G-right ergodic. We conclude that a(x) = const (mod dxm  ⊗  dx(m)).  
 Regular and quasiregular representations of infinite-dimensional groups. 

To define the induced representation we explain first how to define the regular 

representation of infinite-dimensional group G. Since the initial group in not locally compact 

there is neither Haar (invariant) measure on G (Weil, [168]), nor a G-quasi-invariant measure 

(Xia Dao-Xing, [188]). We can try to find some bigger topological group G̃ and the G-quasi-

invariant measure μ on G̃ such that G is the dense subgroup in G̃. In this case we define the 

right or left regular representation of the group G in the space L2(G̃, μ)  if μRt  ∼
 μ (resp. μLt  ∼  μ) for all t ∈ G as follows: 

(𝑇𝑡
𝑅,𝜇
 𝑓)(𝑥)  =  (

𝑑𝜇(𝑥𝑡)

𝑑𝜇(𝑥)
)

1
2

𝑓(𝑥𝑡), 𝑓 ∈  𝐿2(�̃�, 𝜇), 𝑡 ∈  𝐺,                 (132) 

(𝑇𝑡
𝑅,𝜇
 𝑓)(𝑥) =  (𝑑𝜇(𝑡−1𝑥)/𝑑𝜇(𝑥))1/2𝑓(𝑡−1𝑥), 𝑓 ∈  𝐿2(�̃�, 𝜇), 𝑡 ∈  𝐺.                 (133) 

Conjecture (4.2.17)[161]:(Ismagilov, 1985). The right regular representation TR, μ ∶  G →
 U(L2(Ĝ, μ))is irreducible if and only if 

(i) μLt  ⊥  μ ∀t ∈  G\{e}, 
(ii) the measure μ is G-ergodic. 

Analogously we can define the quasiregular representation. Namely, if H is a closed 

subgroup of the group G, then on the space X =  H\G̃  =  H̃ \G̃ the right action of the group 

G is well defined, where G̃ (resp. ˜H ) is some completion of the group G (resp. H). If we 

have some G-right-quasi-invariant measure μ on X one may define the “quasiregular 

representation” of the group G in the space L2(X, μ) as in a locally compact case: 

(𝜋 𝑡
𝑅,𝜇,𝑋

 𝑓)(𝑥)  =  (𝑑𝜇(𝑥𝑡)/𝑑𝜇(𝑥))1/2𝑓(𝑥𝑡), 𝑡 ∈  𝐺. 
The regular and quasiregular representations for general infinite-dimensional groups 

were introduced and investigated in e.g. [123],[ 9], [142], [143], [146]. 

The induced representation In d
G
H
 S  of a locally-compact group is the unitary 

representation of the group G associated with a unitary representation S of a subgroup H of 

the group G as it was mentioned (see [163], [140]) all unitary irreducible representations up 

to equivalence Ĝn  of the nilpotent group Gn  =  B(n,ℝ) , are obtained as induced 

representations IndH
Gn  Uf,H  associated with a points f ∈  gn

∗  and the corresponding subor- 

dinate subgroup H ⊂  Gn. The induced representation IndH
Gn  Uf,H is defined canonically in the 

Hilbert space L2(H\Gn,μ). 

A. Kirillov [140], Chapter I, §4, p.10 says: ”The method of induced representations is 

not directly applicable to infinite-dimensional groups (or more precisely to a pair G ⊃
 H) with an infinite-dimensional factor H\G)”. 

We develop the concept of induced representations for infinite-dimensional groups. Let 

we have the infinite-dimensional group G and a unitary representation S : H → U(V ) in a 
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Hilbert space V of a subgroup H of the group G such that the factor space H\G is infinite-

dimensional. 

In general, it is difficult to construct G-quasi-invariant measure on an infinite-

dimensional homogeneous space H\G. As is the case of the regular and quasiregular 

representations of infinite-dimensional groups G it is reasonable to construct some G-quasi-

invariant measure on a suitable completion H\G̃  =  H̃ \G̃ of the initial space H\G in a certain 

topology, where ˜H (resp. G̃) is some completion of the group H (resp.G). To go further we 

should be able to extend the representation S ∶  H →  U(V)  of the group H to the 

representation S̃ ∶  H̃  →  U(V ) of the completion H̃ of the group H. 

Finally, the induced representation of the group G associated with a unitary 

representation S of a subgroup H will depend on two completions ˜H and ˜G of the subgroup 

H and the group G, on an extension S̃ ∶  H̃  →  U(V )of the representation S ∶  H →  U(V ) and 

on a choice of the G-quasi-invariant measure μ on an appropriate completion X̃  =  H̃ \G̃ of 

the space H\G. 

Hence the procedure of induction will not be unique but nevertheless well-defined (if a G-

quasi-invariant measure on H\G̃  exists). So the uniquely defined induced representation 

indH
G  S in the Hilbert space L2(H\G, V, μ) (in the case of a locally-compact group G) should 

be replaced by the family of induced representations Ind
H̃,H

G̃,G,μ
( S̃, S) in the Hilbert spaces 

L2( H̃ \G̃, V, μ) depending on different completions G̃ of the group G, completions ˜H of the 

group H and different G-quasi-invariant measures μ on H̃ \G̃. 

Example(4.2.18)[161]:([141], [143]). Regular representations TR,μ  of the infinite-

dimensional group G in the space L2(G̃, μ), associated with the completion ˜G of the group G 

and a G-right -quasi-invariant measure μ on G̃ , is a particular case of the induced 

representation  

TR,μ =  Inde
G̃,G,μ

 (Id), 
generated by the trivial representation S = Id of the trivial subgroup H = {e} (as in the case of 

a locally compact groups). 

Example(4.2.19)[161]:([123], [146]). Quasi-regular representations πR,μ,X  of the infinite-

dimensional group G in the space L2(X, μ) where X =  H̃ \G̃ and H is some subgroup of the 

group G is a particular case of the induced representation   

πR,μ,X  =  Ind
H̃,H

G̃,G,μ
(Id) 

generated by the trivial representation S = Id of the completion H̃ in the group G̃ of the 

subgroup H in the group G. 

Let G be an infinite-dimensional group and S ∶  H →  U(V ) be a unitary representation in a 

Hilbert space V of the subgroup H ⊂ G, such that the space H\G is infinite dimensional. 

We give the following definition. 

Definition (4.2.20)[161]: The induced representation  

Ind
H̃,H

G̃,G,μ
(Id) 

Generated by the unitary representations S ∶  H →  U(V ) of the subgroup H in the group G is 

defined (similarly to (133) and (134)) as follows: 

(i) We should first find some completion ˜H of the group H such that 
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S̃ ∶  H̃  →  U(V ) 
Is the continuous unitary representation of the group ˜H , such that S̃|H  =  S, 
(ii) Take any G-right-quasi-invariant measure μ on the an appropriate completion X̃  = H̃\G̃ 

of the space X = H\G, on which the group G acts from the right, where H̃ (resp.G̃) is a 

suitable completion of the group H (resp. G), 

iii) In the space L2( X̃ , V, μ) of all vector-valued functions f on ˜X with values in Vsuch that 

‖f‖2 ∶= ∫‖f(x)‖V
2  dμ(x)  <  ∞

X̃

, 

define the representation of the group G by the following formula 

                   (Ttf)(x) =  S (h̃(x, t)) (
dμ(xt)

dμ(x)
)

1

2
f(xt), x ∈ X̃ , t ∈  G,        (134) 

where h̃ is defined by 

s̃(x)t =  h̃(x, t)s̃(xt). 
The section s : H → G of the projection p : G → H should be extended to the appropriate 

section s̃ ∶  H̃  →  G̃ of the extended projection p̃ ∶  G̃  →  H̃ . 

The comparison of the induced representation for locally compact group and the above 

definition for infinite-dimensional groups may be given in the following table: 

 

1 G Gloc.comp 𝐷𝑖𝑚𝐺 = ∞ 

2 H 𝐻 ⊂ 𝐺 𝐻 ⊂ 𝐺 

3 S 𝑆:𝐻 → 𝑈(𝑉) 𝑆:𝐻 → 𝑈(𝑉) ⇒ 𝑆:𝐻 → 𝑈(𝑉) 
4 X 𝑋 = 𝐻 ∕ 𝐺 𝑋 = 𝐻 𝐺⁄̃ = �̃� ∕ �̃� 

5 H 𝐿2(𝑋 = 𝐻\𝐺, 𝑉, 𝜇) 𝐿2(𝑋 = 𝐻\𝐺, 𝑉, 𝜇) 
6 Ind 𝐼𝑛𝑑

𝐺
𝐻
𝑆 Ind

H̃,H

G̃,G,μ
(S̃, S) 

7 𝑇𝑡 (𝑇𝑡𝑓)(𝑥)

= 𝑆(ℎ(𝑥, 𝑡)) (
𝑑𝜇(𝑥𝑡)

𝑑𝜇(𝑥)
)

1\2

𝑓(𝑥𝑡) 

(𝑇𝑡𝑓)(𝑥)

= 𝑆(ℎ(𝑥, 𝑡)) (
𝑑𝜇(𝑥𝑡)

𝑑𝜇(𝑥)
)

1\2

𝑓(𝑥𝑡) 

8 p 𝑃: 𝐺 → 𝑋 �̃�: 𝐺 → 𝑋 

9 s 𝑠: 𝑋 → 𝐺 𝑆:𝐻\𝐺 → 𝐺 ⇒ �̃�:𝐻\�̃� → �̃� 

10 h(x, t)  𝑠(𝑥)𝑡 =  ℎ(𝑥, 𝑡)𝑠(𝑥𝑡)  �̃�(𝑥)𝑡 =  ℎ(𝑥, 𝑡)�̃�(𝑥𝑡) 
Table (1)[161]: 

How to develop the orbit method for infinite-dimensional “nilpotent” group 𝐵0
ℕ and 𝐵0

ℤ ? We 

would like to develop the orbit method for infinite-dimensional“nilpotent” group 𝐺 =
lim
⟶𝑛
𝐺𝑛   𝑤𝑖𝑡ℎ 𝐺𝑛  =  𝐵(𝑛, ℝ). The corresponding Lie algebra 𝑔∗  is the inductive 𝑙𝑖𝑚𝑖𝑡 𝑔 =

lim
⟶𝑛
𝑏𝑛 of upper triangular matrices, so as the linear space it is isomorphic to the space 𝑅0

∞ of 

finite sequences (𝑥𝑘)𝑘∈ℕ  hence the dual space g∗ is isomorphic to the space 𝑅∞  of all 

sequences (𝑥𝑘)𝑘∈ℕ  but the latter space 𝑅∞  is too large to manage with it, for example to 

equip with a Hilbert structure or to describe all orbits. 
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To make it less it is reasonable to increase the initial group G or to make completion �̃� of this 

group in some stronger topology. 

To develop the orbit method for groups 𝐵0
ℕ  and 𝐵0

ℤ we should answer some questions: 

(a) How to define the appropriate completion �̃� of the group G, corresponding Lie 

algebras g (resp. �̃�) and corresponding dual spaces 𝑔∗ (𝑟𝑒𝑠𝑝. �̃�∗)? 

(b) Which pairing should we use between g and 𝑔∗? 

 (c) Let the dual space 𝑔∗, some element 𝑓 ∈  𝑔∗ and corresponding algebra h, subordinate to 

the element f, are chosen. How to define the corresponding induced representation 𝐼𝑛𝑑
𝐺
𝐻
 𝑈𝑓,𝐻 

and study its irreducibility ? 

(d) Shall we get all irreducible representations of the corresponding groups, using 

induced representations? 

(e) Find the criteria of irreducibility and equivalence of induced representations. 

The problem of completion of the inductive limit group 𝐺 =  lim
→𝑛
𝐺𝑛, where Gn are 

finite-dimensional classical groups were studied by A. Kirillov ([164], 1972) for the group 

𝑈(∞)  =  𝐺 =  lim
→𝑛
𝑈(𝑛)  and G. Olshanski˘ı([185], 1990) for inductive limit of classical 

groups. They described all unitary irreducible representations of the corresponding groups 

𝐺 = lim
→𝑛
𝐺𝑛, continuous in stronger topology, namely in the strong operator topology. The 

description of the dual �̂� of the initial group 𝐺 =  lim
→𝑛
𝐺𝑛is much more complicated. 

In [165] we have constructed for the group 𝐺𝐿0(2∞,ℝ) =  lim
→𝑛
 𝐺𝐿(2𝑛 −  1,ℝ)  a 

family of the Hilbert-Lie groups 𝐺𝐿2(𝑎), 𝑎 ∈  𝔄 such that 

(a) 𝐺𝐿0(2∞,ℝ)  ⊂  𝐺𝐿2(𝑎) and 𝐺𝐿0(2∞,ℝ)is dense in 𝐺𝐿2(𝑎) for all 𝑎 ∈ 𝔄, 

(b) 𝐺𝐿0(2∞,ℝ) = ∩𝑎∈𝔄 𝐺𝐿2(𝑎), 
(c) any continuous representation of the group 𝐺𝐿0(2∞,ℝ) is in fact continuous in some 

stronger topology, namely in a topology of a suitable Hilbert -Lie group 𝐺𝐿2(𝑎). 
(i) Therefore, as we show it is sufficient to consider a Hilbert-Lie completions 𝐵2(𝑎) of the 

initial group 𝐵0
ℤ . 

(ii) In this case the pairing between the corresponding Hilbert-Lie algebra b2(a) and its dual 

𝐵2(𝑎)
∗ is correctly defined by the trace (as in the finite-dimensional case). 

(I) We define the induced representations of the group 𝐵0
ℤ corresponding to a special orbits, 

generic orbits, using schema given We consider only the simplest example of G−quasi-

invariant measures on �̃�  =  �̃� \ �̃�, namely the infinite product of one-dimensional Gaussian 

measures. 

(II) How to construct the induced representation corresponding to an arbitrary orbit? 

Conjecture(4.2.21)[161]:Two induced representations Ind
G,
H1
μ1 Uf1,H1  and Ind

G,
μ2
H2Uf2,H2 

are equivalent if and only if the corresponding measures μ1 and μ2 are equivalent and the 

functionals f1 and f2 belong to the same orbit of (g̃)∗. 
GL2(a). We show that the Hilbert-Lie groups appear naturally in the representation theory of 

infinite-dimensional matrix group. The remarkable fact is that for the inductive limit G =
lim
→n 
𝐺nof matrix groups 𝐺𝑛 ⊂  𝐺𝐿(2𝑛 −  1,ℝ) it is sufficient to consider only the Hilbert 

completions of the initial group G and of the spaces 𝐻\𝐺. 
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Let us consider the group 𝐺𝐿0(2∞,ℝ)  = lim
⟶𝑛
𝐺𝐿 (2𝑛 −  1,ℝ)  with respect to the 

symmetric embedding 𝑖𝑛
𝑠 ∶  𝐺 𝑛 ↦ 𝐺𝑛+1, 𝐺𝑛  ∋  𝑥 ↦  𝑥 + 𝐸 −𝑛,−𝑛 + 𝐸𝑛𝑛 ∈

 𝐺𝑛+1, 𝑤ℎ𝑒𝑟𝑒 𝐺𝑛  =  𝐺𝐿(2𝑛 −  1,ℝ). We consider here only the real matrices. 

The Hilbert-Lie group 𝐺𝐿2(𝑎) we define (see [165]) by its Hilbert-Lie algebra 𝑔𝑙2(𝑎) with 

composition [𝑥, 𝑦]  =  𝑥𝑦 –  𝑦𝑥  

𝑔𝑙2(𝑎) = {𝑥 = ∑ 𝑥𝑘𝑛𝐸𝑘𝑛
𝑘,𝑛∈ℤ

| ‖𝑥‖𝑔𝑙2(𝑎)
2 = ∑ | 𝑥𝑘𝑛 |

2 𝑎𝑘𝑛 < ∞}, 𝑎 ∈  𝔄𝐺𝐿
𝑘,𝑛∈ℤ

  , 𝐺𝐿2(𝑎)  

=  {𝐼 +  𝑥 | (𝐼 +  𝑥)−1  =  1 +  𝑦 𝑥, 𝑦 ∈  𝑔𝑙2(𝑎)}. 
To be more precise, let us consider an analogue 𝜎2(𝑎) of the algebra of the Hilbert-Schmidt 

operators 𝜎2(𝐻) in a Hilbert space H: 

𝜎2(𝑎)  =  {𝑥 = ∑ 𝑥𝑘𝑛𝐸𝑘𝑛
𝑘,𝑛∈ℤ

 | ‖𝑥‖𝜎2(𝑎)
2 = ∑ | 𝑥𝑘𝑛 |

2

𝑘,𝑛∈ℤ

 𝑎𝑘𝑛  <  ∞}. 

Lemma(4.2.22)[161]: ([165]). The Hilbert space 𝜎2(𝑎)is an (associative) Hilbert algebra (i.e. 

‖𝑥𝑦‖  ≤  𝐶‖𝑥‖‖𝑦‖, 𝑥, 𝑦 ∈ 𝜎2(𝑎)) if and only if the weight 𝑎 =  (𝑎𝑘𝑛)(𝑘,𝑛)∈ℤ2  belongs to the 

set 𝔄𝐺𝐿 defined as follows: 

 𝔄𝐺𝐿 = {𝑎 =  (𝑎𝑘𝑛)(𝑘,𝑛)∈ℤ2  | 0 <  𝑎𝑘𝑛  ≤  𝐶𝑎𝑘𝑚𝑎𝑚𝑛, 𝑘, 𝑛,𝑚 ∈ ℤ, 𝐶 >  0}.             (135) 

We define the Hilbert-Lie algebra 𝑔𝑙2(𝑎)  as the Hilbert space 𝜎2(𝑎)  with an operation 

[𝑥, 𝑦]  =  𝑥𝑦 −  𝑦𝑥. 
Corollary (4.2.23)[161]:The Hilbert space 𝑔𝑙2(𝑎) is a Hilbert-Lie algebra if and only if the 

weight 𝑎 =  (𝑎𝑘𝑛)(𝑘,𝑛)∈ℤ2belongs to the set 𝔄𝐺𝐿. 

We remark also [179] that 𝐺𝐿0(2∞,ℝ)  = ∩𝑎∈𝔄𝐺𝐿 𝐺𝐿2(𝑎). 

Theorem(4.2.24)[161]:(Theorem 6.1 [165]). Every continuous unitary representation U of 

the group 𝐺𝐿0(2∞,ℝ)  in a Hilbert space H can be extended by continuity to a unitary 

representation 𝑈2(𝑎) ∶  𝐺𝐿2(𝑎)  →  𝑈(𝐻) of some Hilbert-Lie group 𝐺𝐿2(𝑎) depending on 

the representation. 

Hilbert-Lie groups 𝐵2(𝑎). Let us consider the following Hilbert-Lie group 𝐵2(𝑎) ∶=
𝐵2
ℤ(𝑎) 

 𝐵2(𝑎)  =  {𝐼 +  𝑥 | 𝑥 ∈  𝑏2(𝑎)},                              (136) 
where the corresponding Hilbert-Lie algebra 𝑏2(𝑎) ∶=  𝑏2

ℤ (𝑎) is defined as  

 𝑏2(𝑎) = {𝑥 = ∑ 𝑥𝑘𝑛𝐸𝑘𝑛
(𝑘,𝑛)∈ℤ2,𝑘<𝑛

 | 𝑥𝑏2(𝑎)
2 = ∑ | 𝑥𝑘𝑛 |

2

(𝑘,𝑛)∈ℤ2,𝑘<𝑛

 𝑎𝑘𝑛  <  ∞}. (137) 

Lemma(4.2.25)[161]: ([165]). The Hilbert space 𝑏2(𝑎) (with an operation (𝑥, 𝑦)  ↦  𝑥𝑦) is a 

Banach algebra if and only if the weight 𝑎 =  (𝑎𝑘𝑛)(𝑘,𝑛)∈ℤ2  satisfies the conditions  

 a = (𝑎𝑘𝑛)k<n, 𝑎kn ≤ 𝐶𝑎km𝑎mn, k < m < n, k,m, n ∈ Z.             (138) 
Denote by 𝔄 the set of all weight a satisfying the mentioned condition. 

Take the group 𝐵0
ℤ , fix some its Hilbert completion i.e. a Hilbert-Lie group B2(a), a ∈ A and 

the corresponding Hilbert-Lie algebra 𝑔 =  𝑏2 (𝑎) . The corresponding dual space 𝑔∗  =
 𝑏2
∗ (𝑎) has the form 

 𝑏2
∗(𝑎)  =  {𝑦 =  ∑ 𝑦𝑘𝑛𝐸𝑘𝑛

(𝑘,𝑛)∈ℤ2,𝑘>𝑛

   | ‖𝑦‖
𝑏
𝑏2
∗
2 (𝑎)
2   = ∑ | 𝑦𝑘𝑛 |

2 𝑎𝑘𝑛
−1  

(𝑘,𝑛)∈ℤ2,𝑘>𝑛

<  ∞}. (139) 

The adjoint action 𝐵2(𝑎)  →  𝐴𝑢𝑡(𝑏2(𝑎)) of the group 𝐵2(𝑎) on its Lie algebra 𝑏2(𝑎) is: 



156 

 𝑏2(𝑎) ∋  𝑥 → 𝐴𝑑𝑡(𝑥):=  𝑡𝑥𝑡
−1  ∈  𝑏2(𝑎), 𝑡 ∈  𝐵2(𝑎).                  (140) 

The pairing between 𝑔 =  𝑏2(𝑎) 𝑎𝑛𝑑 𝑔
∗  =  𝑏2

∗(𝑎) is correctly defined by the trace: 

𝑔∗  ×  𝑔 ∋  (𝑦, 𝑥) ↦  〈𝑦, 𝑥〉 ∶=  𝑡𝑟(𝑥𝑦) =  ∑ 𝑥𝑘𝑛𝑦𝑛𝑘
(𝑘,𝑛)∈ℤ2,𝑘>𝑛

  ∈  ℝ.            (141) 

The coadjoint action of the group 𝐵2(𝑎)  on the dual 𝑔 ∗ = 𝑏2
∗(𝑎) 𝑡𝑜 𝑔 =  𝑏2(𝑎)  is as 

follows: for 𝑡 ∈  𝐵2(𝑥)𝑎𝑛𝑑 𝑦 ∈  𝑏2
∗ (𝑎) 

𝑡 =  𝐼 + ∑ 𝑡𝑘𝑛𝐸𝑘𝑛
(𝑘,𝑛)∈ℤ2,𝑘<𝑛

, 𝑦 = ∑ 𝑡𝑘𝑛𝐸𝑘𝑛
(𝑘,𝑛)∈ℤ2,𝑘<𝑛

, 𝑡−1 ∶=  𝐼 + ∑ 𝑡𝑘𝑛
−1𝐸𝑘𝑛

(𝑘,𝑛)∈ℤ2,𝑘<𝑛

 

we have 

(t−1yt)pq  = ∑ (t−1y)pmtmq

𝑞

m=−∞

 = ∑ ∑tpr
−1

∞

r=p

𝑞

m=−∞

  yrmtmq, (p, q)  ∈  ℤ
2, p >  𝑞, 

hence 

 𝐴𝑑𝑥
∗(𝑦) =  (𝑡−1𝑦𝑡)− ∶=  𝐼 + ∑ (t−1y)pqEpq

𝑞

m=−∞

 .                              (142) 

We consider four different type of orbits with respect to the coadjoint action of the group 

𝐵2(𝑎) in the dual space 𝑏2
∗(𝑎). 

Case (1) The finite-dimensional orbits corresponding to a finite points 

∑ 𝑦𝑘𝑛𝐸𝑘𝑛(𝑘,𝑛)∈ℤ2,𝑘<𝑛  ∈ 𝑏2
∗(𝑎) (finiteness of 𝑦  means that only finite number of 

𝑦𝑘𝑛 arenonzero). This orbits leads to the induced representations of an appropriate 

finitedimensional groups 𝐺𝑛
𝑚 , 𝑚 ∈  ℤ, 𝑛 ∈ ℕ  defined by (125). All irreducible unitary 

representations of the groups 𝐺𝑛
𝑚 are completely described by the Kirillov orbit method hence 

the finite-dimensional orbits gives us the set ⋃ 𝐺𝑛
�̂�  ⊂  𝐵0

ℤ̂
𝑛∈ℕ   for embedding 𝐺𝑛

�̂� ⊂ 𝐺𝑛+1
�̂� ). 

Case (2) 0-dimensional orbits are of the form: 

𝒪0  =  𝑦, 𝑦 ∈  𝑏2
∗(𝑎), 𝑦 =∑𝑦𝑘+1,𝑘𝐸𝑘+1,𝑘

𝑘∈ℤ

. 

The Lie algebra 𝑏2(𝑎) is subordinate to the functional 𝑦, 〈𝑦, [𝑏2(𝑎), 𝑏2(𝑎)]〉  =  0 since 

[𝑏2(𝑎), 𝑏2(𝑎)]  =  {𝑥 ∈  𝑏2(𝑎) | 𝑥 = ∑ 𝑥𝑘𝑛𝐸𝑘𝑛
(𝑘,𝑛)∈ℤ2,𝑘<𝑛

}. 

The one-dimensional representation of the Lie algebra 𝑏2(𝑎)are 

𝑏2(𝑎)  ∋  𝑥 ↦  〈𝑦, 𝑥 〉 =∑𝑥𝑘,𝑘+1𝑦𝑘+1,𝑘 ∈ ℝ

𝑘∈ℤ

. 

Corresponding one-dimensional representations of the group 𝐵2(𝑎) are as follows: 

 𝐵2(𝑎) 𝑒𝑥𝑝(𝑥) ↦ 𝑒𝑥𝑝(2𝜋𝑖(〈𝑦, 𝑥〉)) =  𝑒𝑥𝑝 (2𝜋𝑖∑𝑥𝑘,𝑘+1𝑦𝑘+1,𝑘
𝑘∈ℤ

) ∈ 𝑆1.       (143) 

They are all irreducible and nonequivalent for different ∑ 𝑦𝑘+1,𝑘𝐸𝑘+1,𝑘𝑘∈ℤ ∈  𝑏2
∗(𝑎). 

Case (3) Generic orbit is generated for an arbitrary 𝑚 ∈ ℤ 𝑏𝑦 𝑎 𝑝𝑜𝑖𝑛𝑡 𝑦 ∈   𝑏2
∗(𝑎) 

 𝑦 = ∑𝑦𝑚+𝑝+1,𝑚−𝑝𝐸𝑚+𝑝+1,𝑚−𝑝

∞

𝑝=0

 ∈  𝑏2
∗(𝑎),𝑤𝑖𝑡ℎ 𝑦𝑚+𝑝+1,𝑚−𝑝  ≠  0, 𝑝 +  1 ∈ ℕ.    (144) 
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are devoted to the study of this case. 

Case (4) General orbits generated by an arbitrary non finite points 

𝑦 = ∑ 𝑦𝑘𝑛𝐸𝑘𝑛 

(𝑘,𝑛)∈ℤ,𝑘>𝑛

∈ 𝑏2
∗(𝑎). 

Construction of the induced representations of the group 𝐵0
ℤ corresponding to a generic 

orbits. Consider more carefully the case (3). The irreducibility we shall study in the 

following. Take as before the group 𝐵0
ℤ , fix some its Hilbert completion i.e. a Hilbert-Lie 

group 𝐵2(𝑎), 𝑎 ∈ 𝔄, the corresponding Hilbert-Lie algebra 𝑔 =  𝑏2(𝑎)  and its dual 𝑔∗ =
 𝑏2
∗(𝑎). 

We shall write the analog of the induced representation of the group 𝐵0
ℤ for generic orbits 

(see Examples (4.2.6) , (4.2.7) and(4.2.13)) corresponding to the point 𝑦 ∈ 𝑏2
∗(𝑎) defined by 

(210) following steps 1)–3) of Definition (4.2.20). 

Step 1) Extension of the representation 𝑆 ∶  𝐻 →  𝑈(𝑉 ).  For fixed 𝑚 ∈ ℤ , consider the 

decomposition  𝐵ℤ = 𝐵𝑚𝐵(𝑚)𝐵
(𝑚)  similar to the decomposition (103), where 𝐵ℤ =

 {𝐼 + ∑ 𝑥𝑘𝑛𝐸𝑘𝑛𝑘,𝑛∈ℤ,𝑘<𝑛  }, 

𝐵𝑚  =  {𝐼 + ∑ 𝑚𝑥𝑘𝑟𝐸𝑘𝑟
(𝑘,𝑟)∈∆𝑚

}, 𝐵(𝑚)  =  {𝐼 + ∑ 𝑚𝑥𝑘𝑟𝐸𝑘𝑟
(𝑘,𝑟)∈∆𝑚

}, 𝐵(𝑚)  

=  {𝐼 + ∑ 𝑚𝑥𝑘𝑟𝐸𝑘𝑟
(𝑘,𝑟)∈∆𝑚

},. 

∆𝑚 = {(𝑘, 𝑟)  ∈  ℤ
2 | 𝑚 +  1 ≤  𝑘 <  𝑟}, Δ(𝑚)  =  {(𝑘, 𝑟)  ∈  ℤ2| 𝑘 ≤  𝑚 <  𝑟}, 𝑎𝑛𝑑 Δ(𝑚)  

=  {(𝑘, 𝑟)  ∈  ℤ2| 𝑘 <  𝑟 ≤  𝑚} 
Since the algebras ℎ0(𝑚),𝑚 ∈  ℤ defined as follows ℎ0(𝑚)  =  {𝑡 −  𝐼 | 𝑡 ∈  𝐵0(𝑚)},where 

𝐵0(𝑚)  =  𝐵(𝑚)  ∩  𝐵0
ℤ  , are commutative, so 〈𝑦, [ℎ0(𝑚), ℎ0(𝑚)]〉 =  0 , hence they are 

subordinate to the functional 𝑦 ∈  𝑔∗  =  𝑏2
∗(𝑎) . The corresponding  one-dimensional 

representation of the algebra ℎ0(𝑚)  =  ℎ0(𝑚)⋂𝑔0
ℤ is  

ℎ0(𝑚)  ∋  𝑥 ⟼ 〈𝑦, 𝑥 〉 = ∑𝑥𝑚−𝑝,𝑚+𝑝+1𝑦𝑚+𝑝+1,𝑚−𝑝 

∞

𝑝=0

∈ ℝ. 

The unitary representation of the corresponding group 𝐻0(𝑚) is  

𝐻0(𝑚)  ∋  𝑒𝑥𝑝(𝑥)  ↦  𝑆(𝑒𝑥𝑝(𝑥))  =  𝑒𝑥𝑝(2𝜋𝑖〈𝑦, 𝑥〉)  ∈  𝑆
1. 

This representation can be extended to representation of the corresponding Hilbert-Lie group 

𝐻 =  𝐻2(𝑚, 𝑎)  =  𝐵(𝑚)⋂𝐵2(𝑎) (𝑤𝑒 𝑛𝑜𝑡𝑒 𝑡ℎ𝑎𝑡 𝑡 =  𝑒𝑥𝑝(𝑡 −  1)): 
𝐻2(𝑚, 𝑎)  ∋  𝑒𝑥𝑝(𝑥)  ⟼  𝑆(𝑒𝑥𝑝(𝑥))  =  𝑒𝑥𝑝(2𝜋𝑖〈𝑦, 𝑥〉)  ∈  𝑆1. 

In what follows we shall use a notation 𝐵2(𝑚, 𝑎) for the group 𝐻2(𝑚, 𝑎). 
Step 2 a) Construction of the completion �̃�  =  �̃� \�̃� of the space 𝑋 =  𝐻\𝐺. It is difficult to 

construct an appropriate measure on the space 𝑋𝑚,0 = 𝐵0(𝑚)\𝐵0
ℤ since it is isomorphic to 

the space 𝑅0
∞  ⊂  𝑅0

∞ . That is why we consider two homogeneous spaces, an appropriate 

completions of the space 𝑋𝑚,0: 

𝑋𝑚,2(𝑎)  =  𝐵𝑚,2(𝑎)\𝐵2(𝑎), 𝑋𝑚  =  𝐵(𝑚)\𝐵
ℤ. 

Since the decompositions holds  

𝐵 0
ℤ = 𝐵𝑚,0𝐵0(𝑚)𝐵0

(𝑚)
 , 𝐵2(𝑎)  =  𝐵𝑚,2(𝑎)𝐵2(𝑚, 𝑎)𝐵2 

(𝑚)
 (𝑎), 𝐵ℤ  =  𝐵𝑚𝐵(𝑚)𝐵

(𝑚), 
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(see Remark(4.2.8)), we have the following inclusions: 𝑋𝑚,0 ⊂ 𝑋𝑚,2(𝑎)  ⊂  𝑋𝑚 , where 

𝑋𝑚,0 ≃ 𝐵𝑚,0 × 𝐵0
(𝑚)
 , 𝑋𝑚,2(𝑎)  ≃  𝐵𝑚,2(𝑎)  × 𝐵2

(𝑚)
 (𝑎), 𝑋𝑚  =  𝐵(𝑚)\𝐵

ℤ ≃ 𝐵𝑚  ×  𝐵
(𝑚). 

Step 2 b) We construct a measure 𝜇𝑏  on the space 𝑋𝑚with support 𝑋𝑚,2(𝑎) i.e. such that  

𝜇𝑏(𝑋𝑚,2(𝑎))  =  1. That is we take �̃� =  �̃� \�̃�  =  𝐵2(𝑚, 𝑎)\𝐵2(𝑎). 

We construct the measure 𝜇𝑏  on the space 𝑋𝑚  ≃  𝐵𝑚 × 𝐵
(𝑚)  as a product-measure 𝜇𝑏  =

 𝜇 𝑏,𝑚⊗ 𝜇𝑏 
(𝑚)
 , where 𝜇𝑏,𝑚 (𝑟𝑒𝑠𝑝.⊗ 𝜇𝑏

(𝑚)
  )  is Gaussian product measure on the group 

𝐵𝑚 (𝑟𝑒𝑠𝑝. 𝐵
(𝑚)) defined as follows: 

  𝑑𝜇𝑏,(𝑚), (𝑥𝑚) =⊗(𝑘,𝑛)∈∆𝑚𝑑𝜇𝑏𝑘𝑛
(𝑥𝑘𝑛)= ⊗(𝑘,𝑛)∈∆𝑚

√
𝑏𝑘𝑛
𝜋
 𝑒𝑥𝑝(−𝑏𝑘𝑛𝑥𝑘𝑛

2  𝑑𝑥𝑘𝑛,        (145) 

𝑑𝜇𝑏
(𝑚)
, (𝑥(𝑚)) =⊗(𝑘,𝑛)∈∆(𝑚)𝑑𝜇𝑏𝑘𝑛

(𝑥𝑘𝑛)

= ⊗(𝑘,𝑛)∈∆(𝑚)𝑑𝜇𝑏𝑘𝑛
(𝑥𝑘𝑛)

√
𝑏𝑘𝑛
𝜋
 𝑒𝑥𝑝(−𝑏𝑘𝑛𝑥𝑘𝑛

2  𝑑𝑥𝑘𝑛.                               (146) 

The corresponding Hilbert space is 

𝐻𝑚  =  𝐿2(𝑋𝑚,𝜇𝑏)  =  𝐿2(𝐵𝑚  ×  𝐵
(𝑚), 𝜇𝑏,𝑚  ⊗ 𝜇𝑏

(𝑚)
 ). 

Lemma(4.2.26)[161]:(Kolmogorov’s zero-one law, [159]). We have 𝜇𝑏,𝑚⊗

𝜇𝑏
(𝑚)
(𝐵𝑚,2(𝑎) × 𝐵2

(𝑚)
 (𝑎))  = 1  if and only if  

∑
𝑎𝑘𝑛
𝑏𝑘𝑛

(𝑘,𝑛)∈∆(𝑚)∪∆(𝑚)

 <  ∞. 

Lemma(4.2.27)[161]:([141], [142]). The measure 𝜇𝑏  =  𝜇𝑏,𝑚  ⊗ 𝜇𝑏
(𝑚)
  is 𝐵 𝑚,0 × 𝐵0

(𝑚)
 -

right-quasi-invariant i.e. (𝜇𝑏)
𝑅𝑡 ∼ 𝜇𝑏 for all 𝑡 ∈  𝐵𝑚,0 × 𝐵0

(𝑚)
 if and only if  

𝑆𝑘𝑛
𝑅  (𝜇𝑏)  = ∑

𝑏𝑟𝑛
𝑏𝑟𝑘

𝑘−1

𝑟=−∞

 <  ∞, 𝑓𝑜𝑟 𝑎𝑙𝑙, 𝑘 <  𝑛 ≤  𝑚. 

Step 3) The corresponding induced representation of the group 𝐵0
ℤwe defined as follows: 

(𝑇𝑡
𝑚,𝑦
 𝑓)(𝑥) =  𝑆(ℎ(𝑥, 𝑡)) (

𝑑𝜇𝑏(𝑥𝑡)

𝑑𝜇𝑏(𝑥)
)

1
2

𝑓(𝑥𝑡), 𝑥 ∈  𝑚,𝑚,  𝑡 ∈  𝐺, (147) 

 where (see (152)) 
𝑆(ℎ(𝑥, 𝑡))  =  𝑒𝑥𝑝(2𝜋𝑖〈𝑦, ℎ(𝑥, 𝑡)  −  1〉)  =  𝑒𝑥𝑝(2𝜋𝑖𝑡𝑟 ((𝑡 −  𝐼)𝐵(𝑥, 𝑦))). 

Consider the induced representation 𝑇𝑚,𝑦 of the group 𝐵0
ℤcorresponding to a generic orbit 𝒪𝑦, 

generated by the point  

𝑦 =∑𝑦𝑚+𝑟+1,𝑚−𝑟𝐸 𝑚+𝑟+1,𝑚−𝑟

∞

𝑟=0

 ∈ 𝑏2
∗ (𝑎)𝑑𝑒𝑓𝑖𝑛𝑒𝑑 𝑏𝑦(147). 𝑆𝑒𝑡 𝑓𝑜𝑟 (𝑘, 𝑟) ∈ Δ(𝑚) 

𝑆𝑘𝑟(𝑡𝑘𝑟):= 〈 𝑦, (ℎ(𝑥, 𝐸𝑘𝑟(𝑡𝑘𝑟)) − 𝐼)〉,  
then 

 𝐴𝑘𝑟  =
𝑑

𝑑𝑡
𝑒𝑥𝑝(2𝜋𝑖𝑆𝑘𝑟(𝑡))|𝑡=0  =  2𝜋𝑖𝑆𝑘𝑟(1).                           (148) 
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Let us denote by 𝕤(𝑚)  = 𝕤 the following matrix (compare with (107) and (108)): 

 𝕤 =  (𝑆𝑘𝑟)(𝑘,𝑟)∈∆(𝑚), 𝑤ℎ𝑒𝑟𝑒 𝑆𝑘𝑟 = 𝑆𝑘𝑟(1).        (149) 

We calculate now the matrix 𝕊(𝑡)  =  (𝑆𝑘𝑟(𝑡𝑘𝑟))(𝑘,𝑟)∈∆(𝑚)  and the matrix 𝕤 =

(𝑆𝑘𝑟(1))(𝑘,𝑟)∈∆(𝑚) using analog of the Lemma (4.2.10). As in (106) we have 

〈𝑦, ℎ(𝑥, 𝑡)  −  𝐼〉  =  𝑡𝑟 (𝐻(𝑥, 𝑡)𝑦)  =  𝑡𝑟(𝑥(𝑚)𝑡0𝑥𝑚 𝑦
−1 ) =  𝑡𝑟(𝑡0𝑥𝑚 

−1𝑦𝑥(𝑚)) =  𝑡𝑟 (𝑡0𝐵(𝑥, 𝑦)), 

where 𝑡0 =  𝑡 −  𝐼 and for 𝑥𝑚 ∈  𝐵𝑚, 𝑥
(𝑚)  ∈  𝐵(𝑚) we denote 

 𝐵(𝑥, 𝑦)  = 𝑥𝑚 
−1𝑦𝑥(𝑚) ≅ (

1 0
0 𝑥𝑚 

−1) (
0 0
𝑦 0

) (𝑥
(𝑚) 0
0 1

) = (
0 0

𝑥𝑚 
−1𝑦𝑥(𝑚) 0

) . (150) 

By definition we have (recall that 𝐸𝑘𝑛(𝑡𝑘𝑛)  =  𝐼 + 𝑡𝑘𝑛𝐸𝑘𝑛)  

𝑆𝑘𝑛(𝑡𝑘𝑛)  =  〈𝑦, (ℎ(𝑥, 𝐸𝑘𝑛(𝑡𝑘𝑛))  −  𝐼)〉  =  𝑡𝑟(𝑡𝑘𝑛𝐸𝑘𝑛𝐵(𝑥, 𝑦)), 
hence by analog of the Lemma (4.2.10)we conclude that  

𝕤 =  (𝑆𝑘𝑛(1))𝑘,𝑟  =  (𝑡𝑟 (𝐸𝑘𝑟𝐵(𝑥, 𝑦))) 𝑘,𝑟 = 𝐵
𝑇  (𝑥, 𝑦)  =  (𝑥(𝑚))𝑇 𝑦 𝑇(𝑥𝑚

−1  )𝑇 

= (0 (𝑥(𝑚))𝑇 𝑦 𝑇(𝑥𝑚
−1  )𝑇 

0 0
) . (151) 

So, we have 

(𝑆(ℎ(𝑥, 𝑡))  =  𝑒𝑥𝑝(2𝜋𝑖〈𝑦, (ℎ(𝑥, 𝑡)  −  𝐼)〉)  =  𝑒𝑥𝑝(2𝜋𝑖𝑡𝑟 ((𝑡 −  𝐼)𝐵(𝑥, 𝑦))). (152) 
Using results of [166] we conclude that the following lemma holds. 

Lemma(4.2.28)[161]:The measure 𝜇𝑏  =  𝜇𝑏,𝑚  ⊗ 𝜇 𝑏
(𝑚)

 is 𝐵𝑚,0 × 𝐵0
(𝑚)

 -right-ergodic if 

𝐸(𝜇𝑏)  = ∑
𝑆𝑘𝑛
𝑅 (𝜇𝑏)

𝑏𝑘𝑛
𝑘<𝑛≤𝑚

<  ∞. 

Lemma(4.2.29)[161]:Two von Neumann algebra 𝔄𝑆 and 𝔄𝑥 in the space 𝐻𝑚 =  𝐿2(𝑋𝑚, 𝜇𝑏) 
generated respectively by the sets of unitary operators 𝑈𝑘𝑟(𝑡) and 𝑉𝑘𝑟(𝑡)coincides, where  

 (𝑈𝑘𝑟(𝑡)𝑓)(𝑥)  =  𝑒𝑥𝑝(2𝜋𝑖𝑆𝑘𝑟(𝑡))𝑓(𝑥), (𝑉𝑘𝑟(𝑡)𝑓)(𝑥) ∶=  𝑒𝑥𝑝(2𝜋𝑖𝑡𝑥𝑘𝑟)𝑓(𝑥), 
𝔄𝑆  =  𝑈𝑘𝑟(𝑡)  =  𝑇𝐼+𝑡𝐸𝑘𝑟

𝑚,𝑦
  =  𝑒𝑥𝑝(2𝜋𝑖𝑆𝑘𝑟(𝑡)) | 𝑡 ∈ ℝ, (𝑘, 𝑟)  ∈ ∆(𝑚)

′′, 

𝔄𝑥  =  (𝑉𝑘𝑟(𝑡) =  𝑒𝑥𝑝(2𝜋𝑖𝑡𝑥𝑘𝑟) | 𝑡 ∈ ℝ, (𝑘, 𝑟)  ∈  ∆𝑚⋃∆(𝑚))
′′

.             (153) 

Proof. Using the decomposition (151) 

𝕤(𝑚) =  𝐵(𝑥, 𝑦)𝑇  =  (𝑥𝑚
−1 𝑦𝑥(𝑚))𝑇  =  (𝑥(𝑚))𝑇 𝑦𝑇  (𝑥𝑚

−1 )𝑇 
we conclude that 𝔄s  ⊆  𝔄x (see the proof of Lemma (4.2.14)). 

To show that 𝔄s ⊆ 𝔄x it is sufficient to find the expressions of the matrix element  of the 

matrix 𝑥(𝑚)  ∈  𝐵(𝑚) and 𝑥𝑚
−1  ∈  𝐵𝑚 in terms of the matrix elements of the matrix 𝕤(𝑚)  =

 (𝑆𝑘𝑟)(𝑘,𝑟)∈∆(𝑚). To do this we connect the above decomposition 𝕤(𝑚) = 𝐵(𝑥, 𝑦)𝑇  (see (150)) 

and the Gauss decomposition 𝐶 =  𝐿𝐷𝑈  for infinite matrices (see Theorem(4.2.35) . By 

(150) we get B(𝑥, 𝑦)  =  𝑥𝑚
−1  𝑦𝑥(𝑚). 

To find a matrix connected with the matrix 𝕤(𝑚) , for which an appropriate 

decomposition 𝐿𝐷𝑈  holds we recall the expressions for 𝐵(𝑥, 𝑦)  for small n and finite-

dimensional groups 𝐺𝑛
𝑚 (see Example (4.2.13)). We note that 𝐽𝑚

2  =  𝐼, where  

𝐽𝑚  ∈  𝑀𝑎𝑡(∞,ℝ), 𝐽𝑚  =∑𝐸𝑚+𝑟+1,𝑚−𝑟
𝑟∈ℤ

. 

For 𝐺3
3 we get 
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𝐵(𝑥, 𝑦) =  𝑥𝑚
−1 𝑦𝑥(𝑚)  

=

(

 

1 𝑥45
−1 𝑥46

−1 𝑥47
−1

0
0

1 𝑥56
−1

0 1

𝑥57
−1

𝑥67
−1

0 0 0 1 )

 (

0 0 0 𝑦43
0
0

0 𝑦52
𝑦61 0

0
0

𝑦70 0 0 0

)(

1 𝑥01 𝑥02 𝑥03
0
0

1 𝑥12
0 1

𝑥13
𝑥23

0 0 0 1

) , 

 𝐵(𝑥, 𝑦)𝐽 =

(

 

1 𝑥45
−1 𝑥46

−1 𝑥47
−1

0
0

1 𝑥56
−1

0 1

𝑥57
−1

𝑥67
−1

0 0 0 1 )

 (

𝑦43 0 0 0

0
0

𝑦52 0
0 𝑦61

0
0

0 0 0 𝑦70

)(

1 0 0 0
𝑥23
𝑥13

1 0
𝑥12 1

0
0

𝑥03 𝑥02 𝑥01 1

)      (154) 

We use the infinite-dimensional analog of the latter presentation, i.e. instead of the group 

𝐺𝑛 =  𝐵(𝑛,ℝ) consider the infinite-dimensional group 𝐵0
ℤ and do the same. Let 

𝑥𝑚 ∈  𝐵𝑚, 𝑥(𝑚)  ∈  𝐵(𝑚), 𝑦 = 𝑋∞𝑟 = 0𝑦𝑚 + 𝑟 + 1,𝑚 − 𝑟𝐸𝑚 + 𝑟 + 1,𝑚 − 𝑟 
∈  𝑔 ∗ 2(𝑎) 

and 𝐽 =  𝐽𝑚  = 𝐸𝑟∈ℤ 𝐸𝑚+𝑟+1,𝑚−𝑟. Then we get 𝕊𝑇 =  𝐵(𝑥, 𝑦)  =  𝑥𝑚
−1 𝑦𝑥(𝑚). 

Set 𝐶 =  𝐶(𝑥, 𝑦)  =  𝐵(𝑥, 𝑦)𝐽 𝑡ℎ𝑒𝑛 𝐶 =  𝑈𝐷𝐿, more precisely we have: 

𝐵(𝑥, 𝑦)𝐽 =  𝑥𝑚
−1 𝑦𝐽𝑚𝐽𝑚𝑥

(𝑚)𝐽𝑚  =  𝑈𝐷𝐿,

𝑤ℎ𝑒𝑟𝑒 𝑈 =  𝑥𝑚
−1 , 𝐷 =  𝑦𝐽𝑚, 𝐿 =  𝐽𝑚𝑥

(𝑚)𝐽𝑚,                                    (155) 
 𝐶 =  𝐵(𝑥, 𝑦)𝐽 

=

(

 

1 𝑥45
−1 𝑥46

−1 𝑥47
−1 ⋯

0
0

1 𝑥56
−1

0 1

𝑥57
−1 ⋯

𝑥67
−1 ⋯

0 0 0 1 ⋯ )

 (

𝑦43 0 0 0 ⋯

0
0

𝑦52 0
0 𝑦61

0 ⋯
0 ⋯

0 0 0 𝑦70 ⋯

)(

1 0 0 0 ⋯
𝑥23
𝑥13

1 0
𝑥12 1

0 ⋯
0 ⋯

𝑥03 𝑥02 𝑥01 1 ⋯

) 

𝐶 =

(

 
 

𝑐11 𝑐12 ⋯ 𝑐1𝑛 ⋯
𝑐21

𝑐𝑛1

𝑐22

𝑐𝑛2

⋯
⋯
⋯

𝑐2𝑛

𝑐𝑛𝑛

⋯
⋯
⋯

⋯ ⋯)

 
 

=

(

 
 

1 𝑢12 ⋯ 𝑐1𝑛 ⋯
0

0

1

0

⋯
⋯
⋯

𝑐2𝑛

𝑐𝑛𝑛

⋯
⋯
⋯

⋯ ⋯)

 
 

(

 
 

𝑑1 ⋯ 0 ⋯

0

0

𝑑2

0

⋯
⋯
⋯

0

𝑑𝑛

⋯
⋯
⋯

⋯ ⋯)

 
 

(

 
 

1 0 ⋯ 0
𝑙21

𝑙𝑛1

1

𝑙𝑛2

⋯
⋯
⋯

0

1

⋯
⋯
⋯

⋯ ⋯)

 
 
           (156) 

To finish the proof of the Lemma it is sufficient to find the decomposition (156) 

𝐶 =  𝑈𝐷𝐿 . 
Let us suppose that we can find the inverse matrix  𝐶−1 . Then by (155) holds 𝐶 −1 =
 𝐿−1𝐷−1𝑈−1 and we can use Theorem( 4.2.35) to find  

L−1 = Jm(x
(m)) − 1J(m), D

−1  =  y−1Jm, U
−1  =  xm. 

Hence, we can find the matrix elements of the matrix (𝑥(𝑚))−1  ∈  𝐵(𝑚) and 𝑥𝑚  ∈  𝐵𝑚 in 

terms of the matrix elements of the matrix 𝐶−1 =  (𝕊𝑇  𝐽)−1  =  (𝐵(𝑥, 𝑦)𝐽)−1. Finally, we can 

also find the matrix elements of the matrix 𝑥(𝑚)  ∈  𝐵(𝑚) using formulas (181). This finish the 

proof of the lemma since in this case we have 𝑥𝑘𝑟  𝜂𝔄
𝑠 𝑓𝑜𝑟 (𝑘, 𝑟)  ∈ ∆𝑚⋃∆

(𝑚). Hence 𝔄𝑠  ⊆
 𝔄𝑥. 
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(i) To find the inverse matrix 𝐶−1 we write two decompositions: 

 𝐶 =  𝐿1𝐷1𝑈1  =  𝑈𝐷𝐿, 𝐶
−1  =  (𝑈1)

−1(𝐷1)
−1(𝐿1−1)  =  𝐿−1𝐷−1𝑈−1.    (157) 

(ii) Using (157) we can find 𝐿1, 𝐷1 and 𝑈1 by Theorem (4.2.35) . More precisely, for all 

𝑥 ∈  Γ𝐺 , where 

Γ𝐶 = {𝑥 ∈  𝐵𝑚  ×  𝐵
(𝑚) | 𝑀12...𝑘

12...𝑘 (𝐶(𝑥))  ≠  0, 𝑘 ∈  ℕ} 
holds the decomposition 𝐶(𝑥)  =  𝐿1𝐷1𝑈1 and the matrix elements of the matrix 𝐿1, 𝐷1and 𝑈1 

are rational functions in 𝑐𝑘𝑛(𝑥). 
(iii) We can find (𝐿1)

−1 and (𝑈1)
−1 using formulas (114). Note that 𝐽𝑚𝐿𝐽𝑚, 𝑈, and 

𝐽𝑚𝐿
−1𝐽𝑚, 𝑈

−1  ∈  𝐵2(𝑎). 
(iv) Using identity (157) we can calculate 𝐶−1  =  (𝑈1)

−1(𝐷1)
−1(𝐿1)

−1, since 𝐿−1, 𝐷−1 and 

𝑈−1 are well defined. 

(v) Using equality (157) we can find the decomposition 𝐶−1  =  𝐿−1𝐷−1𝑈−1 of the matrix 

𝐶−1 by Theorem (4.2.35)In other words, the decompositions holds 𝐶−1 = 𝐿−1𝐷−1𝑈−1 for all 

 ∈  Γ𝐺−1 , where 

Γ𝐶−1 = {𝑥 ∈  𝐵𝑚  ×  𝐵
(𝑚) | 𝑀12...𝑘

12...𝑘  (𝐶−1(𝑥))  ≠  0, 𝑘 ∈  ℕ} 
and the matrix elements of the matrix 𝐿−1, 𝐷−1 and 𝑈−1  are rational functions in matrix 

elements 𝑐𝑘𝑛
−1  (𝑥) of the matrix𝐶−1. 

Let us denote (𝐿1)
−1  =  (𝐿1;𝑘𝑛

−1 )𝑘𝑛, (𝐷1)
−1  =  𝑑𝑖𝑎𝑔(𝑑1;𝑘

−1)𝑘 and (𝑈1)
−1  =  (𝑈1;𝑘𝑛

−1 )𝑘𝑛. 

The decompositions 𝐶 =  𝐿1𝐷1𝑈1  and 𝐶−1  =  (𝑈1)
−1(𝐷1)

−1 × (𝐿1)
−1  hold for 𝑥 ∈  Γ𝐶  ∩

 Γ𝐶−1 , i.e. almost for all 𝑥 ∈  𝐵𝑚  ×  𝐵
(𝑚)  with respect to the measure 𝜇b  since 𝜇b(Γ𝐶  ∩

 Γ𝐶−1)  =  1. We conclude that the convergence 

𝑐𝑘𝑛
−1 (𝑥)  = ∑ 𝑈1;𝑘𝑚

−1 𝑑1;𝑚
−1 𝐿1;𝑚𝑛

−1 , 𝑘, 𝑛 ∈ ℕ

𝑚∈ℕ

 

holds pointwise almost everywhere 𝑥 ∈  𝐵𝑚  ×  𝐵
(𝑚) (𝑚𝑜𝑑 𝜇𝑏).  Since 𝑈1;𝑘𝑚

−1 , 𝑑1;𝑚 
−1  and 

𝐿1;𝑚𝑛
−1  𝜂 𝔄𝑠 by (ii) and (iii), we conclude by Lemma (4.2.34) that 𝑐𝑘𝑛

−1 (𝑥) 𝜂 𝔄𝑠. This finish the 

proof of the lemma. 

 Theorem(4.2.30)[161]:The induced representation 𝑇𝑚,𝑦 of the group 𝐵0
ℤ defined by formula 

(213), corresponding to generic orbit 𝒪𝑦 , generated by the point 𝑦 =

∑ 𝑦𝑚+𝑟+1,𝑚−𝑟𝐸𝑚+𝑟+1,𝑚−𝑟
∞
𝑟=0    ∈  𝑏2

∗ (𝑎)  is irreducible if the measure 𝜇𝑏,𝑚⊗𝜇𝑏
(𝑚)

 on the 

group 𝐵𝑚 × 𝐵
(𝑚) is right 𝐵𝑚,0 × 𝐵 0

(𝑚)
 -ergodic. Moreover the generators of one-parameter 

groups 𝐴 𝑘𝑟 = 
𝑑

𝑑𝑡
 𝑇𝐼+𝑡𝐸𝑘𝑟
𝑚,𝑦

 |𝑡=0 are as follows 

 𝐴 𝑘𝑟 = ∑ 𝑥𝑘𝑠𝐷𝑟𝑠 + 𝐷𝑘𝑟 , (𝑘, 𝑟)  ∈  ∆
(𝑚), 𝐴𝑘𝑟

𝑘−1
𝑠=−∞    =  ∑   𝑥𝑘𝑠𝐷𝑟𝑠  +  𝐷𝑘𝑟 , (𝑘, 𝑟)  ∈

𝑘−1
𝑠=𝑚+1

 ∆𝑚 , 

(2𝜋𝑖)−1 (𝐴𝑘𝑟  )(𝑘,𝑟)∈∆(𝑚)  =  𝕤
(𝑚)  =  (𝑆𝑘𝑟)(𝑘,𝑟)∈∆(𝑚)  = (𝑥𝑚

−1 𝑦𝑥(𝑚) )
𝑇
. 

Here we denote by 𝐷𝑘𝑛 = 𝐷𝑘𝑛(𝜇𝑏) the operator of the partial derivative corresponding to the 

shift 𝑥 ↦  𝑥 + 𝑡𝐸𝑘𝑛 and the measure 𝜇𝑏 on the group 𝐵𝑚 × 𝐵
(𝑚) ∋  𝑥 =  𝐼 + ∑𝑥𝑘𝑟𝐸𝑘𝑟:  

(𝐷𝑘𝑛(𝜇𝑏)𝑓)(𝑥) =
𝑑

𝑑𝑡
(
𝑑𝜇𝑏(𝑥 +  𝑡𝐸𝑘𝑛)

𝑑𝜇𝑏(𝑥)
)

1
2

𝑓(𝑥 +  𝑡𝐸𝑘𝑛) |𝑡=0, 𝐷𝑘𝑛(𝜇𝑏)

=
𝜕

𝜕𝑥𝑘𝑛
− 𝑏𝑘𝑛𝑥𝑘𝑛.                                                                              (158) 
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The irreducibility of the induced representation of the group 𝐵0
ℤ follows from the following 

lemma. 

Proof: To show the irreducibility of the induced representation consider the restriction 

𝑇𝑚,𝑦 |𝐵0(𝑚) of this representation to the commutative subgroup 𝐵0(𝑚) of the group 𝐵0
ℤ . Note 

that 

𝔄𝑥 = (𝑒𝑥𝑝(2𝜋𝑖𝑡𝑥𝑘𝑟) | 𝑡 ∈  ℝ, (𝑘, 𝑟)  ∈  ∆𝑚⋃∆(𝑚))
′′

= 𝐿∞(𝐵𝑚  ×  𝐵
(𝑚), 𝜇𝑏,𝑚  ⊗ 𝜇𝑏

(𝑚)
 ). 

By Lemma (4.2.29) the von Neumann algebra 𝔄𝑠 generated by this restriction coincides with 

𝔄𝑥 = 𝐿∞(𝐵𝑚  ×  𝐵
(𝑚), 𝜇𝑏,𝑚  ⊗ 𝜇𝑏

(𝑚)
).  Let now a bounded operator A in the Hilbert space 

ℋ𝑚 commute with the representation 𝑇𝑚,𝑦. Then A commute by the above arguments with 

𝐿∞(𝐵𝑚  ×  𝐵
(𝑚), 𝜇 ⊗ 𝜇𝑏,𝑚  ⊗ 𝜇𝑏

(𝑚)
),  therefore the operator A itself is an operator of  

multiplication by some essentially bounded function 𝑎 ∈  𝐿∞ 𝑖. 𝑒. (𝐴𝑓)(𝑥)  =  𝑎(𝑥)𝑓(𝑥) for 

𝑓 ∈  ℋ𝑚 . Since A commute with the representation 𝑇𝑚,𝑦 𝑖. 𝑒. [𝐴, 𝑇𝑡 
𝑚,𝑦
]  =  0  for all  ∈

 𝐵𝑚,0  ×  𝐵0
(𝑚)

 , where 𝐵𝑚,0  =  𝐵𝑚  ∩  𝐵0
ℤ 𝑎𝑛𝑑 𝐵0

(𝑚)
  =  𝐵(𝑚)  ∩  𝐵0

ℤ  , we conclude that 

𝑎(𝑥)  =  𝑎(𝑥𝑡) (𝑚𝑜𝑑 𝜇𝑏,𝑚  ⊗ 𝜇𝑏
(𝑚)
  ) 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑡 ∈  𝐵𝑚,0  ×  𝐵0

(𝑚)
 . 

Since the measure 𝜇𝑏,𝑚  ⊗ 𝜇𝑏
(𝑚)
  on the group 𝐵𝑚  ×  𝐵

(𝑚) is right 𝐵𝑚,0 × 𝐵0
(𝑚)

 -ergodic we 

conclude that 𝑎(𝑥)  =  𝑐𝑜𝑛𝑠𝑡 (𝑚𝑜𝑑 𝑑𝑥𝑚  ⊗  𝑑𝑥(𝑚)).  

First steps. Let �̂� be the dual of the group G. Our aim is to describe �̂� for 𝐺 =  lim
⟶𝑛
𝐺𝑛  where 

𝐺𝑛  =  𝐵(𝑛, ℝ) is the group of all 𝑛 ×  𝑛 upper triangular real matrices with units on the 

principal diagonal, i.e. we would like to describe the dual of the group 𝐵0
ℕ of infinite in one 

direction and 𝐵0
ℤ infinite in both directions matrices. Consider the inductive limit 𝐺 =

 lim
⟶𝑛
𝐺𝑛  of nilpotent groups 𝐺𝑛 =  𝐵(𝑛, ℝ). The symmetric (resp. nonsymmetric) imbedding 

gives us two infinite-dimensional analog of “nilpotent” groups 𝐵0
ℤ (resp. 𝐵0

ℕ). 

We do not know the description of all �̂�. We only know that the set �̂� contains the following 

three classes of representations. 

(i) The set �̂� contains ⋃ �̂�𝑛𝑛  𝑖. 𝑒. �̂�  ⊃ ⋃ �̂�𝑛𝑛 . One may use Kirillov’s orbit method 

[163], [140] to describe 𝐺𝑛. The embedding �̂�𝑛 ⊂ �̂�𝑛+1 is described in Remark (4.2.31). 

(ii) We have �̂�\⋃ �̂�𝑛𝑛 ≠  ∅. Namely �̂� \⋃ �̂�𝑛𝑛  contains ”regular” 𝑇𝑅,𝜇  and ”quasiregular” 

𝜋𝑅,𝜇,𝑋 representations of the group G. 

(iii) Induced representations  

It is natural together with the group 𝐵0
ℕ (resp. 𝐵0

ℤ ) consider all Hilbert-Lie completion 

𝐵2
ℕ (𝑎) (resp. 𝐵2

ℤ (𝑎)) and the group of all upper-triangular matrices 𝐵ℕ (resp. 𝐵ℤ)  

𝐺𝑛 → 𝐵0
ℕ → 𝐵2

ℕ (𝑎)  →  𝐵ℕ → 𝐺𝑛. 
𝐺𝑛 
𝑚 → 𝐵0

ℤ → 𝐵2
ℤ (𝑎)  →  𝐵ℤ  →  𝐺𝑛

𝑚 . 
Together with all imbedding and projections of all mentioned groups 𝐺𝑛 =  𝐵(𝑛, ℝ) we have:  

𝐵(𝑛,ℝ)𝑖𝑛
𝑛+1

→
𝐵(𝑛 + 1,ℝ)

𝑖𝑛
∞

→
𝐵0
ℕ → 𝐵2(𝑎)  →  𝐵

ℕ  →  𝐵(𝑛 +  1, ℝ)
𝑃 𝑛+1
𝑛

→
  𝐵(𝑛,ℝ), 

where the imbedding 𝑖𝑛
𝑛+1 and the projections 𝑃 𝑛+1

𝑛  are defined as follows: 

𝐵(𝑛, ℝ)  ∋  𝑥 ↦  𝑖𝑛
𝑛+1(𝑥)  =  𝑥 + 𝐸𝑛+1,𝑛+1  ∈  𝐵(𝑛 +  1, ℝ), 

 𝐵(𝑛 +  1, ℝ)  ∋  𝑥 =  𝑥𝑛+1𝑥𝑛  ↦  𝑝𝑛 +1
𝑛  (𝑥)  =  𝑥𝑛  ∈  𝐵(𝑛,ℝ), 

where 𝑥𝑛+1  =  𝐼 + ∑ 𝑥𝑘𝑛+1𝐸𝑘𝑛+1
𝑛
𝑘=1   , 𝑥𝑛  =  𝐼 + ∑ 𝑥𝑘𝑚𝐸𝑘𝑚1≤𝑘<𝑚≤𝑛   . 
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For groups 𝐺𝑛
𝑚  ≃  𝐵(2𝑛, ℝ) defined by (125) consider the homomorphism 𝑝𝑛+1

𝑠,𝑚,𝑛 ∶ 𝐺𝑛+1
𝑚  ↦

 𝐺𝑛
𝑚  defined as follows (for simplicity we define 𝑝𝑛+1

𝑠,𝑚,𝑛
for 𝑚 =  0) 

𝐺𝑛+1
0  ∋  𝑥 =  𝑥↑

𝑛+1 𝑥𝑛𝑥→
𝑛  ↦  𝑝𝑛+1 

𝑠,0,𝑛(𝑥)  =  𝑥𝑛  ∈  𝐺𝑛
0 , 

where 

𝑥↑
𝑛+1 =  𝐼 + ∑ 𝑥𝑘,𝑛+1𝐸𝑘,𝑛+1

−𝑛<𝑘<𝑛+1

, 𝑥→
𝑛  =  𝐼 + ∑ 𝑥−𝑛,𝑘𝐸−𝑛,𝑘

−𝑛<𝑘≤𝑛+1

. 

Remark(4.3.31)[161]:The embedding 𝐵(𝑛, ℝ)̂  7 → \ 𝐵(𝑛 +  1̂ ,ℝ)  (resp. 𝐺𝑛
�̂�  ↦ 𝐺𝑛+1

�̂� )  is 

induced by the homomorphism (125) 𝑝𝑛+1
𝑛  ∶  𝐵(𝑛 +  1,ℝ) 7 →  𝐵(𝑛,ℝ)  (resp. by the 

homomorphism (206) 𝑝𝑛+1
𝑠,𝑚,𝑛 ∶  𝐺𝑛+1

𝑚  ↦  𝐺𝑛
𝑚 ) . So for 𝑚 ∈ ℤ  we get ⋃ 𝐺𝑛

(𝑚)̂
  ⊂  𝐵0

ℤ̂
𝑛 ∈ℕ  .  

Similarly, we have ⋃ 𝐵(𝑛,ℕ)̂  ⊂ 𝐵0
ℕ

𝑛∈ℕ  

Let us denote by 𝐵2
ℕ(𝑎)  (resp. 𝐵2

ℤ (𝑎) ) the completion of the subgroup 𝐵0
ℕ  ⊂

 𝐺𝐿0(2∞,ℝ)(𝑟𝑒𝑠𝑝. 𝐵0
ℤ  ⊂  𝐺𝐿0(2∞,ℝ)) in the Hilbert-Lie group 𝐺𝐿2(𝑎). Since (see [165]) 

𝐵0
ℕ  =⋂𝐵2

ℕ(𝑎) (𝑟𝑒𝑠𝑝. 𝐵0
ℤ

𝑎∈𝔄

 =⋂𝐵2
ℤ

𝑎∈𝔄

(𝑎)) 

we conclude that 

𝐵0
ℕ̂ =⋃𝐵2

ℕ(𝑎)̂

𝑎∈𝔄

 (𝑟𝑒𝑠𝑝. 𝐵0
ℤ̂ =⋃𝐵2

ℤ(𝑎)̂

𝑎∈𝔄

). 

It leaves to describe 𝐵2
ℕ(𝑎)̂  (resp. 𝐵2

ℤ(𝑎)̂ ) for all 𝑎 ∈  𝔄. The problem of developing the orbit 

method for the Hilbert-Lie group 𝐵2
ℕ(𝑎)  (resp. 𝐵2

ℤ(𝑎))  could be easier, since the 

corresponding Lie algebra 𝑏2
ℕ (𝑎) (resp. 𝑏2

ℤ(𝑎)) is a Hilbert-Lie algebra, the dual (𝑏2
ℕ(𝑎))∗ 

(resp.  (𝑏2
ℤ (𝑎))∗ ) and the pairing between 𝐵2

ℤ (𝑎)  (resp. 𝐵2
ℤ(𝑎))  and (𝑏2

ℕ (𝑎))∗  (resp. 

(𝑏2
ℤ (𝑎))∗) are well defined  

Using (206) we conclude 

 𝐵0 
ℤ = lim

𝑛,𝑖⃗⃗⃗⃗  ⃗
𝐵(𝑛,ℝ) , 𝐵0 

ℕ = lim
�⃖⃗�
𝐵2
ℕ  (𝑎), 𝐵ℕ  =  lim

𝑛,𝑝
𝐵(𝑛, ℝ) , 

𝐵0 
ℕ̂  ⊃ 𝐵2

ℕ(𝑎)̂  ⊃  𝐵ℕ̂                                                      (159) 
finally we conclude that 

 𝐵0 
ℕ̂  = ⋃𝐵2

ℕ(𝑎)̂

𝑎∈𝔄

, 𝐵ℕ̂ =⋃𝐺�̂�
𝑛∈ℕ

 = ⋃𝐵(𝑛,ℝ)̂

𝑛∈ℕ

.                       (160) 

The similar relations holds also for groups 𝐵0
ℤ  ⊂  𝐵2

ℤ (𝑎)  ⊂  𝐵ℤ. 

Definition(4.2.32)[161]: We call the representation of the group 𝐺 = lim
→𝑛
𝐺𝑛  local if it 

depends  only on the elements of the subgroup 𝐺𝑛 for some fixed 𝑛 ∈  ℕ. 

The last relation in (159) and (160) we can reformulated as follows: 

Theorem(4.2.33)[161]:  (V.L. Ostrovsky, PhD dissertation, 1986). The class of all 

irreducible unitary local representations of the group 𝐵0
ℕ = lim

→𝑛
𝐵(𝑛,ℝ) coincides with the 

class ⋃ �̂�𝑛𝑛 . 

 Gauss decomposition of 𝑛 ×  𝑛 matrices. We need some decomposition of the matrix 𝐶 ∈
 𝑀𝑎𝑡(𝑛, ℂ). Let us denote by 

𝑀𝑗1𝑗2...𝑗𝑟
𝑖1𝑖2...𝑖𝑟(𝐶), 1 ≤  𝑖1  < . . . <  𝑖𝑟  ≤  𝑛, 1 ≤  𝑗1  < . . . <  𝑗𝑟  ≤  𝑛 

the minors of the matrix C with 𝑖1, 𝑖2, . . . , 𝑖𝑟 rows and 𝑗1, 𝑗2, . . . , 𝑗𝑟  columns. 
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Theorem (4.2.34)[161]:(Gauss decomposition, [133]). A matrix C ∈ Mat(n, ℂ) admits the 

following decomposition C =  LDU (Gauss decomposition), 

 

(

𝑐11 c12 ⋯ c1n
c21 c22 ⋯

⋯
c2n

cn1 cn2 ⋯ cnn

)

= (

1 0 ⋯ 0
l21 1 ⋯

⋯
0

ln1 ln2 ⋯ 1

)(

d1 0 ⋯ 0

0 d2 ⋯
⋯

0

0 0 ⋯ dn

)(

1 ⋯ u1n
0 1 ⋯

⋯
u2n

0 0 ⋯ 1

) (161) 

where 𝐿 (resp. 𝑈) is lower (resp. upper) triangular matrix and D a diagonal matrix if and only 

if all principal minors of the matrix 𝐶 are different from zeros i.e. 𝑀1,2,...,𝑘 
1,2,...,𝑘 (𝐶)  ≠ 0, 1 ≤  𝑘 ≤

 𝑛. Moreover the matrix elements of the matrices 𝐿, 𝑈 and 𝐷 are given by the formulas (see 

[133]) 

 𝑙𝑚𝑘  =
𝑀1,2,...,𝑘−1,𝑘
1,2,...,𝑘−1,𝑚 (𝐶)

𝑀1,2,...,𝑘−1,𝑘 
1,2,...,𝑘−1,𝑘 (𝐶)

, 𝑢 𝑘𝑚 =
𝑀1,2,...,𝑘−1,𝑚
1,2,...,𝑘−1,𝑘 (𝐶)

𝑀1,2,...,𝑘−1,𝑘
1,2,...,𝑘−1,𝑘  (𝐶)

, 1 ≤  𝑘 <  𝑚 ≤  𝑛,              (162) 

𝑑 1 = 𝑀1
1 (𝐶), 𝑑𝑘  =

𝑀1,2,…,𝑘
1,2,…,𝑘(𝐶)

𝑀1,2,…,𝑘−1
1,2,…,𝑘−1 (𝐶)

, 2 ≤  𝑘 ≤  𝑛, (163) 

Proof: If we write L−1C =  DU, we get 

M1,2,...,k−1,k
1,2,...,k−1,k (C)  =  M1,2,...,k−1,k 

1,2,...,k−1,k (L−1C)  =  M1,2,...,k−1,k
1,2,...,k−1,k (DU)  =  d1 . . . dk, 

this implies (163). Moreover, we get also 

M1,2,...,k−1,m
1,2,...,k−1,k (L−1C)  =  M1,2,...,k−1,m

1,2,...,k−1,k (C)  =  M1,2,...,k−1,m
1,2,...,k−1,k (DU)  =  d1 . . . dkukm, k <  𝑚, 

this implies the second formula in (162). Similarly if we write CU−1  =  LD we get 

M1,2,...,k−1,k 
1,2,...,k−1,m(CU−1)  =  M1,2,...,k−1,k 

1,2,...,k−1,m(C)  =  M1,2,...,k−1,k
1,2,...,k−1,m (LD)  =  d1 . . . dklmk, k <  𝑚, 

this implies the first formula in (162).  

Let us consider the infinite matrix C, L, D, U ∈  Mat(∞, ℂ). 
Theorem(4.2.35)[161]:(Gauss decomposition C =  LDU).  A matrix C ∈  Mat(∞, ℂ)  admits 

the following decomposition C =  LDU (Gauss decomposition), 

(

 
 

𝑐11 c12 ⋯ c1n ⋯
c21 c22 ⋯ c2n ⋯

cn1 cn2

⋯
⋯
⋯

cnn

⋯
⋯
⋯)

 
 

=

(

 
 

1 0 ⋯ 0
l21 1 ⋯ 0

ln1 ln2

⋯
⋯
⋯

1

⋯
⋯
⋯)

 
 

(

 
 

d1 0 ⋯ 0 ⋯

0 d2 ⋯ 0 ⋯

0 0

⋯
⋯
⋯

dn

⋯
⋯
⋯)

 
 

(

 
 

1 u12 ⋯ u1n ⋯
0 1 ⋯ u2n ⋯

0 0

⋯
⋯
⋯

1

⋯
⋯
⋯)

 
 
(164) 

where 𝐿 (resp. 𝑈) is lower (resp. upper) triangular matrix and 𝐷 a diagonal matrix of infinite 

order if and only if all principal minors of the matrix 𝐶  are different from zeros i.e. 
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𝑀1,2,...,𝑘
1,2,...,𝑘  (𝐶)  ≠, 𝑘 ∈  ℕ. Moreover the matrix elements of the matrices 𝐿, 𝑈 and 𝐷 are given 

by the same formulas as in the Theorem (4.2.34): 

 𝑙𝑚𝑘  =  
𝑀1,2,...,𝑘−1,𝑘
1,2,...,𝑘−1,𝑚  (𝐶)

𝑀1,2,...,𝑘−1,𝑘
1,2,...,𝑘−1,𝑘  (𝐶)

  , 𝑢𝑘𝑚  =  
𝑀1,2,...,𝑘−1,𝑚
1,2,...,𝑘−1,𝑘 (𝐶)

𝑀1,2,...,𝑘−1,𝑘
1,2,...,𝑘−1,𝑘  (𝐶)

 , 𝑘,𝑚 ∈  ℕ, 𝑘 <  𝑚,               (165) 

 𝑑1  =  𝑀1
1(𝐶), 𝑑𝑘  =  

𝑀1,2,…,𝑘
1,2,…,𝑘   (𝐶)

𝑀1,2,…,𝑘−1
1,2,…,𝑘−1  (𝐶)

 , 𝑘 ∈ ℕ, 𝑘 >  1.                          (166) 

Proof: The proof repeat word by word the proof of the Theorem(4.2.34) .  

Let (𝑋, ℱ, 𝜇) be a measurable space, with a finte measure 𝜇(𝑋)  <  ∞, where ℱ is a sigma-

algebra. Consider the set (𝑓𝑛)  =  (𝑓𝑛)𝑛∈ℕ of measurable real valued functions on 𝑋 i.e. 𝑓𝑛 ∶
 𝑋 ⟼ ℝ. Denote by 𝐵(𝐻) the von Neumann algebra of all bounded operators in the Hilbert 

space 𝐻 =  𝐿2(𝑋, 𝜇)  and let 𝔄(𝑓𝑛)(∈  𝐵(𝐻))  be a von Neumann algebra generated by 

operators 𝑈𝑛(𝑡) of multiplication by functions exp(𝑖𝑡𝑓𝑛(𝑥)), 𝑛 ∈ ℕ  

𝔄(𝑓𝑛) = (𝑈𝑛(𝑡)  =  𝑒
𝑖𝑡𝑓𝑛  | 𝑛 ∈ ℕ, 𝑡 ∈  ℝ)

′′
. 

We are interesting in the following question. Let 𝑓𝑛  →  𝑓 𝑎𝑠 𝑛 →  ∞ in some sense. 

When 𝑈(𝑡)  =  𝑒𝑖𝑡𝑓  ∈  𝔄(𝑓𝑛) 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑡 ∈ ℝ? 
Since 𝔄(𝑓𝑛) is a von Neumann algebra it is sufficient to find when the strong convergence of 

the unitary operators in the space 𝐻  holds i.e. s. lim
𝑛
𝑈𝑛(𝑡)  =  𝑈(𝑡) , where the operators 

𝑈𝑛(𝑡), 𝑛 ∈ ℕ and 𝑈(𝑡) are defined as follows 

(𝑈𝑛(𝑡)𝑔)(𝑥)  =  𝑒
𝑖𝑡𝑓𝑛(𝑥)𝑔(𝑥), (𝑈(𝑡)𝑔)(𝑥)  =  𝑒𝑖𝑡𝑓(𝑥) 𝑔(𝑥), 𝑔 ∈  𝐿2(𝑋, 𝜇), 𝑡 ∈ ℝ. 

Lemma (4.2.36)[161]: Let 𝑓𝑛  →  𝑓 𝑎𝑠 𝑛 →  ∞  pointwise almost everywhere, then 𝑠 . 

lim
𝑛
𝑈𝑛(𝑡)  =  𝑈(𝑡) ℎ𝑒𝑛𝑐𝑒 𝑈(𝑡)  =  𝑒

𝑖𝑡𝑓  ∈  𝔄(𝑓𝑛) . 

Proof: For 𝑔 ∈  𝐻 we get 

‖(𝑈𝑛(𝑡)  −  𝑈(𝑡))𝑔‖
2  = ∫ |(𝑒𝑖𝑡𝑓𝑛(𝑥)  −  𝑒𝑖𝑡𝑓(𝑥))𝑔(𝑥) | 2𝑑𝜇(𝑥) 

𝑋

= ∫ | 𝑒𝑖𝑡𝑓𝑛(𝑥)−𝑖𝑡𝑓(𝑥)  −  1 |2| 𝑔(𝑥) |22𝑑𝜇(𝑥)

𝑋

 

= ∫ | 𝑒𝑖𝑡𝛼𝑛(𝑥)  −  1 |2| 𝑔(𝑥) |2 𝑑𝜇(𝑥)  →  0

 𝑋

 

as 𝑛 →  ∞,  if 𝛼𝑛(𝑥) ∶=  𝑓𝑛(𝑥)  −  𝑓(𝑥)  →  0  pointwise almost everywhere by Lebesgue’s 

dominated convergence theorem.  

Corollary (4.2.37)[260]: Let 𝑓𝑛
𝑚  →  𝑓𝑚  as 𝑛 →  ∞ pointwise almost everywhere, then 𝑠 . 

lim
𝑛
𝑈𝑛
𝑚(𝑡)  =  𝑈𝑚(𝑡) hence ∑  𝑚 𝑈𝑚(𝑡)  = ∑  𝑚 𝑒𝑖𝑡𝑓

𝑚
 ∈  𝔄(𝑓𝑛

𝑚). 

Proof: For 𝑔 ∈  𝐻 we get 
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∑ 

𝑚

‖(𝑈𝑛
𝑚(𝑡)  − 𝑈𝑚(𝑡))𝑔‖2  = ∫∑ 

𝑚

|(𝑒𝑖𝑡𝑓𝑛
𝑚(𝑥)  −  𝑒𝑖𝑡𝑓

𝑚(𝑥))𝑔(𝑥) | 2𝑑𝜇(𝑥) 

𝑋

= ∫∑ 

𝑚

| 𝑒𝑖𝑡𝑓𝑛
𝑚(𝑥)−𝑖𝑡𝑓𝑚(𝑥)  −  1 |2| 𝑔(𝑥) |22𝑑𝜇(𝑥)

𝑋

 

= ∫∑ 

𝑚

| 𝑒𝑖𝑡𝛼𝑛(𝑥)  −  1 |2| 𝑔(𝑥) |2 𝑑𝜇(𝑥)  →  0

 𝑋

 

as 𝑛 →  ∞, if 𝛼𝑛(𝑥) ∶=  𝑓𝑛
𝑚(𝑥)  − 𝑓𝑚(𝑥)  →  0 pointwise almost everywhere by Lebesgue’s 

dominated convergence theorem.   
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Chapter 5 

Some Problems and Baire Measurability with Borel Structures 

We concern the Borel structures in 𝐶(𝐾) generated by the norm, weak or pointwise 

topology in 𝐶(𝐾). We give an example of a compact space 𝐾 such that the weak and the 

pointwise topology generate different Borel structures in 𝐶(𝐾). We discuss the coincidence 

of the Baire  𝜎 -algebras on 𝐶(𝐾)  associated to the weak and point wise convergence 

topologies. (  ). We show that the Borel structures in C (  ) generated by the weak and the 

pointwise topology are also different. We also show that in C (  ) where   =  there is 

no countable family of pointwise Borel sets separating functions from C (  ). 

Section (5.1): Borel Structures in Function Space 

Given a space C(K) of continuous real-valued functions on a compact space K, we 

shall consider thefollowing four 𝜎-algebras in 𝐶(𝐾): the cylindrical σ-algebra Cyl(C(K)), i.e., 

the smallest σ-algebra, for which all functionals from the dual space C(K)* are measurable, 

cf. [177], [193], and the 𝜎-algebras Borel (𝐶(𝐾), norm), Borel(C(K), weak), Borel(C(K), 

pointwise) of Borel sets in 𝐶(𝐾) with respectto the uniform topology, the weak topology, or 

the pointwise topology in C(K), respectively. 

We shall discuss two topics. The first one concerns the problem which separable 

compact spaces Khave the property that the measurable space (C(K), Cyl(C(K))) is a standard 

Borel space, i.e., there is abijection of C(K) onto the irrationals 𝜔𝜔 taking the elements of 

Cyl(C(K)) to Borel sets in 𝜔𝜔 and viceversa. 

There is a conjecture that, among separable compact spaces K, this property of 𝐶(𝐾) 
characterizes exactly the compacta which can be embedded in the space 𝐵1(𝜔

𝜔) of the first 

Baire class functions on the Cantor set, equipped with the pointwise topology. 

Using recent results of Dodos [172] one can show that, indeed, for all separable 

compacta𝐾 ⊂ 𝐵1(2
𝜔),the measurable space (C(K), Cyl(C(K))) is standard, cf. [185]. 

As showd in [185], the conjecture is true for separable compact spaces whose subspace 

of accumulation points has exactly one non-isolated point. 

We confirm also the conjecture in the class of separable linearly ordered compact 

spaces. 

The second topic concerns the relations between the Borel structures in C(K) 

generatedby the uniform topology, the weak topology or the topology of pointwise 

convergence. This subject was originated in Edgar [174], [175]. Talagrand [69], answering a 

question from [174], showd that 𝐵𝑜𝑟𝑒𝑙(𝐶(𝛽𝜔), 𝑛𝑜𝑟𝑚) ≠ 𝐵𝑜𝑟𝑒𝑙(𝐶(𝛽𝜔),weak). We shall 

show that if C(K) is a function space representation of the algebra 𝐿∞determined by the 

Lebesgue measure 𝜆 on [0, 1], cf. [171], [191] (anequivalent description of K is that K is the 

Stone space of the measure algebra associated with 𝜆, cf. [179]), then the inclusions between 

any of the three Borel structures inC(K) are strict. 

We did not find similar results, cf. [190], [177]. It is also not clear to us if 𝐶(𝛽𝜔) has 

this property. 

We shall denote by 𝐵1(𝑀) the space of real-valued first Baire class functions on a 

separable metrizable space M, equipped with the topology of pointwise convergence. 

Rosenthal compacta are compact spaces which can be embedded in 𝐵1(𝜔
𝜔), cf [178]. Let us 

recallan important characterization of separable Rosenthal compacta due to Godefroy, 

introducing first somenotation. 
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Let K be a separable compact space. For each countable set D dense in K, we consider 

𝐶𝐷(𝐾) = {𝑓| 𝐷 ∶ 𝑓 ∈ 𝐶(𝐾)} ⊂ ℝ
𝐷,    (1) 

i.e., the set of restrictions of continuous functions on Kto D, which is a subspace of the 

countable productof the real line. The space 𝐶𝐷(𝐾) can be identified with the topological 

space (𝐶(𝐾), 𝒯𝐷), where 𝒯𝐷 isthe topology of pointwise convergence on D. 

Now, a separable compact space K is a Rosenthal compactum if, and only if, for any 

countable set Ddense in K, the set 𝐶𝐷 (K) is analytic, cf. [178]. 

We should mention that there are separable compact subspaces of 𝐵1(𝜔
𝜔), which do 

not embed in𝐵1(2
𝜔), , cf. [189]. There are even linearly orderable spaces with such 

properties, see Example (5.1.6). 

Following [178], let us check that for a separable compact space K, the measurable 

space (C(K),Cyl(C(K))) is standard if, and only if, for each countable set D dense in K, 𝐶𝐷 

(K) is a Borel set in ℝ𝐷,cf. [178]. 

Indeed, if D is a countable, dense set in K, under the restriction map 𝐶(𝐾) → ℝ𝐷 the 

preimagesof Borel sets belong to 𝐶𝑦𝑙(𝐶(𝐾)), hence if (𝐶(𝐾), 𝐶𝑦𝑙(𝐶(𝐾))) is standard, so is 

the measurable space(𝐶𝐷(𝐾), Borel(𝐶𝐷(𝐾),))), cf. (1), and therefore, (𝐶𝐷(𝐾),  is a Borel set 

in ℝ𝐷, cf. [82]. 

Conversely, if for each countable set D dense in K, 𝐶𝐷(𝐾) is Borel in ℝ𝐷 , Kis a 

Rosenthal compactumby the Godefroy theorem, hence a Frechet space, and therefore the 

functionals from 𝐶(𝐾)∗areBorel functions on (𝐶(𝐾), ),𝒯𝐷) cf. [178]. In effect, the identity 

(𝐶𝐷(𝐾), 𝐵𝑜𝑟𝑒𝑙(𝐶𝐷(𝐾))) →  (𝐶(𝐾), 𝐶𝑦𝑙(𝐶(𝐾))) 
is an isomorphism of the measurable spaces, and hence the space (𝐶(𝐾), 𝐶𝑦𝑙(𝐶(𝐾)))  is 

standard. 

It is not clear if a compact space K must be separable, whenever the space 

(𝐶(𝐾), 𝐶𝑦𝑙(𝐶(𝐾))) isstandard. 

Having explained background, let us reiterate the open part of the conjecture. 

Problem (5.1.1)[170]: Let K be a separable compact space such that the function space 

equipped with the cylindricalσ-algebra (𝐶(𝐾), 𝐶𝑦𝑙(𝐶(𝐾))) is a standard measurable space. 

Does the compactum K embed in 𝐵1(2
𝜔)? 

Proposition (5.1.2)[170]: Let M be a Borel subspace of a separable completely metrizable 

space, and let K be a compact subspace of 𝐵1(𝑀)  such that, for every 𝑓 ∈ 𝐾 the set of 

discontinuity points of 𝑓 is countable. Then K can be embedded into the subspace of 𝐵1(2
𝜔 

consisting of functions with only countably manydiscontinuities. 

Proof: Let 𝑀1 be the set of all condensation points of the space M. We put𝑀2 = 𝑀 \ 𝑀1 and 

we consider the projections 𝑝𝑖  𝑜𝑓 ℝ
𝑀 𝑜𝑛 𝑡𝑜 ℝ𝑀𝑖for 𝑖 = 1, 2 . The set 𝑀2  is countable, 

therefore the projection𝑝2(𝐾) is metrizable. Since the Banach space 𝐶(2𝜔) is universal for 

the class of all separable metrizablespaces (cf. [45]) and the pointwise topology is weaker 

than the norm topology, we can find anembedding ℎ2 𝑜𝑓 𝑝2(𝐾) into 𝐶𝑝(2
𝜔). 𝐼𝑓 𝑀1 =  ∅then 

we are done. In the opposite case we proceed withthe construction of the required embedding 

as follows. 

Fix a metric ρ in 2𝜔. Let 𝑄 be a countable dense subset of 2𝜔. Then the complement 

𝑃 = 2𝜔 \ 𝑄ishomeomorphic to the space of the irrationals 𝜔𝜔, and therefore we can find a 

continuous injective map 𝜑 of ρ onto 𝑀1 , see [181].We enumerate 𝑄 as { 𝑞𝑛 ∶ 𝑛 ∈ ℕ}and we 
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take a sequence(𝑝𝑛)𝑛∈ℕof distinct points of P such that 𝜌(𝑝𝑛, 𝑞𝑛) < 1/𝑛for n∈ ℕ. For each 

𝑓 ∈ 𝐾define the function 𝑔𝑓 ∶ 2𝜔 → ℝby 

 

𝑔𝑓(𝑥) = {
𝑓(𝜑(𝑥))        𝑖𝑓    𝑥 ∈ 𝑃

  𝑓(𝜑(𝑃𝑛))          𝑖𝑓   𝑥 ∈ 𝑞𝑛 
 

For𝑥 ∈ 2𝜔 . Denote by 𝑁𝑓 the set of all points of discontinuity of f. One can easily verify that 

the function𝑔𝑓 is continuous at every point of the set 𝑃\𝜑−1(𝑁𝑓 ). Hence the set of points of 

discontinuity of 𝑔𝑓 iscountable and it follows that 𝑔𝑓 is of the first Baire class, see [181]. 

Finally, put 𝐶 = 2𝜔 × {1, 2}and define ℎ: 𝐾 → 𝐵1(𝐶) as follows: 

 

ℎ(𝑓)((𝑥, 𝑖)) = {
𝑔𝑓(𝑥)                       𝑖𝑓       𝑖 = 1

ℎ2(𝑃2(𝑓))(𝑥)         𝑖𝑓        𝑖 = 2
 

 

for (𝑥, 𝑖) ∈ 𝐶. Clearly, C is a topological copy of the Cantor set, and a routine verification 

shows that hisan embedding. 

We shall use the following well-known description of the class of separable compact 

linearly ordered spaces. 

Let A be an arbitrary subset of a closed subset K of the unit interval [0, 1]. Put 

𝐾𝐴 = (𝐾 × {0}) ∪ (𝐴 × {1}) 
and equip this set with the order topology given by the lexicographical order (𝑖. 𝑒. , (𝑠, 𝑖) ≺
(𝑡, 𝑗)  if either 𝑠 < 𝑡,  or 𝑠 = 𝑡 and 𝑖 < 𝑗) . Ostaszewski [209] showd that every separable 

compact linearly ordered space is homeomorphic to 𝐾𝐴 for some closed set 𝐾 ⊂ [0, 1] and a 

subset 𝐴 ⊂ 𝐾. 

Proposition(5.1.3)[170]:  Let L be a separable compact linearly ordered space. If, for some 

countable dense𝐷 ⊂ 𝐿, the space 𝐶𝐷(𝐿) is Borel, then L embeds into 𝐵1(2
𝜔). 

Proof:  By the mentioned above result of Ostaszewski we can assume that 𝐿 = 𝐾𝐴  for a 

certain closed set K in [0, 1] and a subset A ⊂ K. By [183] there exists a countable dense 

subset 𝐸 ⊂ 𝐾𝐴containing D, and a countable C ⊂A such that the space 𝐶𝐸(𝐾𝐴) contains a 

closed copy of the set A \ C. Since 𝐾𝐴 is a first countable space, the identity map between 

𝐶𝐷(𝐾𝐴)  and 𝐶𝐸(𝐾𝐴)  (taking, for any 𝑓 ∈ 𝐶(𝐾 ), the restriction 𝑓|𝐷 𝑡𝑜 𝑓|𝐸)  is a Borel 

isomorphism, see the proof of Theorem 2.2 in [182]. Therefore, the space 𝐶𝐸(𝐾𝐴)is Borel, 

and this implies that 𝐴 \ 𝐶 and Aare Borel subsets of [0, 1]. Put 𝑀 = 𝐴 ∪ {2}. We define a 

map 𝜑: 𝐾𝐴 → 𝐵1(𝑀) by 

𝜑((𝑡, 𝑖))(𝑠)

{
 
 

 
 
𝑡         𝑖𝑓 𝑠 = 2,                              
0        𝑖𝑓 𝑠 ∈ 𝐴,   𝑎𝑛𝑑 𝑡 > 𝑠,         
1        𝑖𝑓 𝑠 ∈ 𝐴, 𝑎𝑛𝑑 𝑡 < 𝑠,            
0        𝑖𝑓 𝑡 ∈ 𝐴,   𝑖 = 1, 𝑎𝑛𝑑 𝑡 = 𝑠,
1      𝑖𝑓 𝑡 ∈ 𝐴, 𝑖 = 0, 𝑎𝑛𝑑𝑡 = 𝑠,    

 

for(𝑡, 𝑖) ∈ 𝐾𝐴  and 𝑠 ∈ 𝑀 . A routine verification shows that  𝜑 is continuous and injective, 

hence it is anembedding. For every (𝑡, 𝑖) ∈ 𝐾𝐴 , the function 𝜑((𝑡, 𝑖))(∙) has at most one 

discontinuity point (possibly t, when 𝑡 ∈ 𝐴). Therefore, from Proposition (5.1.2) it follows 

that 𝐾𝐴 embeds into 𝐵1(2
𝜔).  
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Obviously, Proposition (5.1.3) implies the implication (ii) ⇒ (i) in the theorem below. 

As was mentioned, the reverse implication, for all separable compact spaces, can be found in 

[185]. 

Theorem(5.1.4)[170]:  For a separable compact linearly ordered space 𝐿  the following 

conditions are equivalent: 

(i) L embeds in 𝐵1(2
𝜔), 

(ii) the space 𝐶𝐷(𝐿) is Borel for every countable dense 𝐷 ⊂ 𝐿. 

Using Theorem (5.1.4) and [183] one can easily verify the properties of the following 

example. 

Example(5.1.5)[170]: Let A be an analytic non-Borel subset of the unit interval 𝐼 = [0, 1]. 
Then the space 𝐼𝐴  is a separable compact linearly ordered space which is a Rosenthal 

compactum, but does not embed in  𝐵1(2
𝜔). 

Theorem (5.1.4), if 𝐵1(2
𝜔). is linearly ordered, or by a result from [185], in the other case. 

Therefore, the countable product 𝐾 also embeds in 𝐵1(2
𝜔). 

We shall show (varying an approach used by Dennis Burke and in [72]) that for the 

Lebesgue measure λ on [0, 1], the set { 𝑓 ∈ 𝐿∞: ∫ 𝑓𝑑𝜆 > 0 }is not Borel in the topology 

generated on 𝐿∞ by the multiplicative functionals in the dual space (𝐿∞ ). In particular, 

representing the algebra 𝐿∞ as a function space 𝐶(𝐾),  we have 𝐵𝑜𝑟𝑒𝑙(𝐶(𝐾),𝑤𝑒𝑎𝑘)  ≠
 𝐵𝑜𝑟𝑒𝑙(𝐶(𝐾),pointwise). Since 𝐿∞is linearly isomorphic to 𝐶(𝛽𝜔), cf. [186], by the result of 

Talagrand mentioned, we obtain the following example. 

Example(5.1.6)[170]: There exists a compact space Ksuch that 

𝐵𝑜𝑟𝑒𝑙(𝐶(𝐾), 𝑛𝑜𝑟𝑚) ≠ 𝐵𝑜𝑟𝑒𝑙(𝐶(𝐾),𝑤𝑒𝑎𝑘 ≠ 𝐵𝑜𝑟𝑒𝑙(𝐶(𝐾), 𝑝𝑜𝑖𝑛𝑡𝑤𝑖𝑠𝑒). 
Problem (5.1.7)[170]:Let 𝐵𝑜𝑟𝑒𝑙(𝐶(𝐾), 𝑛𝑜𝑟𝑚)  =  𝐵𝑜𝑟𝑒𝑙(𝐶(𝐾),𝑤𝑒𝑎𝑘). Is it true that also 

Borel(C(K), weak) = Borel(C (K), pointwise)? 

If C (K) admits a Kadec (pointwise-Kadec) norm then 𝐵𝑜𝑟𝑒𝑙(𝐶(𝐾), norm) =
Borel(𝐶(𝐾), weak)(Borel(C(K), norm) =Borel(C(K),pointwise)). We do not know of any 

instances where C(K) admits a Kadec norm, but fails to admit a pointwise-Kadec norm, cf. 

[190]. 

Let us notice that in some models of set theory, there are compact spaces 𝐾 such that  

Borel(C (K), norm) = Borel(C (K), weak) = Borel(C(K), pointwise), 

But 𝐶(𝐾) admits no Kadec norm; see [184]. We do not know any such spaces constructed in 

ZFC. 

The above mentioned space K considered in [184] has in addition the property that 

there is a countable dense set 𝐷 in 𝐾 such that the restriction map 𝐶(𝐾) → 𝐶𝐷(𝐾), cf. (1), 

takes norm-Borel sets in C(K) to Borel sets in 𝐶𝐷(𝐾) and vice versa. In particular, Borel(C 

(K), norm)=Cyl(C(K)), cf. [176]. This can be verified by noticing that for the space 𝐾 

discussed in [184], the pointwise Borel sets considered in [184], belong in fact to the 

cylindrical 𝜎-algebra in C(K). 

We shall now pass to a proof of the property of the space 𝐿∞stated at the beginning. We shall 

obtain some stronger results, in a more general setting. Following Oxtoby [188] we shall call 

a nonnegative Radon measure μ on a compact space K a category measure, if μ-null sets 

coincide with meagre sets in K, cf. also [179]. 
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If ν is any non-atomic probability measure and C (K) is a function space representation 

of the algebra 𝐿∞(𝜈), then Kis an extremally disconnected compact space and ν gives rise to a 

non-atomic probability category measure on K, cf. [180].  

Let us recall that in a topological space X, the elements of the smallest σ-algebra in X 

containing open sets and closed under the Souslin operation are called C-sets, cf. [82]. The C-

sets are open modulo meager sets and any preimage of a C-set under a continuous map is a C-

set.  

Let us also recall that a Radon measure ν on a compact space Kis singular with respect 

to a nonnegative Radon measure 𝜇on 𝐾if 𝜈is concentrated on a μ-null set.  

Theorem (5.1.8)[170]:Let 𝜇be a non-atomic probability category measure on an extremally 

disconnected compact space K. Then the set { 𝑓 ∈ 𝐶(𝐾) ∶  ∫ 𝑓𝑑𝜇 > 0 }is not a C-set in the 

topology generated on C(K) by the Radon measures singular with respect to 𝜇.  

Proof: Since 𝜇 is a category measure, the closure of a 𝜇-null set in 𝐾 is μ-null, cf. [188], 

[179]. In particular, a Radon measure on 𝐾 is singular with respect to 𝜇 if and only if its 

support is a 𝜇-null set. 

Let 𝛧 be the collection of closed boundary sets in 𝐾, i.e., the collection of closed μ-null 

sets in K. We shall denote by 𝑇𝑍 the topology in 𝐶(𝐾) whose basic open sets are defined by 

𝒩(𝑓, 𝒵) = { 𝑔 ∈ 𝐶(𝐾) ∶ 𝑓|𝒵 = 𝑔|𝒵 },         𝒵 ∈  𝒵. 
The topology 𝒯𝑍 is stronger than the topology in 𝐶(𝐾)  generated by the Radon 

measures singular with respect to 𝜇. Therefore it is enough to show that  

{ 𝑓 ∈ 𝐶(𝐾) ∶ ∫𝑓𝑑𝜇 > 0 } 𝑖𝑠 𝑛𝑜𝑡 𝑎 𝐶 − 𝑠𝑒𝑡 𝑖𝑛 (𝐶(𝐾), 𝒯𝑍). 

To that end, we shall modify a construction from [72]. Let C be the collection of continuous 

functions 

𝑐 ∶ 𝑈 → {−1, 1} where 𝑈 = 𝑑𝑜𝑚 𝑐 is closed-and-open,  (2) 

Dome being the domain of c. We consider C with the discrete topology and 𝐶ℕ is the 

countable product of C. Let 

ℳ = { (𝑐1, 𝑐2, . . . ) ∈ 𝐶
ℕ ∶ 𝑑𝑜𝑚 𝑐𝑖 ⊂ 𝑑𝑜𝑚 𝑐𝑖+1 , 

  𝜇(𝑑𝑜𝑚 𝑐𝑖)  < 1/3, 𝑐𝑖+1 | 𝑑𝑜𝑚 𝑐𝑖 = 𝑐𝑖},                           (3) 
and let 휀be a subspace of the product of the 𝑠𝑝𝑎𝑐𝑒 (𝐶(𝐾), 𝒯𝒵) and the spaceM, defined by  

휀 = {(𝑓, 𝑐1, 𝑐2, . . . ) ∈ 𝐶(𝐾) ×𝑀: 𝑓 ∶ 𝐾 → {−1, 1}, 𝑓| 
𝑑𝑜𝑚𝑐𝑖  = 𝑐𝑖  𝑓𝑜𝑟 𝑎𝑙𝑙 𝑖 }.                                             (4) 

A key element of our reasoning is the following fact.  

Claim: Let 𝒢1, 𝒢2, . ..be open sets in E, dense in a fixed nonempty open set in 휀. Then there 

exists a continuous function ℎ: 𝐻 → {−1, 1} defined on a closed-and-open set in Kwith 

𝜇(𝐻) ≤ 1/3, and a point (𝑐1, 𝑐2, . . .  ) ∈ ℳsuch that for any continuous f : K → {−1, 1} 

extending ℎ, (𝑓, 𝑐1, 𝑐2, . . . ) ∈ ⋂ 𝒢𝑛𝑛 .Each finite sequence (𝑐1, . . . , 𝑐𝑟) ∈ 𝐶
𝑟 which can be 

extended to a point in M, cf. (3), determines a basic neighborhood in M  

𝒩(𝑐1, . . . , 𝑐𝑟) = {(𝑐1, . . . , 𝑐𝑟 , 𝑐𝑟+1, . . . ): (𝑐1, 𝑐2, . ..  ) ∈ 𝑀},    (5) 
and a convenient base for the topology in E is defined by  

𝒩(𝑓,𝒵, 𝑐1, . . . , 𝑐𝑟) =  (𝒩(𝑓, 𝒵) ×𝒩(𝑐1, . . . , 𝑐𝑟)) ∩ 휀 , 

𝑤ℎ𝑒𝑟𝑒 𝑓| 𝑑𝑜𝑚 𝑐𝑟 = 𝑐𝑟 .                                     (6) 
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To check the claim, we shall define inductively continuous functions 𝑓𝑛 ∶ 𝐾 →
{−1, 1},Sets 𝑍𝑛 ∈ 𝑍, and a sequence 𝑐1, . . . , 𝑐𝑟 , 𝑐𝑟+1, . . . , 𝑐𝑟2 , . . . , 𝑐𝑟𝑛 , . . . , 𝑐𝑟𝑛+1 , . ..  of elements 

of 𝐶 which determines a point in M, cf. (3), such that, cf. (6),  

∅ ≠ 𝒩(𝑓𝑛, 𝑍𝑛, 𝑐1, . . . , 𝑐𝑟𝑛)  ⊂  𝒢𝑛, 𝑍𝑛 ⊂  𝑑𝑜𝑚 𝑐𝑟𝑛 .          (7) 

We shall start from picking a point (𝑓1, 𝑐1, 𝑐2, . . . ) ∈ 𝒢1 and its basic neighborhood  

𝒩(𝑓1, 𝒵, 𝑐2, . . . 𝑐𝑘) ⊂ 𝒢1, 
cf. (6). Since 𝜇(𝑑𝑜𝑚𝑐𝑘) < 1/3and 𝜇(𝑍1) = 0 , one can find a closed-and-open set 𝑉 ⊂
𝐾dom𝑐𝑘, cf. (2), such that 𝑍1\ 𝑑𝑜𝑚𝑐𝑘 ⊂ 𝑉and 𝜇(𝑑𝑜𝑚𝑐𝑘 ∪ 𝑉) < 1/3. Then we can define 

𝑐𝑘+1: 𝑑𝑜𝑚𝑐𝑘 ∪ 𝑉 → {−1, 1}letting 𝑐𝑘+1| 𝑑𝑜𝑚 𝑐𝑘 = 𝑐𝑘  , 𝑐𝑘+1|𝑉 = 𝑓1|𝑉and we set 𝑟1 = 𝑘 +
1. This gives (7), for 𝑛 = 1, cf. (6). 

Suppose that the neighborhood𝒩 = 𝒩(𝑓𝑛, 𝑍𝑛, 𝑐1, . . . , 𝑐𝑟𝑛) has been already defined.  

Then we pick a point (𝑓𝑛+1, 𝑐1, . . . , 𝑐𝑟𝑛 , . . . ) ∈ 𝒩 ∩ 𝒢𝑛+1  its neighborhood 

𝒩(𝑓𝑛+1, 𝑍𝑛+1, 𝑐1, . . . , 𝑐𝑟𝑛 , . . . , 𝑐𝑙) ⊂ 𝒢𝑛+1 and then, as in the first step, we define 

𝑐𝑙+1: 𝑑𝑜𝑚 𝑐𝑙 ∪𝑊 → {−1, 1}, where 𝑊 ⊂  𝐾 𝑑𝑜𝑚 𝑐𝑙is closedand-open, 𝑍𝑛+1\ dom𝑐𝑙⊂W and 

𝜇(𝑑𝑜𝑚𝑐𝑙 ∪𝑊) < 1/3, letting𝑐𝑙+1: | 𝑑𝑜𝑚 𝑐𝑙 = 𝑐𝑙 , 𝑐𝑙+1|𝑊 = 𝑓𝑛 + 1|𝑊, 𝑎𝑛𝑑 𝑤𝑒 𝑠𝑒𝑡 
𝑟𝑛+1 = 𝑙 + 1. This provides (7) for n + 1. 

Having completed the construction of the sets (7), let us consider, cf. (3) and (5), 

𝑈 =⋂𝑑𝑜𝑚

𝑖

𝑐𝑖  𝑎𝑛𝑑 𝑐 ∶  𝑈 → {−1, 1}, 𝑐| 𝑑𝑜𝑚 𝑐𝑖  = 𝑐𝑖 .            (8) 

Since K is extremally disconnected, the closure �̅�is open and c extends continuously over �̅�. 

Moreover,by (3) and (8), 𝜇(𝑈 ≤ 1/3  and since 𝜇(�̅�\ 𝑈)  =  0,  we have𝜇(�̅�)  ≤  1/3 . In 

effect, we get a continuous 

Function 

ℎ: �̅� →  {−1, 1}, ℎ|𝑈 =  𝑐, 𝜇(�̅�)  ≤  1/3.                          (9) 
We shall show that the function h and the point (𝑐1, 𝑐2, . . . ) ∈ 𝑀defined in (7) satisfy the 

conditions of the claim. Let 𝑓 ∶  𝐾 →  {−1, 1}be an arbitrary continuous extension of h. We 

have to make sure that (𝑓, 𝑐1, 𝑐2, . . . ) ∈ ⋂ 𝒢𝑛𝑛 . Since hcoincides with 𝑐𝑖 on its domain, cf. (8), 

(9), so does f, and therefore (𝑓, 𝑐1, 𝑐2, . . . ) ∈ 휀, cf. (4). Moreover, for each 𝑛, 𝑓𝑛 coincides with 

𝑐𝑟𝑛  on its domain, cf. (6), (7), and since𝑍𝑛 ⊂  𝑑𝑜𝑚 𝑐𝑟𝑛  , cf. (7), we have(𝑓, 𝑐1, 𝑐2, . . . ) ∈

𝒩(𝑓𝑛, 𝑍𝑛, 𝑐1, . . . , 𝑐𝑟𝑛) ⊂ 𝒢𝑛, for each n, cf. (6).  

With the claim established, the theorem follows now readily. Let us consider the 

projection, continuous with respect to the topology 𝑇𝑍in C(K), 

𝜋: 휀 → 𝐶(𝐾),     𝜋((𝑓, 𝑐1, 𝑐2, . . . )) = 𝑓,                                (10) 
and let  

𝐸 = {𝑓 ∈ 𝐶(𝐾): 𝑓 ∶ 𝐾 → {−1, 1},∫ 𝑓 𝑑𝜇 > 0 }.                    (11) 

Aiming at a contradiction, assume that Eis a C-set in (𝐶(𝐾), 𝑇𝑍). Then 𝜋−1(𝐸) is a C-set in 휀, 
hence open modulo meager sets in 휀. Therefore, there are open sets 𝒢1, 𝒢2, . . .,dense in some 

nonempty open set in 휀, such that ⋂ 𝒢𝑛𝑛 is either contained in 𝜋−1(𝐸) or it is disjoint from 

𝜋−1(𝐸). Let ℎ: 𝐻 →  {−1, 1}and (𝑐1, 𝑐2, . . . ) ∈ 𝑀be as in the claim, and let us extend hto 

continuous functions𝑓−1, 𝑓1 ∶  𝐾 →  {−1, 1}, setting 𝑓𝑑|𝐾\ 𝐻 ≡ 𝑑 𝑓𝑜𝑟 𝑑 ∈ {−1, 1}. Then, for 

any 𝑑 ∈ {−1, 1}, (𝑓𝑑 , 𝑐1, 𝑐2, . . . ) ∈ ⋂ 𝒢𝑛𝑛  and there fore either both functions 𝑓−1, 𝑓1 are in E 
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or both are in 𝐶(𝐾)\𝐸, cf. (10). However, since 𝜇(𝐻) ≤ 1/3, 𝑓−1 𝑑𝜇 < 0 𝑎𝑛𝑑 ∫ 𝑓1  𝑑𝜇 >0, 

and we reached a contradiction with (11). 

To complete the proof it is enough to notice that the set Ein (11) is an intersection of 

the set {𝑓 ∈ 𝐶(𝐾) ∶ ∫ 𝑓 𝑑𝜇 > 0 } and the set {𝑓 ∈  𝐶(𝐾): 𝑓 ∶ 𝐾 → {−1, 1}} , closed in 

(𝐶(𝐾), 𝑇𝑍), hence the firstof these sets is not a C-set in (𝐶(𝐾), 𝑇𝑍), and it is not a 𝐶-set in the 

topology on C(K) generated by the Radon measures singular with respect to 𝜇, which is 

weaker than 𝑇𝑍. 
Since, moreover, Bus of weight  2ℵ0 , this shows that 𝐵𝑜𝑟𝑒𝑙 (𝐶(𝑇), 𝑛𝑜𝑟𝑚) ≠

𝐵𝑜𝑟𝑒𝑙(𝐶(𝑇 ), weak), cf. [72].  

It is an open problem if the Borel structures in C(K) coincide for separable Rosenthal 

compacta. Thisis true if, in addition, 𝐾 ⊂ 𝐵1(𝜔
𝜔)  consists of functions with at most 

countably many discontinuity points—in fact, as showd by Haydon, Moltó, and Orihuela 

[180], in this caseC (K) admits a pointwise-Kadecnorm. It is not known whether this is still 

true if one retains the restriction on discontinuity points of elements of 𝐾 ⊂ 𝐵1(𝜔
𝜔), but 

drops the separability assumption; cf. [186]. 

Section (5.2): Spaces of Continuous Functions 

We denote by 𝜔the set of all natural numbers{0, 1, 2, . . . }. Any 𝑛 ∈ 𝜔 is often regarded 

as the set {0, 1, . . . , 𝑛 − 1}. 
Let K be a compact space (all our topological spaces are Hausdorff), let C(K) be the Banish 

space of all continuous real-valued functions on K and let 𝑀(𝐾)  = 𝐶(𝐾)∗ be space of all 

Radon (signed) measures on K. The M(K) is equipped with the 𝑤𝑒𝑎𝑘∗topology (denoted by 

𝑤∗for short) unless otherwise stated. 

We denote by 𝑀+(𝐾) (resp. P (K)) the subset of M (K) made up of all Radon non-negative 

(resp. probability) measures on K. For every 𝑡 ∈ 𝐾  we denote by 𝛿𝑡 ∈ 𝑃(𝐾)  the Dirac 

measure at t. We shall write 𝑐𝑜Δ𝐾 for the convex hull of the set 𝛥𝐾 ∶=  {𝛿𝑡 ∶  𝑡 ∈  𝐾}in 

𝑀(𝐾).given a set 𝐴 ⊆ 𝑀(𝐾). We denote by Esq. (A) the sequential closure of A in 𝑀(𝐾), 
that is, the smallest subset of M (K) that contains A and is closed under limits of 

𝑤∗ −convergent sequences. The sequential closure is obtained by a transfinite procedure as 

follows. Define 𝑆𝑒𝑞0(𝐴) ∶=  𝐴,and let 𝑆𝑒𝑞𝛼+1(𝐴) be the set of all limits of 𝑤∗-convergent 

sequences in 𝑆𝑒𝑞𝛼(𝐴),  and let𝑆𝑒𝑞𝛼(𝐴) ∶=  ⋃ 𝑆𝑒𝑞𝛽𝛽<𝛼 (𝐴)  whenever 𝛼 is a limit ordinal. 

Then 𝑆𝑒𝑞(𝐴) =  𝑆𝑒𝑞𝜔1(𝐴),where 𝜔1stands for the first uncountable ordinal. The set 𝑐𝑜∆𝐾is 

𝑤∗ -dense in 𝑃(𝐾)  (just apply the Hahn-Banach theorem). For an arbitrary 𝜇 ∈ 𝑃(𝐾),  a 

classical result (see [207]) states that 𝜇 ∈ 𝑆𝑒𝑞1(𝑐𝑜∆𝐾) if andonly if μ admits a uniformly 

distributed sequence, i.e. a sequence {𝑡 𝑛}𝑛∈𝜔 in 𝐾 such that {
1

𝑛
∑ 𝛿𝑡𝑖𝑖<𝑛 }

𝑛∈𝜔
 is 𝜔∗-convergent 

to μ. There is a number of well-studied classes of compact spaces K on which every Radon 

probability measure admits a uniformly distributed sequence or, equivalently, the equality 

𝑆𝑒𝑞1(𝑐𝑜∆𝐾) =  𝑃(𝐾)                                                             (12) 
Holds true. Indeed, K has such a property whenever it is metrizable, Eberlein, Rosenthal, 

Radon-Nikod�́�m or a totally ordered compact line (see [206]). The space K = 2cenjoys that 

property as well [201], where c stands for the cardinality of the continuum. The Stone space 

K of a minimally generated Boolean algebra satisfies Seq (𝑐𝑜∆𝐾) = P (K) (see [196]) and, in 

fact, this result can be strengthen to saying that equality (12) holds.  
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Under the Continuum Hypothesis, we present a construction of a compact 0-

dimensional space K such that 

𝑆𝑒𝑞1(𝑐𝑜∆𝐾)  ≠ 𝑆𝑒𝑞(𝑐𝑜∆𝐾)  =  𝑃(𝐾) 
(see Theorem(5.2.8) Our example has some features of an L-space constructed in [203] and 

related constructions given in [209]. In fact, the compact space K of Theorem (5.2.8) satisfies 

𝑆𝑒𝑞1(𝑐𝑜∆𝐾)  ≠ 𝑆𝑒𝑞
2(𝑐𝑜∆𝐾) and  𝑆𝑒𝑞3(𝑐𝑜∆𝐾)  =  𝑃(𝐾) . Along this way, it was recently 

shown in [197] (without additional set-theoretic assumptions) that for every ordinal  

1 ≤ 𝛼 < 𝜔1 There is a compact space 𝐾(𝛼)such that  

𝑆𝑒𝑞𝛼(𝑐𝑜∆𝐾(𝛼)) ∖⋃ 𝑆𝑒𝑞𝛽(𝑐𝑜∆𝐾(𝛼))

𝛽<𝛼

≠ ∅ 

 

and 𝑆𝑒𝑞𝛼+1(𝑐𝑜∆𝐾(𝛼)) = 𝑆𝑒𝑞(𝑐𝑜∆𝐾(𝛼)) ≠ 𝑃(𝐾
(𝛼)). 

Our interest on these questions is somehow motivated by their connection with the 

study of Baire measurability in the space C (K). Namely, if 𝐶𝜌(𝐾) (resp. 𝐶𝜔(𝐾)) stands for 

𝐶(𝐾)  equipped with the pointwise convergence (resp. weak) topology, then the 

corresponding Baire 𝜎-algebras satisfy 

Ba(𝐶𝜌(𝐾))  ⊆ Ba(𝐶𝜔(𝐾)). 

It is well-known (see [174]) that Ba(𝐶𝑃(𝐾)) is generated by ∆𝐾, while Ba(𝐶𝜔(𝐾)) is 

generated by P(K). Thus, the equality  

Ba(𝐶𝑃(𝐾)) =  Ba(𝐶𝜔(𝐾))                                             (13) 
Holds true whenever𝑆𝑒𝑞(𝑐𝑜∆𝐾)  =  𝑃(𝐾), and this is the case for many spaces as we pointed 

out above. The compact space of Theorem (5.2.8) makes clear that equalities (12) and (13) 

are not equivalent. We pay further attention to (13) and that it fails for 𝐾 =  𝛽𝜔 and 𝐾 =
 𝛽𝜔  \𝜔 (Theorem (5.2.5) and Corollary (5.2.11). 

We write 𝒫(𝑆)to denote the power set of any set S. Given a Boolean algebra  𝔄 by a 

‘measure’ on 𝔄we mean a bounded finitely additive measure. The Stone space of all ultra 

filters on 𝔄 is denoted by ULT (𝔄). Recall that the Stone isomorphism between 𝔄and the 

algebra Clop (ULT (𝔄)) of clopen subsets of ULT (𝔄) is given by 

𝔄 →  𝐶𝑙𝑜𝑝(𝑈𝐿𝑇(𝔄)),     𝐴 ↦  �̂�  =  {𝐹 ∈  𝑈𝐿𝑇(𝔄) ∶  𝐴 ∈  𝐹}. 
Every measure μ on 𝔄 induces a measure �̂�   ↦  𝜇(𝐴)  on Clop (ULT (𝔄 )) which can 

beuniquely extended to a Radon measure on ULT (𝔄) (see e.g. [211]); such Radon measure is 

still denoted by the same letter μ. We shall need the following useful fact about extensions of 

measures. 

Lemma (5.2.1)[194]: ([204], [208]).𝐿𝑒𝑡  𝑒′ ⊇ 𝔅Be Boolean algebras and let μ be a measure 

on𝔅. Then μ can be extended to a measure𝑣 𝑜𝑛 𝑒′such that𝑖𝑛𝑓{𝑣(𝐶 △ 𝐵) ∶  𝐵 ∈ 𝔅}  =
 0  𝑓𝑜𝑟 𝑒𝑣𝑒𝑟𝑦 𝐶 ∈ 𝑒′ . 

A compact space K such that 𝑆𝑒𝑞1(𝑐𝑜∆𝐾)  ≠ 𝑆𝑒𝑞(𝑐𝑜∆𝐾)  =  𝑃(𝐾)For the sake of the 

construction we first note the following two lemmas. We denote by span∆𝐾the linear span of 

∆𝐾in M (K). 

Lemma(5.2.2)[194]:.Let K be a compact space and let𝜇 ∈ 𝑆𝑒𝑞𝛼(𝑠𝑝𝑎𝑛∆𝐾)for some𝛼 < 𝜔1.  
𝐼𝑓 𝜑 ∈ 𝐶(𝐾)and𝑣 ∈ 𝑀(𝐾)is defined by 
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𝑣(Ω) ≔ ∫ 𝜑𝑑𝜇
Ω

      𝑓𝑜𝑟 𝑒𝑣𝑒𝑟𝑦 𝐵𝑜𝑟𝑒𝑙 𝑠𝑒𝑡 Ω ⊆ 𝐾, 

Then 𝑣 ∈ 𝑆𝑒𝑞𝛼(𝑠𝑝𝑎𝑛 ∆𝐾)  as well. The same statement holds if span  ∆𝐾 is replaced by 

𝑀+(𝐾) ∩ 𝑠𝑝𝑎𝑛 ∆𝐾 and 𝜑 ≥ 0. 
Proof: We proceed by transfinite induction. The case 𝛼 =  0 being obvious, suppose that 

1 ≤ 𝛼 < 𝜔1and that the statement is valid for all ordinals 𝛽 <  𝛼. There is nothing to show 

if 𝛼 is a limit ordinal, so assume that 𝛼 =  𝜉 +  1  for some 𝜉 < 𝜔1 . Fix a sequence 

{𝜇𝑛}𝑛∈𝜔𝑖𝑛 𝑆𝑒𝑞
𝜉(𝑠𝑝𝑎𝑛 Δ𝐾) which is 𝑤∗ -convergent to μ. For every 𝑛 ∈ 𝜔we define 𝑣𝑛 ∈

𝑀(𝐾) 𝑏𝑦 𝑣𝑛(Ω) ∶=  ∫ 𝜑𝑑𝜇𝑛 Ω
for every Borel setΩ ⊆ 𝐾, so that 𝑣𝑛 ∈ 𝑆𝑒𝑞

𝜉(𝑠𝑝𝑎𝑛 Δ𝐾) by the 

inductive hypothesis. Clearly, for every 𝑔 ∈ 𝐶(𝐾) we have  

lim
𝑛
∫ 𝑔𝑑𝑣𝑛 = lim

𝑛
∫ 𝑔𝜑𝑑𝜇𝑛 = ∫ 𝑔𝜑𝑑𝜇 = ∫  𝑔𝑑𝑣

𝐾𝐾𝐾𝐾

 

 

that is, {𝑣𝑛}𝑛∈𝜔𝑖𝑠 𝑤
∗-convergent tov. Thus 𝑣 ∈ 𝑆𝑒𝑞𝜉+1(𝑠𝑝𝑎𝑛 Δ𝐾).  

Lemma (5.2.3)[194]:  Let K be a compact space and let 𝜇 ∈ 𝑆𝑒𝑞𝛼(𝑐𝑜Δ𝐾) for some 𝛼 < 𝜔1. 

If 𝑣 ∈ 𝑀(𝐾) is absolutely continuous with respect to μ, then 𝑣 ∈ 𝑆𝑒𝑞𝛼+1(𝑠𝑝𝑎𝑛 Δ𝐾).If in 

addition 𝑣 ∈ 𝑀+(𝐾), then 𝑣 ∈ 𝑆𝑒𝑞𝛼+1(𝑀+(𝐾)  ∩ 𝑠𝑝𝑎𝑛 Δ𝐾). 
Proof: Let 𝜑 ∶  𝐾 → ℝbe the Radon-Nikod �́�m derivative of v with respect to μ. Fix a 

sequence {𝜑𝐾}𝑘∈𝜔𝑖𝑛 𝐶(𝐾) such that 𝑙𝑖𝑚𝑘 ∫ |𝜑 − 𝜑𝑘|𝐾
𝑑𝜇 =  0. for every 𝑘 ∈ 𝜔we define 

𝑣𝑘 ∈ 𝑀(𝐾) 𝑏𝑦 𝑣𝑘(Ω) ∶=  ∫ 𝜑𝑘𝑑𝜇Ω
for every Borel setΩ ⊆ 𝐾 . Since each 𝑣𝑘 belongs to 

𝑆𝑒𝑞𝛼(𝑠𝑝𝑎𝑛 Δ𝐾) (by Lemma (5.2.2) and {𝑣 𝑘}𝑘∈𝜔𝑖𝑠 𝑤
∗ −convergent to v(in fact, it is norm 

convergent in M(K)), it follows that 𝑣 ∈ 𝑆𝑒𝑞𝛼+1(𝑠𝑝𝑎𝑛 ∆𝐾).  For the last assertion, just 

observe that 𝜑 and the 𝜑𝑘
   ,𝑆 can be chosen non-negative if 𝑣 ∈ 𝑀+(𝐾).  

We shall deal with the space 𝑋 ∶= 𝜔 × 2𝜔,where 2𝜔 = {0, 1}𝜔the Cantor set is. For 

any set B ⊆X and 𝑛 ∈ 𝜔 we write 𝐵|𝑛: =  {𝑡 ∈ 2
𝜔: (𝑛, 𝑡)  ∈ 𝐵}.  Let 𝜆 denote the usual 

product probability measure on (the Boral 𝜎-algebra of) 2𝜔. 

We will construct algebra𝔄 ⊆ 𝒫(𝑋)such that the Stone space 𝐾 =  𝑈𝐿𝑇(𝔄)satisfies 

the required properties. Let 𝔄0be the algebra of subsets of X generated by the products of the 

form A×C where 𝐴 ⊆ 𝜔is either finite or cofinite and 𝐶 ∈ 𝐶𝑙𝑜𝑝(2𝜔). 
Clearly,𝔄0is admissible in the sense of the following definition: 

Definition (5.2.4)[194]: We say that a set B⊆X is admissible if 𝐵|𝑛 ∈ 𝐶𝑙𝑜𝑝(2
𝜔) for all 𝑛 ∈

𝜔and 𝑙𝑖𝑚𝑛𝜆(𝐵|𝑛) exists. In such a case, we write 

𝜇(𝐵) ∶=  lim
𝑛
𝜆(𝐵|𝑛) 

We say that an algebra 𝔅 ⊆ 𝒫(𝑋)is admissible if every 𝐵 ∈ 𝔅is admissible. 

Lemma(5.2.5)[194]: Let 𝔅 ⊆ 𝒫(𝑋)be a countable admissible algebra and let  

𝒟 ⊆ 𝔅. Then there is a set A ⊆X such that: 

(i) The algebra generated by𝔅 ∪ {𝐴}is admissible; 

(ii) For every𝐷 ∈ 𝒟we have𝐷|𝑛 ⊆ 𝐴|𝑛for all but finitely many𝑛 ∈ 𝜔 ; 

(Iii)𝜇(𝐴)  ≤ ∑ 𝜇(𝐷)𝐷∈𝒟 . 

Proof: Let {𝐵𝑗: 𝑗 ∈ 𝜔} 𝑎𝑛𝑑 {𝐷𝑗: 𝑗 ∈ 𝜔}be enumerations of 𝔅and𝒟, respectively. 
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For every 𝑘 ∈ 𝜔, we denote by 𝔅𝑘 ⊆  𝒫(𝑋) the finite algebra generated by the collection 

{𝐵𝑗: 𝑗 ≤ 𝑘}  ∪  {𝐷𝑗: 𝑗 ≤ 𝑘}and we set ˜ �̃�𝑘: =  𝐷0 ∪. ..  ∪ 𝐷𝑘 ∈ 𝔅𝑘.  by the admissibility of 

𝔅we can define a strictly increasing function 𝑔 ∶  𝜔 → 𝜔such that for every 𝑘 ∈ 𝜔and 𝑛 ≥
𝑔(𝑘)we have  

|𝜇(𝐶) − 𝜆(𝐶|𝑛)| ≤
1

𝑘 + 1
       𝑓𝑜𝑟 𝑎𝑙𝑙   𝐶 ∈ 𝔅𝑘                      (14) 

Define a set A⊆X by declaring that 

𝐴|𝑛: =  (�̃�𝑘)|𝑛 whenever𝑔(𝑘)  ≤ 𝑛 <  𝑔(𝑘 +  1)  

and 𝐴|𝑛 ∶=  ∅ 𝑖𝑓 𝑛 <  𝑔(0). Clearly, A satisfies (ii).  

To show (i), notice first that every element B of the algebra 𝔅′generated by 𝔅 ∪ {𝐴} is 

of the form 𝐵 =  (𝐵𝑗 ∩ 𝐴) ∪ (𝐵𝑖\ 𝐴)  where 𝑖, 𝑗 ∈ 𝜔.  since 𝔅 is admissible and 𝐴|𝑛 ∈

𝐶𝑙𝑜𝑝(2𝜔)  for every 𝑛 ∈ 𝜔 , we have 𝐵|𝑛 ∈ 𝐶𝑙𝑜𝑝(2
𝜔)  for every 𝑛 ∈ 𝜔 to show the 

admissibility of B it suffices to check that the sequences{𝜆 ((𝐵𝑗 ∩ 𝐴)|𝑛)}𝑛∈𝜔
are Cauchy, 

because 

𝜆(𝐵|𝑛) = 𝜆 ((𝐵𝑗 ∩ 𝐴)|𝑛) + 𝜆(
(𝐵𝑖 ∖ 𝐴)|𝑛) = 𝜆 ((𝐵𝑗 ∩ 𝐴)|𝑛) + 𝜆(

(𝐵𝑖)|𝑛) − 𝜆 ((𝐵𝑗 ∩ 𝐴)|𝑛) 

for every 𝑛 ∈ 𝜔.  𝐹𝑖𝑥 휀 >  0. Since μ is a probability measure on 𝔅, the sequence{𝜇(𝐵𝑗 ∩

�̃�𝑘))}𝑘∈𝜔is increasing and bounded and there is 

𝑘 0 ∈ 𝜔 Such that 

𝜇(𝐵𝑗 ∩ �̃�𝑘\ �̃�𝑘0) ≤ 휀 whenever 𝑘 ≥ 𝑘0.                 (15) 

Of course, we can assume further that 𝑘0 ≥ 𝑗 and 
1

𝑘0+1
≤ 휀. Take any 𝑛 ≥ 𝑔(𝑘0). 

Then 𝑔(𝑘)  ≤  𝑛 <  𝑔(𝑘 +  1) for some k ≥  𝑘0, hence (𝐵𝑗 ∩  𝐴)|𝑛  =  (𝐵𝑗 ∩ �̃�𝑘)|𝑛 and so 

|𝜆 ((𝐵𝑗 ∩  𝐴)|𝑛) − 𝜇(𝐵𝑗 ∩ �̃�𝑘0)| = |𝜆 ((𝐵𝑗 ∩ �̃�𝑘)|𝑛) − 𝜇(𝐵𝑗 ∩ �̃�𝑘0)|

≤ |𝜆 ((𝐵𝑗 ∩ �̃�𝑘)|𝑛) − (𝐵𝑗 ∩ �̃�𝑘)| + (𝐵𝑗 ∩ �̃�𝑘 ∖ �̃�𝑘0) ≤
1

𝑘 + 1
+ 휀

≤ 2휀,                                                                                                                           (16) 

By (14) and (15). It follows that |𝜆 ((𝐵𝑗 ∩ 𝐴)|𝑛) − 𝜆 ((𝐵𝑗 ∩ 𝐴)|𝑚)| ≤ 4휀 

Whenever 𝑛,𝑚 ≥ 𝑔(𝑘0).this s that the sequence {𝜆 ((𝐵𝑗 ∩ 𝐴)|𝑚)}𝑛∈𝜔
 

is Cauchy. 

Finally,(iii) follows from the argument above by choosing  

𝑗 ∈ 𝜔  𝑤𝑖𝑡ℎ 𝐵𝑗 = 𝑋.Indeed, by taking limits in (16) when 𝑛 →  ∞we get |𝜇(𝐴) − 𝜇(�̃�𝑘0)| ≤

2휀  and so 

 

𝜇(𝐴) ≤ 2휀 + 𝜇(�̃�𝑘0) ≤ 2휀 + ∑ 𝜇(𝐷𝑖)

𝑖≤𝑘0

≤ 2휀 +∑𝜇(𝐷𝑖)

𝑖∈𝜔

 

𝐴𝑠휀 > 0 is arbitrary, we have 𝜇(𝐴) ≤ ∑ 𝜇(𝐷𝑖)𝑖∈𝜔  and the proof is over.  

Given an admissible algebra 𝔅 ⊆ 𝑃(𝑋), we write 𝒩(𝔅) to denote the collection of all 

decreasing sequences {𝐵𝑘}𝑘∈𝜔 in 𝔅 such that 𝑙𝑖𝑚𝑘𝜇 (𝐵𝑘) = 0. 
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Lemma (5.2.6)[194]: Let 𝔅 ⊆ 𝒫(𝑋)  be a countable admissible algebra, 𝑆 ⊆ 𝒩(𝔅) a 

countable collection and 휀 > 0. Then there is a set A ⊆X such that: 

(i) The algebra generated by 𝔅 ∪ {𝐴}is admissible; 

(ii) For every {𝐵𝑘}𝑘∈𝜔 ∈  𝑆there 𝑖𝑠  𝑘0 ∈ 𝜔such that 

(𝐵𝑘0)|𝑛 ⊆ 𝐴|𝑛 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑏𝑢𝑡 𝑓𝑖𝑛𝑖𝑡𝑒𝑙𝑦 𝑚𝑎𝑛𝑦 𝑛 ∈ 𝜔; 

(iii) 𝜇(𝐴) ≤ 𝜔. 
In this case we say that S is 휀-captured by A. 

Proof: Enumerate 𝑆 = {{𝐵𝑘
𝑗
}𝑘∈𝜔: 𝑗 ∈ 𝜔}. for every 𝑗 ∈ 𝜔 we can pick 𝑘(𝑗) ∈ 𝜔 smuch 

that  𝜇(𝐵𝑘(𝑗)
𝑗
)  ≤  휀/2𝑗+1 . Now it suffices to apply Lemma (5.2.5) to the collection  𝒟:=

 {𝐵𝑘(𝑗)
𝑗

∶  𝑗 ∈ 𝜔}. 

Lemma (5.2.7)[194]:Let𝔅 ⊆ 𝒫(𝑋) be an admissible algebra containing 𝔄0. Let{𝑣𝑘}𝑘∈𝜔be a 

sequence of probability measures on P(X) such that: 

(i) Each𝑣𝑘 is supported by a finite subset of X; 

(ii) 𝑙𝑖𝑚𝑘𝑣𝑘(𝐵)  =  𝜇(𝐵) 𝑓𝑜𝑟 𝑒𝑣𝑒𝑟𝑦 𝐵 ∈ 𝔅.  

Let 𝐵0 ∈ 𝔅besuch that 𝜇(𝐵0)  >  0. Then there is 𝐴 ⊆ 𝐵0such that the algebra generated by 

𝔅 ∪ {𝐴}is admissible and {𝑣𝑘(𝐴)}𝑘∈𝜔does not converge to μ (A). 

Proof: For every 𝑘 ∈ 𝜔  we fix a finite set 𝑆𝑘 ⊆ 𝑋 such that𝑣𝑘(𝑆1) = 1 . We begin by 

choosing two strictly increasing sequences in𝜔, say {𝑛𝑗}𝑗∈𝜔and {𝑘𝑗}𝑗∈𝜔 ,such that 𝑛0 = 𝑘0 =

0and for every 𝑗 ∈ 𝜔 we have: 

(a) 𝑣𝑘+1(𝑅𝑗 ∩ 𝐵0) > 𝜇(𝐵0) ∕ 2, where 𝑅𝑗 ≔ (𝜔 ∖ 𝑛𝑗) × 2
𝜔 ∈ 𝔄0; 

(b) 𝑆𝑘𝑗+1 ⊆ 𝑛𝑗+1 × 2
𝜔. 

This can be done by induction. Indeed, given 𝑛𝑗 , 𝑘𝑗 ∈ 𝜔, the conditions 

lim
𝑘
𝑣𝑘 (𝑅𝑗) = 𝜇(𝑅𝑗) = 1  𝑎𝑛𝑑  lim 

𝑘
 𝑣𝑘 (𝐵0) = 𝜇(𝐵0) > 0 

Ensure the existence of𝑘𝑗+1 > 𝑘𝑗 for which (a) holds; then we choose 𝑛𝑗+1 > 𝑛𝑗satisfying (b) 

(bear in mind that 𝑆𝑘𝑗+1is finite). 

Fix 𝑛 ∈ 𝜔. 𝑇𝑎𝑘𝑒 𝑗 ∈ 𝜔  such that 𝑛𝑗 ≤  𝑛 < 𝑛𝑗+1. since 𝜆  is atomless and (𝐵0 ∩ 𝑆𝑘𝑗+1)|𝑛  is 

finite, there is 𝐶𝑛 ∈ 𝐶𝑙𝑜𝑝(2
𝜔) such that 

   (𝐵0 ∩ 𝑆𝑘𝑗+1)|𝑛 ⊆ 𝐶𝑛 ⊆ (𝐵0)|𝑛                   (17) 

and 

𝜆(𝐶𝑛) ≤
1

𝑗 +  1
                                                       (18) 

Now, define a set 𝐴 ⊆ 𝐵0  by declaring that 𝐴|𝑛 ∶= 𝐶𝑛  for every 𝑛 ∈ 𝜔.We claim that A 

satisfies the required properties. Note that the algebra 𝔅′generated by 𝔅 ∪ {𝐴} is made up of 

all sets of the form (𝐵1 ∩  𝐴)  ∪  (𝐵2\ 𝐴) where 𝐵1, 𝐵2 ∈ 𝔅. Thus, since 𝔅 is admissible and 

𝐴|𝑛 ∈   𝐶𝑙𝑜𝑝(2
𝜔) for every 𝑛 ∈ 𝜔, we also have 𝐵|𝑛 ∈ 𝐶𝑙𝑜𝑝(2

𝜔)for every 𝐵 ∈ 𝔅′  and 𝑛 ∈

𝜔. on the other hand, (18) implies that lim𝑛𝜆(𝐴|𝑛) = 0, 

Hence 𝜇(𝐴) = 0 and for any 𝐵1, 𝐵2 ∈ 𝔅 there exists the limit 

 

lim
𝑛
𝜆 (((𝐵1 ∩ 𝐴) ∪ (𝐵2 ∖ 𝐴))|𝑛) = 𝜇

(𝐵2) 
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This shows that 𝔅′is admissible.  

On the other hand, we claim that for every 𝑗 ∈ 𝜔 we have  

𝑅𝑗 ∩ 𝐵0 ∩ 𝑆𝑘𝑗+1 ⊆ 𝐴 ∩ 𝑆𝑘𝑗+1 .                               (19) 

Indeed, take 𝑛 ∈ 𝜔 If either 𝑛 < 𝑛𝑗or𝑛 ≥ 𝑛𝑗+1, then (𝑅𝑗 ∩ 𝐵0 ∩ 𝑆𝑘𝑗+1)|𝑛 =  ∅ (bear in mind 

(b)). If 𝑛𝑗 ≤ 𝑛 < 𝑛𝑗+1, then (17) implies that (𝑅𝑗 ∩ 𝐵0 ∩ 𝑆𝑘𝑗+1)|𝑛 ⊆ (𝐴 ∩ 𝑆𝑘𝑗+1)|𝑛. 

This shows the inclusion (19). 

It follows that for every 𝑗 ∈ 𝜔 we have 

𝑣𝑘𝑗+1(𝐴) = 𝑣𝑘𝑗+1 (𝐴 ∩ 𝑆𝑘𝑗+1) ≥
(2.6) 𝑣𝑘𝑗+1 (𝑅𝑗 ∩ 𝐵0 ∩ 𝑆𝑘𝑗+1) = 

      𝑣𝑘𝑗+1(𝑅𝑗 ∩ 𝐵0) >
(𝑎) 𝜇(𝐵0)

2
> 0. 

Hence the sequence {𝑣𝑘(𝐴)}𝑘∈𝜔does not converge to 𝜇(𝐴)  =  0. 
After those preparations we are ready for the main result. 

Theorem (5.2.8)[194]: Assuming CH there is a compact space K such that 

𝑆𝑒𝑞1(𝑐𝑜∆𝑘) ≠  𝑆𝑒𝑞(𝑐𝑜∆𝑘)  =  𝑃(𝐾). 

Proof: Let {{𝑣𝑘
𝜉
}𝑘∈𝜔 ∶ 𝜉 < 𝜔1} be the collection of all sequences of non-negative measures 

on 𝒫(𝑋) which are supported by a finite subset of 𝑋. Weshall construct by induction an 

increasing transfinite collection of countable admissible algebras {𝔄𝜉 ∶  𝜉 < 𝜔1} of subsets 

of X. We start from the algebra 𝔄0  already definedand for any limit ordinal 𝜉 < 𝜔1  we 

simply set 𝔄𝜉 ∶= ⋃ 𝔄𝜂𝜂<𝜉 . 

For the successor step of the induction, let 𝜉 < 𝜔1 and suppose we have already 

constructed the algebras {𝔄𝜂  : 𝜂 ≤ 𝜉}. For every 𝜂 ≤ 𝜉 we enumerate 𝒩(𝔄𝜂) as {𝑆(𝜂, 𝛼) ∶

 𝜂 < 𝜔1}. Lemma (5.2.6) applied to the countable collection 

𝑆(𝜉) ≔ {𝑆(𝜂, 𝛼) ∶  𝜂, 𝛼 < 𝜉} ⊆ 𝒩(𝔄𝜉) 

ensures the existence of a set 𝐴(𝜉 2) ⊆ 𝑋 such that 𝑆(𝜉) is (1/2)-captured by 𝐴(𝜉, 2). Since 

the algebra generated by 𝔄𝜉 ∪ {𝐴(𝜉, 2)} is admissible, we can apply again Lemma (5.2.6) to 

that algebra to find a set 𝐴(𝜉, 3) ⊆ 𝑋such that 𝑆(𝜉)  is (1/3)-captured by 𝐴(𝜉, 3)  and the 

algebra generated by 𝔄𝜉 ∪ {𝐴(𝜉, 2), 𝐴(𝜉, 3)} is admissible. Continuing in this manner we 

obtain a sequence {𝐴(𝜉, 𝑗) ∶ 𝑗 ≥ 2}of subsets of X such that: 

(a) 𝑆(𝜉) is (1/j)-captured by 𝐴(𝜉, 𝑗) for all 𝑗 ≥ 2; 

(b) The algebra �̅�𝜉generated by 𝔄𝜉and thefamily{𝐴(𝜉, 𝑗) ∶ 𝑗 ≥ 2} is admissible. 

We now define a set 𝐴(𝜉, 1) ⊆ 𝑋by distinguishing two cases:   

(A) If lim𝑘𝑣𝑘
𝜉(𝐵) = 𝜇(𝐵) for every 𝐵 ∈ �̅�𝜉 , then we can apply Lemma (5.2.6) to find a set 

𝐷𝜉 ⊂ 𝑋 𝐴(𝜉, 2)  such that the algebra generated by �̅�𝜉 ∪ {𝐷𝜉} is admissible and 

{𝑣𝑘
𝜉
(𝐷𝜉)}𝑘∈𝜔does not converge to 𝜇(𝐷𝜉). Set 𝐴(𝜉, 1) ≔  𝑋 𝐷𝜉 . 

(B) Otherwise, we set 𝐴(𝜉, 1) ∶=  𝐴(𝜉, 2). 
We now conclude the successor step by letting 𝔄𝜉+1  be the countable algebra 

generated by 𝔄𝜉 and the family {𝐴(𝜉, 𝑗) ∶ 𝑗 ≥ 1}. Observe that 𝔄𝜉+1is admissible. Define an 

admissible algebra 𝔄 ⊆ 𝒫(𝑋) by ⋃ 𝔄𝜉𝜉<𝜔1 . 

Note that𝔄 has thefollowing properties: 
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(i) For every countable collection 𝑆 ⊆ 𝒩(𝔄) and every 휀 > 0 there is 𝐴 ∈ 𝔄such that Sis 휀-
captured by A; 

(ii) For every sequence {𝐵𝑘}𝑘∈𝜔 ∈ 𝒩(𝔄) there exists 𝜉0 < 𝜔1such that for every 𝜉0 ≤ 𝜉 <
𝜔1 and every j ≥ 1 there is 𝑘 ∈ 𝜔 such that (𝐵𝑘)|𝑛 ⊆ 𝐴(𝜉, 𝑗)|𝑛for all but finitely many 𝑛 ∈ 𝜔. 

Indeed, these facts follow from property (a) above, bearing in mind that any countable 

collection 𝑆 ⊆ 𝒩(𝔄) is contained in 𝑆(𝜉0) for some 𝜉0 < 𝜔1 

II. Introducing the compact space K. We now consider the compact space 𝐾 = 𝑈𝐿𝑇(𝔄). Let 

𝐾∗ ⊆ 𝐾 be the set of all ultrafilters that contain no set of the form {𝑛} × 2𝜔. We claim that 

every ℱ ∈ 𝐾 \ 𝐾∗is of the form 𝐹𝓍 ∶= {𝐴 ∈ 𝔄 ∶ 𝑥 ∈ 𝐴}for some𝑥 ∈ 𝑋. Indeed, if ℱcontains 

{𝑛} × 2𝜔. 
For some 𝑛 ∈ 𝜔,  then the collection {𝐴|𝑛 ∶ 𝐴 ∈ ℱ}is an ultrafilter on 𝐶𝑙𝑜𝑝(2𝜔),so the 

intersection⋂{𝐴|𝑛 ∶ 𝐴 ∈ ℱ}consists of a single point 𝑡 ∈ 2𝜔,and there foreℱ = ℱ𝒳  𝑓𝑜𝑟 𝒳 ∶=

(𝑛, 𝑡)  ∈  𝑋. Since 𝐾 \ 𝐾∗ = ⋃ {𝑛} × 2𝜔̂
𝑛∈𝜔  the set 𝐾∗is closed in K. For any 𝐴, 𝐵 ∈ 𝔄 we 

have 

�̂� ∩ 𝐾∗ ⊆ �̂� ∩ 𝐾∗ whenever 𝐵|𝑛 ⊆ 𝐴|𝑛 for all but finitely many 𝑛 ∈ 𝜔.    (20) 

Since 𝔄 is admissible, for every 𝑛 ∈ 𝜔 we have a probability measure 𝜇𝑛on 𝔄 defined by 

𝜇𝑛(𝐴) ∶=  𝜆(𝐴|𝑛) 

and lim𝑛 𝜇𝑛(𝐴)  =  𝜇(𝐴) for every 𝐴 ∈ 𝔄. Note that 𝜇  (seen as a Radon measure on K)is 

concentrated on 𝐾∗, because 𝜇({𝑛} × 2𝜔) = 0 for every 𝑛 ∈ 𝜔. We also have 

  𝜇({ℱ}) 0 for every ℱ ∈ 𝐾.                                          (21) 

Indeed, fix휀 > 0 and take any partition C of 2𝜔 into finitely many clopen sets with 𝜆(𝐶) ≤ 휀 
for all 𝐶 ∈  𝐶. For every ℱ ∈ 𝐾 there is some 𝐶 ∈ 𝐶such that 𝜔 × 𝐶 ∈ ℱand so 𝜇({𝐹}) ≤
𝜇(𝜔 × 𝐶) = 𝜆(𝐶) ≤ 휀. 𝐴𝑠 휀 >  0 is arbitrary, this shows (21). 

III. Claim. Every closed 𝒢𝛿 set 𝐻 ⊆ 𝐾∗ with 𝜇(𝐻) = 0 is amortizable Indeed, it is easy to see 

that we can write 

                                      𝐻 = ⋂𝐵�̂�
𝑘∈𝜔

∩ 𝐾⋇                                         (22) 

for some {𝐵𝑘}𝑘∈𝜔 ∈ 𝒩(𝔄. Now let 𝜉0 < 𝜔1 be as in property I(ii) above. We shall check that 

the countable family 𝒜 ∶= {𝐴 ̂ ∩  𝐻 ∶  𝐴 ∈ 𝔄𝜉0}is a topological basis of H (which implies 

that H is amortizable). 

To this end it is sufficient to  that  �̂� ∩ 𝐻 ∈ 𝒜whenever 𝐴 ∈ 𝔄.  we proceed by 

transfinite induction bearing in mind that𝔄 = ⋃ 𝔄𝜉𝜉∈𝜔1 . Let 𝜉 < 𝜔1and suppose that  �̂� ∩

𝐻 ∈ 𝒜when ever𝐴 ∈ ⋃ 𝔄𝜂𝜂<𝜉 . If either 𝜉 is a limit ordinal or 𝜉 ≤ 𝜉0then there is nothing to 

show. If 𝜉 is of the form 𝜉 = 𝜂 +1 for some 𝜂 ≥ 𝜉0, set 

𝑒′ ∶= {𝐴 ∈ 𝔄𝜉 ∶ �̂� ∩ 𝐻 ∈ 𝒜}. 

Observe that 𝑒′is an algebra of subsets of X containing𝔄𝜂. By the choice of 𝜉0(bearing in 

mind (20)), for every 𝑗 ≥ 1 there is 𝑘 ∈ 𝜔 such that 𝐵�̂� ∩ 𝐾
∗ ⊆ \𝐴(𝜂, 𝑗)̂ ∩𝐾∗, 𝑠𝑜 𝐻 ⊆

 \𝐴(𝜂, 𝑗) (by (22)), hence A(η, j)̂ ∩H = H ∈ 𝒜and therefore A(η, j) ∈ ℭ. It follows that 𝔄ξ =

𝑒′.this shows that Â ∩ H ∈ 𝒜 when everA ∈ 𝔄, as required. 
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IV. Claim:  For every 𝑗 ∈ 𝜔,  let 𝐻𝑗 ⊆ 𝐾
∗be a closed 𝒢𝛿  set with  𝜇(𝐻𝑗) = 0. Then 𝐹 ∶=

⋃ 𝐻𝑗𝑗∈𝜔
̅̅ ̅̅ ̅̅ ̅̅ ̅̅  is metrizable and 𝜇(𝐹) = 0. 

Indeed, as in the previous step, for every 𝑗 ∈ 𝜔 we can choose {𝐵𝑘
𝑗
}𝑘∈𝜔 ∈ 𝒩(𝔄)such 

that 

𝐻𝑗 =⋂𝐵𝑘
�̂�
∩ 𝐾∗

𝑘∈𝜔

. 

Fix 𝑖 ∈ 𝜔. By property I(i), there is 𝐴𝑖 ∈ 𝔄such that the collection {{𝐵𝑘
𝑗
}𝑘∈𝜔 ∶ 𝑗 ∈ 𝜔} 𝑖𝑠  

1

𝑖+1
-

captured by 𝐴𝑖. In view of (20), for every 𝑗 ∈ 𝜔we have 

 

𝐻𝑗 =⋂𝐵𝑘
�̂�
∩ 𝐾∗ ⊆ 𝐴�̂� ∩

𝑘∈𝜔

𝐾∗ 

and so 𝐹 ⊆ 𝐴�̂� ∩ 𝐾
∗. Since 𝜇(𝐴�̂�) ≤

1

𝑖+1
 for every𝑖 ∈ 𝜔, we have 𝜇(𝐹) = 0. Moreover, since 

𝐹 ⊆ 𝐻 ∶= ⋂ 𝐴�̂� ∩ 𝐾
∗

𝑖∈𝜔 and H is metrizable (by Claim III), it follows that F is amortizable as 

well. 

V. Claim: For every closed separable set𝐷 ⊆ 𝐾∗we have μ(D) = 0.Indeed, let {ℱ𝑗 ∶ 𝑗 ∈ 𝜔}be 

a dense sequence in D. For every j ∈𝜔 we have𝜇({ℱ𝑗}) = 0 (by (21)) and so there is a closed 

𝒢𝛿 set 𝐻𝑗 ⊆ 𝐾
∗ containing ℱ𝑗  with  𝜇(𝐻𝑗) = 0 . Since ⊆ ⋃ 𝐻𝑗𝑗∈𝜔

̅̅ ̅̅ ̅̅ ̅̅ ̅̅  , an appeal to Claim IV 

ensures that μ (D) = 0. 

VI. Claim: The measure μ does not belong to 𝑆𝑒𝑞1(𝑐𝑜∆𝑘). 
Our proof is by contradiction. Suppose there is a sequence { 𝜃𝑘}𝑘∈𝜔 in 𝑐𝑜∆𝑘which is 𝑤∗-
convergent to μ. For every 𝑘 ∈ 𝜔, consider the finite set  

𝐼𝑘: = {ℱ ∈ 𝐾
∗: 𝜃𝑘({ℱ}) > 0} 

And let 𝜃𝑘
′  be the Radon measure on K defined by  

𝜃𝑘
′ (𝛺):= 𝜃𝑘(Ω \ 𝐾

∗)𝑓𝑜𝑟 𝑒𝑣𝑒𝑟𝑦 𝐵𝑜𝑟𝑒𝑙 𝑠𝑒𝑡  Ω ⊆ K. 
We claim that {𝜃𝑘

′ }𝑘∈𝜔 𝑖𝑠 𝑤
∗ −convergent to 𝜇. Indeed, the set 𝐷 ∶= ⋃ 𝐼𝑘𝑘∈𝜔

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ satisfies 

𝜇(𝐷) = 0 (by Claim V) and so we can find  such that 𝐷 ⊆ ⋂ 𝐵�̂�𝑖∈𝜔 .Now, fix 𝐴 ∈ 𝔄.We have 

 

|𝜃𝑘
′ (�̂�) − 𝜃𝑘(�̂�)| = 𝜃𝑘(�̂� ∩ 𝐾

∗) =≤ 𝜃𝑘(𝐵�̂�)for every  𝑖, 𝑘 ∈ 𝜔. 
Bearing in mind that  

lim
𝑘
𝜃𝑘(�̂�) = 𝜇 (�̂�),         lim

𝑘
𝜃𝑘(𝐵�̂�) = 𝜇(𝐵�̂�)       𝑎𝑛𝑑 lim

𝑖
𝜇(𝐵�̂�) = 0, 

we get 𝑙𝑖𝑚𝑘𝜃𝑘
′ (�̂�) =  𝜇(�̂�).   𝐴𝑠 𝐴 ∈ 𝔄 is arbitrary, {𝜃𝑘

′ }𝑘∈𝜔 is  

𝑤∗ −Conver Gent to μ.  

On the other hand, each 𝜃𝑘
′  is a linear combination (with non-negative coefficients) of 

finitely many elements of ∆𝑘∖𝑘∗= {𝛿ℱ𝒳 : 𝑥 ∈ 𝑋}, 𝑤ℎ𝑒𝑟𝑒 ℱ𝒳 = {𝐴 ∈ 𝔄:𝒳 ∈ 𝐴} 

(see II). Hence 𝜃𝑘
′  comes from a non-negative finitely supported measure on 𝒫(𝑋)and so 

there is 𝜉 < 𝜔1such that𝜃𝑘
′  (�̂�) = 𝑣𝑘

𝜉
(𝐴) for every 𝐴 ∈ 𝔄 and 𝑘 ∈ 𝜔. Bythe construction (see 

I) there is some 𝐴 ∈ 𝔄 such that {𝑣𝑘
𝜉
(𝐴)}𝑘∈𝜔does not converge to μ (A), thus contradicting 

the fact that {𝜃𝑘
′ }𝑘∈𝜔 is w∗-convergent to μ. 

VII. Claim: The measure μ belongs to𝑆𝑒𝑞2(𝑐𝑜∆𝑘). 
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 Indeed, the sequence {𝜇𝑛}𝑛∈𝜔 𝑖𝑠 𝑤
∗ −convergent to μ as we pointed out in II. On 

theother hand, every 𝜇𝑛  is concentrated on the closed metrizableset {𝑛}  × 2𝜔̂  (it is 

notdifficult to check that it is homeomorphic to 2𝜔), hence 𝜇𝑛 has a uniformly distributed 

sequence and so 𝜇𝑛 ∈ 𝑆𝑒𝑞
1(𝑐𝑜∆𝑘). 

VIII. Claim: The equality 𝑆𝑒𝑞3(𝑐𝑜∆𝑘) = 𝑃(𝐾) holds. 

Let 𝑣 ∈ 𝑃(𝐾). We can write 𝑣 = 𝑣1 + 𝑣2  + 𝑣3 where 𝑣𝑖 ∈ 𝑀
+(𝐾) satisfy: 

(a) 𝑣1(Ω) ∶=  𝑣(Ω\ 𝐾
∗)for every Borel set Ω ⊆ 𝐾;  

(b) 𝑣2is absolutely continuous with respect to μ; 

(c) 𝑣3is concentrated on a Borel set 𝐵 ⊆ 𝐾∗with  𝜇(𝐵) = 0. 

For every𝑛 ∈ 𝜔we define 𝜃𝑛 ∈ 𝑀
+(𝐾) 𝑏𝑦 

               𝜃𝑛(Ω) ≔ 𝑣(Ω ∩ 𝑛 × 2𝜔̂ ) for every Boral set Ω ⊆ 𝐾 

Then 𝜃𝑛 ∈ 𝑆𝑒𝑞
1(𝑀+(𝐾) ∩  𝑠𝑝𝑎𝑛∆𝑘),because 𝜃𝑛 is concentrated on the closed mortizable set 

𝑛 × 2𝜔̂ =⋃ {𝑘} × 2𝜔̂
𝑘<𝑛 .  Since the sequence {𝜃𝑛}𝑛∈𝜔 𝑖𝑠 𝑤 ∗ − conver gent to 𝑣1 ,we 

conclude that  

𝑣1 ∈ 𝑆𝑒𝑞
2(𝑀+(𝐾) ∩  𝑠𝑝𝑎𝑛 ∆𝑘). 

On the other hand, since 𝑣2  is absolutely continuous with respect to 𝜇 ∈
𝑆𝑒𝑞2(𝑐𝑜∆𝑘)(see ClaimVII), we have 𝑣2 ∈ 𝑆𝑒𝑞

3(𝑀+(𝐾) ∩  𝑠𝑝𝑎𝑛∆𝑘) by Lemma (5.2.3) .  

Concerning 𝑣3, note that (by the regularity of 𝑣3) we can assume that B is of the form 

𝐵 = ⋃ 𝐹𝑗𝑗<𝜔 for some closed sets 𝐹𝑗 ⊆ 𝐾
∗.Now, for every 𝑗 ∈ 𝜔we can find (using the 

regularity of μ) a closed 𝒢𝛿  𝑠𝑒𝑡 𝐻𝑗 ⊆ 𝐾
∗such that 𝐹𝑗 ⊆ 𝐻𝑗   𝑎𝑛𝑑  𝜇(𝐻𝑗 ) = 0.  

From Claim IV it follows that �̅� is metrizable and so   𝑣3 ∈ 𝑆𝑒𝑞
1(𝑀+(𝐾)  ∩  𝑠𝑝𝑎𝑛 ∆𝑘). 

Therefore, 𝑣 = 𝑣1 + 𝑣2 + 𝑣3 ∈ 𝑆𝑒𝑞
3(𝑀+(𝐾)  ∩  𝑠𝑝𝑎𝑛  ∆𝑘).since𝑣is a probability measure, it 

is not difficult to show that 𝑣 ∈ 𝑆𝑒𝑞3(𝑐𝑜 ∆𝑘) as well. This completes the proof of Theorem 

(5.2.8)  

 The cases of 𝛽𝜔 𝑎𝑛𝑑 𝛽𝜔\𝛽 
Let K be a compact space. It is known (cf. [210]) that for every 𝐵𝑎(𝐶𝑝(𝐾))-measurable 𝜇 ∈

𝑃(𝐾) there is a closed separable set 𝐹 ⊆ 𝐾 such that 𝜇(𝐹) = 1. Thus, if the equality 

𝐵𝑎(𝐶𝑝(𝐾))  = 𝐵𝑎(𝐶𝑤(𝐾)) 
Holds true then every element of P (K) is concentrated on some closed separable subset of K. 

We make clear that the converse statement fails in general, since 𝐵𝑎(𝐶𝑝(𝛽𝜔)) ≠

𝐵𝑎(𝐶𝑤(𝛽𝜔))  (Theorem (5.2.5) this will be a consequence of the construction given in 

Theorem (5.2.3) below.  

Recall that the asymptotic density of a set 𝐴 ⊆ 𝜔 is defined as 

𝑑(𝐴) ∶=  lim
𝑛

|𝐴 ∩ 𝑛|

𝑛
 

Whenever the limit exists. We shall write 𝒟 for the family of those 𝐴 ⊆ 𝜔for which d (A) is 

defined. The following lemma is well-known.  

Lemma(5.2.9)[194]:  If {𝐴𝑛}𝑛∈𝜔is an increasing sequence in 𝒟, then there is 𝐵 ∈ 𝒟such that 

𝐴𝑛\ 𝐵is finite for every 𝑛 ∈ 𝜔 and 𝑑(𝐵)  =  𝑙𝑖𝑚𝑛 𝑑(𝐴𝑛). 
Theorem (5.2.10) [194]:  There is 𝑣 ∈ 𝑃(𝛽𝜔) such that: 

(i) 𝑣is of countable type, i.e. 𝐿1(𝑣) is separable; 

(ii) 𝑣(𝛽𝜔 ∖ 𝜔) =  1; 
(iii)  𝑣(𝐹) = 0for every closed separable set 𝐹 ⊆ 𝛽𝜔 ∖ 𝜔. 
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Proof:  Let {𝑡𝑛}𝑛∈𝜔be a uniformly distributed sequence for the usual product probability 

measure 𝜆 on 2𝜔. For every 𝐸 ∈ 𝐶𝑙𝑜𝑝(2𝜔) we define 𝜑(𝐸) ∶= {𝑖 ∈ 𝜔 ∶  𝑡𝑖 ∈ 𝐸},so that  

lim
𝑛

|𝜑(𝐸) ∩ 𝑛|

𝑛
= lim

𝑛

1

𝑛
∑1𝐸(𝑡𝑖) = 𝜆(𝐸),

𝑖<𝑛

 

Hence 𝜑(𝐸) belongs to 𝒟and 𝑑(𝜑(𝐸)) = 𝜆(𝐸).It is easy to check that  

𝔄 ≔ {𝜑(𝐸): 𝐸 ∈ 𝐶𝑙𝑜𝑝 (2𝜔)} ⊆ 𝒟 
 

is a (countable) algebra. Let 𝐼𝑆(𝔄) be the family of all increasing sequences in 𝔄. By Lemma 

(5.2.9) for every 𝑆 = {𝑆𝑛}𝑛∈𝜔 ∈ 𝐼𝑆(𝔄) we can find 𝐵𝑆 ∈ 𝒟such that 𝑆𝑛\ 𝐵𝑆 is finite for every 

𝑛 ∈ 𝜔 and 𝑑(𝐵𝑆 ) = 𝑙𝑖𝑚𝑛 𝑑(𝑆𝑛).  

Let 𝔅 ⊆ 𝒫(𝜔) be the algebra generated by 𝔄 ∪ {𝐵𝑆 ∶ 𝑆 ∈ 𝐼𝑆(𝔄)}. Fix any free ultra filter 

𝒰 on 𝜔 and define a probability measure μ on 𝔅by  

𝜇(𝐵) ≔ lim
𝑛⟶𝒰

|𝐵 ∩ 𝑛|

𝑛
, 

so that 𝜇(𝐵) = 𝑑(𝐵) whenever 𝐵 ∈ 𝔅 ∩  𝒟. Observe that the family 

𝔅0 ≔ {𝐵 ∈ 𝔅: inf{𝜇(𝐵 ∆ 𝐴): 𝐴 ∈ 𝔄} = 0} 
is an algebra containing 𝔄. We claim that 𝐵𝑆 ∈ 𝔅0 for every 𝑆 = {𝑆𝑛}𝑛∈𝜔 ∈ 𝐼𝑆(𝔄). 
Indeed, fix 𝑛 ∈ 𝜔and observe that, since 𝑆𝑛\ 𝐵𝑆 is finite and 𝑆𝑛 ∈ 𝒟,, we have 𝑆𝑛 ∩ 𝐵𝑆 ∈
𝒟and 𝑑(𝑆𝑛 ∩ 𝐵𝑆 )  =  𝑑(𝑆𝑛). Now, since 𝐵𝑆 ∈ 𝒟we also have 𝐵𝑆 \ 𝑆𝑛 ∈ 𝒟and  

𝑑(𝐵𝑆 \ 𝑆𝑛)  =  𝑑(𝐵𝑆 )  − 𝑑(𝑆𝑛 ∩ 𝐵𝑆 )  =  𝑑(𝐵𝑆 )  − 𝑑(𝑆𝑛), 
Hence 𝜇(𝐵𝑆 △ 𝑆𝑛) =  𝜇(𝑆𝑛\𝐵𝑆 ) +  𝜇(𝐵𝑆 \ 𝑆𝑛) =  𝑑(𝐵𝑆 ) − 𝑑(𝑆𝑛).  
Bearing in mind that 𝑑(𝐵𝑆 ) = 𝑙𝑖𝑚𝑛𝑑(𝑆𝑛), we conclude that𝐵𝑆 ∈ 𝔅0, as required.  

It follows tha t𝔅0 = 𝔅 . Using Lemma (5.2.1), we extend μ to a probability measure 

𝑣 𝑜𝑛 𝒫(𝜔) so that𝑖𝑛𝑓{𝑣(𝐶 △ 𝐴) ∶ 𝐴 ∈ 𝔄}  = 0 for every 𝐶 ⊆ 𝜔. Observe that  𝑣(seen as a 

Radon measure on 𝛽𝜔) has countable type (because A is countable). 

In order to check that 𝑣is concentrated on 𝛽𝜔\𝜔, 𝑓𝑖𝑥 𝑛 ∈ 𝜔and take any휀 > 0. Choose a 

partition 2𝜔 = ⋃ 𝐸𝑖
𝑃
𝑖=1 such that each 𝐸𝑖 ∈ 𝐶𝑙𝑜𝑝(2

𝜔)𝑎𝑛𝑑 𝜆(𝐸𝑖) ≤ 휀.Then  𝜔 = ⋃ 𝜑(𝐸𝑖)
𝑃
𝑖=1 , 

each 𝜑(𝐸𝑖) ∈ 𝔄and 𝑣(𝜑(𝐸𝑖)) = 𝜇(𝜑(𝐸𝑖))  =  𝑑(𝜑(𝐸𝑖))  =  𝜆(𝐸𝑖)  ≤ 휀 .Since 𝑛 ∈ 𝜑(𝐸𝑖)  for 

some i, we have 𝑣({𝑛}) ≤ 𝑣(𝜑(𝐸𝑖)) ≤ 휀.  𝐴𝑠  휀 > 0  is arbitrary, we get  𝑣({𝑛}) = 0 . It 

follows that 𝑣(𝛽𝜔\𝜔) = 1. 
Finally, take any closed separable set 𝐹 ⊆ 𝛽𝜔\𝜔and let {ℱ𝑛}𝑛∈ 𝜔be a dense sequence 

in F. Fix 휀 > 0. As in the previous paragraph, for every 𝑘 ∈ 𝜔we can find a partition of 

𝜔into finitely many elements of 𝔄having asymptotic density less than 휀/2𝑘+1;one of those 

elements, say 𝑇𝑘, belongs to ℱ𝑘,. Set  

 

𝑆𝑛 ≔⋃𝑇𝑘for  every  𝑛

𝑘≤𝑛

∈ 𝜔 

so that 𝑆 = {𝑆𝑛}𝑛∈𝜔 ∈ 𝐼𝑆(𝔄).We have ℱ𝑛 ∈ 𝐵�̂� for every 𝑛 ∈ 𝜔, because 𝑆𝑛\ 𝐵𝑆is finite and 

𝑆𝑛 ∈ ℱ𝑛 ∈ 𝛽𝜔\𝜔. Hence 𝐹 ∈ 𝐵�̂�. Since  

 

𝑑(𝑆𝑛) ≤ ∑ 𝑑(𝑇𝑘) < ∑ 2𝑘+1
< 휀𝑘<𝑛𝑘≤𝑛 for every 𝑛 ∈ 𝜔, 

it follows that 𝑣(𝐹) ≤ 𝑣(𝐵�̂�) = 𝜇(𝐵𝑆) = 𝑑(𝐵𝑆) = lim𝑛 𝑑(𝑆𝑛) ≤ 휀. 
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As 휀 > 0is arbitrary, we get 𝑣(𝐹) =0. The proof is over. 

Bearing in mind the comments at the beginning, Theorem (5.2.10) gives immediately the 

following:  

Corollary(5.2.11)[194]:  .𝐵𝑎(𝐶𝑝(𝛽𝜔\𝜔)) ≠  𝐵𝑎(𝐶𝜔(𝛽𝜔\𝜔)). 

We arrive at the main result. 

Theorem (5.2.12)[194]:  𝐵𝑎(𝐶𝑝(𝛽𝜔\𝜔)) ≠  𝐵𝑎(𝐶𝜔(𝛽𝜔)). 

Proof:  Let 𝑣 ∈ 𝑃(𝛽𝜔) be the measure of Theorem (5.2.10). We shall show that 𝑣is not 

𝐵𝑎(𝐶𝜔(𝛽𝜔))-measurable by contradiction. Suppose 𝑣  is 𝐵𝑎(𝐶𝑝𝛽𝜔))-measurable and fix a 

countable set 𝐼 ⊆ 𝛽𝜔 such that 𝑣  is measurable with respect to the 𝜎 -algebra  𝛴 on C(K) 

generated by {𝛿ℱ: 𝐹 ∈ 𝐼}. 𝑆𝑒𝑡 𝐹 ∶= 𝐼 \𝜔̅̅ ̅̅ ̅̅ ⊆ 𝛽𝜔\𝜔, so that 𝑣(𝐹) = 0. 

Thus, there is 𝐴 ⊆ 𝜔 with 𝑣(𝐴) > 0 such that �̂� ∩  𝐹 = ∅. 
We can define a measure m on 𝒫(𝐴) 𝑏𝑦 𝑚(𝐵) ∶= 𝑣(𝐵) for every 𝐵 ⊆ 𝐴. We claim 

that m is Borel measurable as a function on 𝒫(𝐴) (naturally identified with 2𝐴).  

Indeed, just observe that the function  

∅:𝒫(𝐴) ⟶ 𝐶(𝐾),         ∅(𝐵) ≔ 1�̂� , 
is Borel- 𝛴 -measurable, because 𝛿ℱ ∘ ∅ = 0  for every ℱ ∈ 𝐼\𝜔 (bear in mind that �̂� ∩
(𝐼 \𝜔) = ∅).Since in addition m vanishes on finite sets and 𝑚(𝐴) > 0, an appeal to [202] (cf. 

[201]) ensures that m (seen as a Radon measure on 𝛽𝐴) has uncountable type, which  

Contradicts the fact that 𝑣 has countable type. 

While P-points do exist under Martin’s axiom and in many standard models of ZFC, 

consistently there are no P-points [212]. Moreover, consistently there are no measures on 

𝒫(ω) extending asymptotic density and having property (AP) [205]. 

Recall that C(K) is called a Grothen dieck space if every 𝑤∗-convergent sequence in 

M(K) is necessarily weakly convergent (see e.g. [198]). The spaces 𝐶(𝛽𝜔)and 𝐶(𝛽𝜔\𝜔) are 

examples of Grothendieck spaces. Our motivation for Problem (5.2.17) comes from the 

results and the following fact: 

Proposition (5.2.13)[194]: If K is infinite and C(K) is a Grothendieck space, then 

𝑆𝑒𝑞(𝑐𝑜∆𝑘)  ≠ 𝑃(𝐾). 
Proof: We first claim that every element of 𝑆𝑒𝑞(𝑐𝑜∆𝑘) is concentrated on a countable subset 

of K. Indeed, let {𝜇𝑛}𝑛∈𝜔 be any 𝑤∗ -convergent sequence in P(K), where each 𝜇𝑛 is 

concentrated on a countable set 𝐶𝑛 ⊆ 𝐾, and write 𝜇 ∈ 𝑃(𝐾) to denote its limit. Since C (K) 

is Grothen dieck, the sequence {𝜇𝑛}𝑛∈𝜔 converges to μ weakly in M (K) and so  

𝜇 (𝐾 ∖⋃𝐶𝑘
𝑘∈𝜔

) = lim
𝑛
𝜇𝑛 (𝐾 ∖⋃𝐶𝑘

𝑘∈𝜔

) = 0, 

therefore μ is concentrated on a countable set. This shows the claim. 

Since C(K) is Grothendieck, it has no complemented copy of 𝑐0(cf. [198]), hence K is 

not scattered (see e.g. [200]) and so there are elements of P(K) which are not concentrated on 

a countable subset of K, [211]. It follows that 𝑆𝑒𝑞(𝑐𝑜∆𝑘)  ≠ 𝑃(𝐾).  

Corollary (5.2.14)[260]:  𝐵𝑎 (𝐶𝑝
2 (

𝛽
𝜔2−1
2

𝜔2−1
))  ≠  𝐵𝑎(𝐶𝜔2−1

2 (𝛽𝜔2−1
2 )). 

Proof:  Let 𝑣 ∈ 𝑃(𝛽𝜔2−1
2 ) be the measure of Theorem (5.2.10). We shall show that 𝑣 is not 

𝐵𝑎(𝐶𝜔2−1
2 (𝛽𝜔2−1

2 ))-measurable by contradiction. Suppose 𝑣  is 𝐵𝑎(𝐶𝑝
2𝛽𝜔2−1
2 ))-measurable 
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and fix a countable set 𝐼 ⊆ 𝛽𝜔2−1
2  such that 𝑣 is measurable with respect to the 𝜎-algebra 𝛴 

on 𝐶(𝐾)  generated by {𝛿ℱ: 𝐹
2 ∈ 𝐼} . Set 𝐹2 ∶= 𝐼 (𝜔2 − 1)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ⊆ 𝛽𝜔2−1

2 \(𝜔2 − 1) , so that 

𝑣(𝐹2) = 0. 

Thus, there is 𝐴2 ⊆ 𝜔2 − 1 with 𝑣(𝐴2) > 0 such that �̂�2 ∩ 𝐹2 = ∅. 
Corollary (5.2.15)[260]: If 𝐾2 is infinite and 𝐶(𝐾2) is a Grothendieck space, then 

𝑆𝑒𝑞(𝑐𝑜∆𝑘2)  ≠ 𝑃(𝐾
2). 

Proof: We first claim that every element of 𝑆𝑒𝑞(𝑐𝑜∆𝑘2) is concentrated on a countable 

subset of 𝐾2. Indeed, let {𝜇𝑛}𝑛∈𝜔be any 𝑤∗-convergent sequence in 𝑃(𝐾2), where each 𝜇𝑛is 

concentrated on a countable set 𝐶𝑛 ⊆ 𝐾
2, and write 𝜇 ∈ 𝑃(𝐾2) to denote its limit. Since 

𝐶(𝐾2) is Grothen dieck, the sequence {𝜇𝑛}𝑛∈𝜔 converges to μ weakly in 𝑀 (𝐾2) and so  

𝜇 (𝐾2 ∖ ⋃ 𝐶𝑘2

𝑘2∈𝜔

) = lim
𝑛
𝜇𝑛 (𝐾

2 ∖ ⋃ 𝐶𝑘2

𝑘2∈𝜔

) = 0, 

therefore μ is concentrated on a countable set. 

Section (5.3): Banach Space 

Given a compact space K, by C (K) we denote the Banach space of continuous real-

valued functions K, equipped with the standard supremum norm. If k ,the ˇ Cech-Stone 

compactification of the space 𝜔 of natural numbers, then C ( ) is isometric to the classical 

Banach space  𝑙∞ . 

One can consider three natural topologies on C (K): 𝜏𝑝 ⊆ 𝑤𝑒𝑎𝑘 ⊆ 𝑛𝑜𝑟𝑚, where is 

𝜏𝑝the topology of pointwise convergence. Consequently, one has three corresponding Borel 

 -algebras 

Borel   KC , ⊆ Borel(C (K), weak) ⊆ Borel(C(K), norm). 

Those three  -algebras are equal for many classes of nonmetrizable spaces K, this is the case 

for all spaces K such that the space C (K) admits the so called 

Pointwise Kadec renorming, see [175] and [190], we also refer to [170] for some comments 

concerning coincidence of these  -algebras. 

On the other hand, Talagrand [69] showd that 

  weakCBorel ,       normCBorel ,  . 

Marciszewski and Pol [170] showed that  

Borel   psC ,      Borel   weaksC ,  

 For S being the Stone space of the measure algebra. Since, for the space S, the Banach 

spaces  SC   and  C  isomorphic, it follows that  SC   has three different Borel structures. 

Let us note that the Borel structures in function spaces 

  ),( pSC   , and   ),( pC   

Are essentially different. 

We show that 

Borel   pC  ,    Borel   weakC ,  ; 

our result and Talagrand’s theorem mentioned above imply that, even though   is 

separable, the space  C  possesses three different Borel structures as well. 
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Proving the main result, stated below as Theorem (5.3.10), we build on ideas from 

[170] and show that in fact there is a measure  


  C which is not point wise Borel 

measurable. 

Recall that, if LK :  is a continuous surjection, then the map f  f  defines an 

embedding of  LC   into  KC  with respect to the norm, weak, and point wise topologies. 

Since   is a continuous image of  , it follows from Theorem(5.3.10)  that for   =   

one also has 

Borel   ),( pC 
   Borel   ),( weakC  . 

This result was obtained in [170] under some additional set-theoretic assumption. 

We show that no sequence of pointwise Borel sets separates points of 𝐶(𝜔∗). Contains 

some remarks concerning  -fields of Baire sets in function spaces on   and 𝜔∗. 

We shall consider only nonnegative, finite measures. We will use the well-known fact 

that any finitely additive measure μ on ( ,   ) corresponds to auniquely determined Radon 

measure 


  on   such that     =  ̂ , for any    , where   is the closure of   in

 , cf. [177]. 

We consider only measures   on   vanishing on singletons; then for the 

corresponding measures 


  on  , we have 0)( 


 , and we may as well treat such 

measures 


  as being defined on  ∗  . 

The following auxiliary result can be found in [215]. 

Proposition (5.3.1)[213]:If  
nnG  is a sequence of dense open subsets of 2  then there is a 

sequence  
nnI of pair wise disjoint finite subsets of   and a sequence of functions n : nI  → 2 

such that nnG  for every  2 for which the set { n  : nI   = n } is infinite. 

Proposition (5.3.2)[213]:No nonzero measure on , vanishing on singletons, is measurable 

with respect to the  -algebra of subsets of 2 having the Baire property. 

Proof: Suppose, towards a contradiction, that  , treated as a function on 2 , is measurable 

with respect to the  -algebra of subsets of 2  having the Baire property. Without loss of 

generality, we can assume that    . The inverse image 1 (S) of any Borel subset S of the 

unit interval [0, 1] is a tail-set with the Baire property, hence, by 0 –1 Law (see [217]) is 

either meager or comeager. Observe that there exist (necessarily unique)  1,0t  such that 

  1  is comeager. Indeed, if )1(1  is comeager, then we are done. Otherwise, we can define 

inductively a sequence of integers 12  n

n , such that ))2/)1(,2/([1 n

n

n

n kk  is comeager for n

n . Then the required t is a unique element of  n  [ n

n

n

n 2/)1(,2/  ). 

The map h:    →   , defined by   AAh \  , is a homeomorphism of    Such 

that h (        111  . There fore tt 1  , and t 2\1t . 

By Proposition (5.3.1), we have functions 2: nn I   defined on pairwise disjoint finite 

sets nI  such that   2/1A   whenever A  agrees with infinitely many Sn

,

  . 

Let 321 ,, NNN  be a partition of! Consisting of infinite sets and let 

    ini Nn :1:  , 
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3,2,1i . Then, for each   2/1,3  ii    and the sets i  are pairwise disjoint,a contradiction.  

For any subset A of   we write 

 
n

nA
Ad

n


suplim , 

For the outer asymptotic density of a set A and 

 
n

nA
Ad

n


lim , 

Whenever the set A  has the asymptotic density, i.e. when the above limit exists. 

Given a bounded sequence  



nn  and an ultrafilter   , by

nlim   we denote the 

itlim  of  n  . For any ultrafilter    , we define the measure
d on   by the formula 

 
n

nA
Ad




  lim  , 

For A , cf. [177] or [195]. 

Lemma(5.3.3)[213]: For any ultra filter     and any 휀 > 0, there exists a set A   having 

asymptotic density and such that   Ad . 

Proof: Take 1n   such that n/1  and put   ikniAk :  for 1,...,1,0  nk . Then there exists

nk   such that KA . Clearly,   nAd /1  . 

We also recall the following standard fact concerning the outer density. Here, for

BABA  ,,    denotes, as usual, that BA \  is finite, and we denote by A  the set AA \ , where

A  is the closure of A in  . 

Lemma (5.3.4)[213]: Let 0  and   nAn , , be such that 1 nn AA  and   nAd  for every

n  . Then there exists nn AA     such the  Ad  and AAn

  for every n  . 

Proof: By the definition of d  we have 

 



k

kA
kkn

n

nn
 . 

   Without loss of generality, we can assume that the sequence  nk   is increasing. We define. 
 

  n
n

nnn
n

AkkAA
 




  \`1
. 

Since 1 nn AA  , we have   AkA nn \  , and therefore   AAn
 for every n . 

For any 0kk  , we have nn kkk \1  , for some n  , and kAkA n   ,therefore /kA  

, and consequently )(Ad  . 

Obviously, for the sets nA   and A as in the above lemma, we have 

  AAnn   and

   Ad   for any ultra filter   . Let us note, however, that this does not necessarily mean 

that for every increasing sequence  ...10 AA   such that    Ad   there is A  almost 

containing every nA  and such that    Ad . 

Measures on  P   with such an approximation property may fail to exist, see [216] for 

details. 

Corollary (5.3.5)[213]:For any ultrafilter   , the measure b
 d̂   vanishes on separable 

subsets of  . 
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Proof: Let X  be a subset of  contained in the closure of a set   nFn : . Fix 0 . For 

any n , by Lemma(5.3.3) , we can pick nn FB   with   12/  n

nBd  . Then, for knkn BA    , we 

have   nAd , and we can apply Lemma (5.3.4) for the sequence  nA  , obtaining the set A  

satisfying   nAd . For any n  , we have AAB nn

  , hence nFA  . Therefore the closure in 

 ∗.of the set  nFn :  is contained in A , and      

 AdXd ˆˆ  . Since   was arbitrarily 

chosen, it follows that   0ˆ  Xd .  

Let  be a fixed ultra filter from  ∗ and let
 d  be the measure on  P .  

We write ̂ for the corresponding Radon measure on    . 

Then ̂  is a continuous functional on  C  so in particular ̂ is measurable with respect to 

the -algebra of weakly Borel subsets. 
 We shall show that the measure ̂  is not point wise Borel measurable and in this way 

conclude the main result. The approach presented below builds on the technique developed 

by Burke and Pol [72] and Marciszewski and Pol [170]. 

We need to fix several pieces of notation. For a set X , by   
X  we denote the family of all 

finite subsets of X  , and X  stands for the set of all finite sequences of elements of X  . Given 

sequences tsXts  ,  , sat denotes their concatenation. 

For functions f  and f g  , gf    means that the domain dom  f   of f  is contained in the 

domain of g  and   ffdomg \ . We also use this notation for sequences, treating them as 

functions. 

Writing 2 = {0, 1}, we denote by  2,C  the space of all continuous functions 

2: f  equipped with the pointwise topology. 

In the sequel we consider some subsets of        PPP 
2

 ; a typical element of such a set 

is a pair  BAC ,  , where BA, . Given some   2
PCi  , we shall use the convention for 

elements that every iC can be written as  iii BAC , . 

Let 
~e  be a subset of      PP  of those sequences  ,..., 10 ccc   for which the following 

conditions are satisfied for every i : 

(i)   iiiiii BABBAA ,, 11 ∅; 

(ii)�̅�(𝐴𝑖), �̅�(𝐵𝑖) < 1/6. 

We moreover denote by 𝔖 the set of all finite sequences from      



PP  satisfying. 

Given    1,0,  iCf   , and A  , we write Af \   ≃ i  if the equality 

  ixf   holds for ̂ -almost all  Ax  . 

We equip     PP   with the discrete topology and é with the product topology inherited 

from     PP  . Finally, we define a topological space 𝔼 that is crucial for our 

considerations as follows 

           𝔼=     2,,{ pCcf  é : nAf \  ≃ 0, nBf \  ≃ 1 for every n  }; 

here  ...,, 210 cccc   and  iii BAC ,  . 

Let  be the set of all pairs 

                                         


  1,0 zzz ,  
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such that    10 zz   ∅. For zz,  we write zz  to denote that    00 zz   and    11 zz  . 

Basic open neighborhoods in 𝔼  are of the form  szN ,,  , where   2 ,  sz , ϭ, , and

 szN ,,  is the set of all (𝑓, 𝑐) ∈ 𝔼 such that 

       (a)   ixf    For  every   1,0,  iizx ; 

       (b) f  and cs  . 

Note that every set of the form  szN ,,  is nonempty, since ̂  vanishes on singletons. 

 Let us say that s∈𝔖  captures z  if, writing  BAts , , we have    Az 0 and    Bz 1 . 

Lemma (5.3.7)[213]: Every basic open set  szN ,,  in 𝔼 contains a neighborhood  szN ,,  

where s′ captures z . 

Proof: Indeed, if  BA,  is the final pair in s then for any 0 , using Lemma(5.3.3) we can 

find sets DC,  of asymptotic densit y  and such that       DzCz 10 ,    Dz 1 . Then we 

can put  BAss  , , where DBBCAA   ,  and  is small enough.  

Lemma (5.3.8)[213]:Let  szN ,,  be a basic open set in 𝔼, where l2 . IfG  is a   dense open 

subset of  szN ,,  then, for every 1K , there are m >  zk, with z⊏ z , ∈ 𝔖  with  ss   s, 

and a function 

                                      2::  mikiI , 

such that for every 12  k   

                                        GszN  ,, . 

Proof: Given 1

0 2  K , we have    GszN ,,0  ∅ so for some interval 

 11 : mikiI   and 2: 11 I  there are
1z ⊐ z and ss 1

 such that 

                                    GszN  ,,, . 

Take another 1

1 2  K . Apply the same argument for  1111 ,, szN    . It is clear that we arrive 

at the conclusion after examining all 
12  K  .  

Lemma(5.3.9)[213]:  Let  
nnG be a decreasing sequence of open subsets of E such that 

0G  and every nG is ense in 0G  . Then there exist a  sequence    eBAc
nnn




, , sets BA,  , 

countable sets     1,0 ZZ  , and a sequence 2: nn I  of functions defined on pairwise 

disjoint finite sets nI  such that 

   (i)   





 BABBAA nnnn  ,, ; 

 (ii)    
6

1
, BA  ; 

(iii)       BZAZ 1,0  ; 

(iv) forevery  satisfyingCf p 2,  

           – 1~\,0~\  BfAf , 

           –   1,0\  iforiiZf  , 

           – 00\ If ,    

           – initelyforIf nn inf\   1n , 

            we have
  nn Gcf ,

. 

Proof: Fix a basic neighborhood   0000 ,, GszN  ; by Lemma(5.3.7) we can assume that 0s  

captures 0z . Take 𝑘0 such that 02
k

  , set  1,...,0 00  kI and 𝜑0 = 𝜎0. 
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We shall define inductively natural numbers ...210  kkk , functions 

  2:: 1   nnnn kikiI , pairs nz  with ...10  zz , and sequences ....10  ss  in 𝔖  such 

that for every 0n  

            – ns  captures nz ; 

           – for every 02
kkn  we have   11110 ,,   nnnn GszN   . 

Having ,..., nnk   defined, we make the inductive step using Lemma (5.3.8)for the 

neighborhood  nn szN ,,0  with   onnn klszNGG   ,,,01  , and nkk  and we use zm , , and s  

given by this lemma to define 11,  nn zk , and 1ns . We complete our choice applying Lemma 

(5.3.7). 

The sequence ns ∈ 𝔖  defines the unique element    enBAc nn
 ,  ; we take BA, applying 

Lemma (5.3.4)  to sequences  
nnA and  

nnB (see also the remark following the proof of 

Lemma (5.3.4). We put    00 nn zZ  and    11 nn zZ  ; note that    AZ 0  and    BZ 1 . 

    Now, if f satisfies (iv) then   nGcf ,  , for infinitely many n , so   nn Gcf , .  

Theorem(5.3.10)[213]: The measure ̂ is not measurable with respect to the point wise Borel 

sets in  C . In particular, 

                                      pCBorel  ,   weakCBorel ,  . 

Proof: Suppose otherwise; then 

 
                                 

    2/1ˆ:2,0  fdCfF p
,  

is pointwise  Borel in  2,Cp . Let   01 \2, FCF   . 

Let  : 𝔼  2,PC denote the projection onto the first axis. It follows that the sets  iF1 are 

Borel in 𝔼 , so both  0

1 F and  1

1 F  have the Baire property in 𝔼 . Therefore, for some

 1,0i  , there is a decreasing sequence  
nnG  of open sets in 𝔼 , where 0G , every nG  is dense 

in 0G and  inn FG 1 .Take     2:,1,0,,  nn IZZBAec   as in Lemma (5.3.9)  

Let be an uncountable almost disjoint family of infinite subsets of  . For R  let 


Rn

nR III


 0 ; 

Then the family }:{ RIR
is almost disjoint too. Therefore there is R  such that 

        –      

RIZZ  10 , and 

        –   0ˆ RI . 

Set
RR IBBIAA \,\  . Take any function  2,Cf   such that 0f  on 1,  fA , on Band f  is 

defined on RI  so that nnIf \  for  0Rn . 

Then 0f  on  0Z  and 1f  on   1~\,0~\,1  BfAfZ  . It follows from Lemma (5.3.9) that

   inn FGcf 1,     . 

On the other hand, f  can be freely defined on the set 

 RIBAD   \ , 

Where   3/2D , so ̂fd  can take values less than 2/1  and greater than 2/1 , a contradiction. 

Let us recall that in a topological space X , the elements of the smallest   -algebra in X  

containing open sets and closed under the Sousing operation are called C-sets, cf. [82]. The 
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C-sets are open modulo meager sets and any preimage of a C-set under a continuous map is a 

C-set. 

Theorem(5.3.11)[213]: No countable family of C-sets separates the functions in the space

  pC  ,  . 

Corollary(5.3.12)[213]: There is no Borel-measurable injection      pp CC  ,,    . 

We keep here a part of the notation introduced; in particular, we will use the space é and the 

sets 𝔖, . 

By  2,pC   we denote the subspace of   pC  ,  consisting of 0 -1-valued functions. 

The role of the space in 𝔼 will be played by the following space 

𝔽     neveryforBfAfeCcf nnp 1\,0\:2,,    ; 

Where  ,...,, 210 cccc    and  iii BAc ,  .  

We will say that a pair z  and a sequence      nnBABAs ,...,, 00  𝔖 

are consistent if       nn AzBz  10  . Clearly, if s captures z , 

then s  and z  are consistent. 

Basic open neighborhoods in 𝔽 are of the form  szO ,  , where z   and z   𝔖  are consistent, 

an  szO ,  is the set of all   Fcf ,   such that 

     (A)     1,0,  iizxeveryforixf ; 

     (B) cs  . 

Note that the condition that s  and z  are consistent implies that every set  szO ,  is nonempty. 

Repeating the proof of Lemma (5.3.7), one easily obtains the following 

Lemma (5.3.13)[213]: For any consistent z   and  𝑠 ∈ 𝔖 , the basic open se  szO ,  in  𝔽 

contains a neighborhood  szO , , where s  captures z The proof of Theorem(5.3.11) is based 

on the following auxiliary result. 

Lemma (5.3.14)[213]: For any sequence  
nnX of C-sets in 𝔽 there exist a sequence 

  eBAc
nnn




),(  And sets BA, such that 

    –   





 BABBAA nnnn  ,, , 

    –    
6
1, BA   ; 

    – ,nanyfor  the set 

                       
    CBfAfCf p   1\0\:2,  

           Is either contained in nX  or disjoint from nX . 

Proof: We inductively define a decreasing sequence  
nnV  of nonempty open sub- sets of 𝔽 

and for every n we choose 

(i) sequences  
k

n

k  of open sets dense in  nV such that n

kk U  is                                       

either contained in nX  or disjoint from nX ; 

(ii) nz  and ns   𝔖 capturing nz such that nnnn sszz 11 ,   , and 

                                    
  i

k
nki

nn UszO



,

,  . 

Suppose that the construction has been carried out for  0 norni . Since 

                                     11,  nnn szOX    
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is a C−set there is a nonempty open set  11,  nnn szOV  and a sequence of itsdense open subsets

k

n

kU )(  such that 
 kk U  is either contained in nX or disjoint from it. Then the set n

knkin UG  ,  is 

open and nonempty (because iV  aredecreasing and i

kU  are dense in iV ). Moreover, 
 nnnn szOVG ,1 . 

Now, we can choose consistent nz 𝔷 and ns  such that 1nz ⊏ nz , nn ss 1 , and   nnn GszO ,  ; 

by Lemma (5.3.13) we can additionally require that ns  captures nz . The sequence ...10  ss  

defines the unique element    eBAc
nnn




. We also obtain the sets BA,  in the same way as in 

the proof of Lemma(5.3.9) , applying Lemma (5.3.4)to sequences    
nnnn BandA  . 

It follows that whenever the function  2, pCf   takes values 0 o A  and1 on 
B , the pair 

 cf ,  belongs to 𝔽 and, for every    nn szOcfn ,,,  since csn   and ns  captures nz . Therefore 

                              
  n

k
k

n

k
kn

i

k
nkin

UUUcf
 

 
,

,  , 

for every n , and the lemma follows.  

Theorem (5.3.11) can be easily derived from the above lemma. Indeed, if 𝑌𝑛 are C−sets in 

  pC  ,   then  2, pnn CYZ   are C−sets in  2,pC . Let :  𝔽→  2,pC  be the projection 

onto the first axis. Then  nn ZX 1  are C−sets in the space 𝔽. Applying Lemma (5.3.14) to 

such sets nX we conclude that there are two different functions𝑔1, 𝑔2with𝑔𝑖\𝐴
∗ ≡ 0, 𝑔𝑖\𝐵

∗ ≡

1 for 2,1i . It follows that (𝑔𝑖 , 𝑐) are not separated by nX and hence 𝑔𝑖 are not separated by the 

sets𝑌𝑛. 

    For a compact space  𝐾 , we denote by 𝐵𝑎(𝐶(𝐾),𝑤𝑒𝑎𝑘), 𝐵𝑎(𝐶(𝐾), 𝜏𝑝)  the Baire  𝜎  -

algebras in 𝐶(𝐾)  endowed with the weak topology, or the pointwise topology, respectively. 

Theorem (5.3.15)[213]: (Avil´es-Plebanek-Rodr´ıguez). 

                                  𝐵𝑎(𝐶(𝛽𝜔),𝑤𝑒𝑎𝑘) ≠ 𝐵𝑎(𝐶(𝛽𝜔), 𝜏𝑝) . 
Using results from we can also give a simpler proof of the above theorem: 

Proof: We shall show that, for any ultra filter ℘ ∈ 𝜔∗, the measure �̂�℘ is not 𝐵𝑎(𝐶(𝛽𝜔), 𝜏𝑝) 

-measurable. Assume the contrary. Then there exists a countable subset 𝑋 of  𝛽𝜔 such that 

�̂�℘ is measurable with respect to the  𝜎-algebra of subsets Of 𝐶(𝛽𝜔) generated by{𝛿𝑥: 𝑥 ∈

𝑋 }. Corollary(5.3.5) implies that �̂�℘  vanishes on the closure of  𝑋 ∩ 𝜔∗ in  𝛽𝜔 . Take  𝐴 ⊆

𝜔  such that 𝑋 ∩ 𝜔∗  ⊆ �̅�   and  �̂�℘(�̅�) < 1 . Let 𝐸 = { 𝑓 ∈ 𝐶(𝛽𝜔): 𝑓\�̅� ≡ 0} . Observe 

that  �̂�℘\𝐸 is measurable with respect to the 𝜎 -algebra generated by{𝛿𝑥: 𝑥 ∈ 𝑋 ∩ 𝜔 }, and for 

any subset 𝐶  of  𝐵 = 𝜔\𝐴 the characteristic function 𝑥𝑐̅: 𝛽𝜔 → ℝ belongs to 𝐸  . Then the 

measure 𝑣: 𝑝(𝜔) → [0,1] defined by 

𝑣(𝑍) = 𝑑℘(𝑍 ∩ 𝐵) =  �̂�℘(𝑍 ∩ 𝐵̅̅ ̅̅ ̅̅ ̅) =  �̂�℘(𝑥𝑍∩𝐵̅̅ ̅̅ ̅̅ ), 

for 𝑍 ∈ 𝑝(𝜔), is nonzero, Borel-measurable and vanishes on points of 𝜔, a con-tradiction 

with Proposition (5.3.2).  

Note finally that for any compact space K we have the following inclusions 

𝐵𝑎(𝐶(𝐾), 𝜏𝑝)       ⊂      𝐵𝑜𝑟𝑒𝑙(𝐶(𝑘), 𝜏𝑝) 

                                        ∩                                        ∩ 

       𝐵𝑎(𝐶(𝐾),𝑤𝑒𝑎𝑘) ⊂ 𝐵𝑜𝑟𝑒𝑙(𝐶(𝑘),𝑤𝑒𝑎𝑘) ⊂ 𝐵𝑜𝑟𝑒𝑙(𝐶(𝐾), 𝑛𝑜𝑟𝑚) 
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The space 𝐾 = 2𝜔1  is an example of a nonmetrizable compactum 𝐾 for which all the five 𝜎-

algebras on 𝐶(𝑘) are equal, see [214]. From previous results and the proposition below it 

follows that all inclusions in the above diagram are strict for the space 𝐾 = 𝛽𝜔 . Since 𝛽𝜔  is 

a continuous image of 𝜔∗, this is also the case for  𝐾 = 𝜔∗. [194]. 

Proposition(5.3.16)[213]: 𝐵𝑜𝑟(𝐶(𝛽𝜔), 𝜏𝑝) ⊈. 𝐵𝑎(𝐶(𝛽𝜔),𝑤𝑒𝑎𝑘). 

Proof: Let {𝐴𝛼: 𝛼 < 𝜔1 } be a family of almost disjoint subsets of 𝜔 . For every 𝛼 < 𝜔1 we 

pick  ℱ𝛼 ∈ 𝜔
∗  such that  𝐴𝛼 ∈ ℱ𝛼  . Let us consider the set 𝑉 = {𝑓 ∈ 𝐶(𝛽𝜔): 𝑓(ℱ𝛼) > 0  for 

some 𝛼 < 𝜔1 . 

Then 𝑉  is 𝜏𝑝-open; we shall check that 𝑉 ∉  𝐵𝑎(𝐶(𝛽𝜔),𝑤𝑒𝑎𝑘) . 

Suppose otherwise; the 𝑉 lies in the 𝜎 -algebra generated by{ 𝛿𝑛: 𝑛 ∈ 𝜔}  and some family 

{ 𝜇𝑛: 𝑛 ∈ 𝜔} , where every  𝜇𝑛  is a probability measure on  𝜔∗ . There is  𝛽 < 𝜔1  such 

that 𝜇𝑛(𝐴𝛽̅̅̅̅ ) = 0  for every 𝑛 . Let 𝐹 be the set of all 0 -1-valued functions in  𝐶(𝛽𝜔) which 

vanish outside 𝐴𝛽̅̅̅̅ . It follows that the set 𝐹 ∩ 𝑉 lies in the 𝜎 -algebra of subsets of 𝐹 which is 

generated by the restrictions of  𝜇𝑛
,𝑠 and 𝛿𝑛

,𝑠 to 𝐹 which is simply the 𝜎-algebra generated 

by 𝛿𝑛 for 𝑛 ∈ 𝐴𝛽 . On the other hand, 𝐹 ∩ 𝑉 = {𝑥�̅�: 𝑁 ∈ ℱ𝛽 , 𝑁 ⊆ 𝐴𝛽} , a contradiction, since 

ℱ𝛽 ∩ 2
𝐴𝛽  is not Borel in the Cantor set 2𝐴𝛽  .  

Corollary (5.3.17)[260]: Every basic open set 𝑁(𝜎2, 𝑧2, 𝑠2) in 𝔼 contains a neighborhood 

𝑁(𝜎2, 𝑧2, 𝑠′
2
) where 𝑠′

2
 captures 𝑧2. 

Proof: Indeed, if (𝐴, 𝐴 + 𝜖) is the final pair in s then for any 𝜖 > 0, using Lemma(5.3.3) we 

can find sets 𝐴 + 2𝜖, 𝐴 + 3𝜖 ⊆ 𝜔  of asymptotic densit 𝑦 > 𝜖  and such that 𝑧2(0) ⊆

(𝐴∗ + 2𝜖)𝑧2(1) ⊆ (𝐴∗ + 3𝜖), 𝑧2(1) ⊆ (𝐴∗ + 3𝜖). Then we can put 𝑠′
2
= 𝑠2 ∩ (𝐴′, 𝐴′ + 𝜖), 

where 𝐴′ = 𝐴 ∪ (𝐴 + 2𝜖), 𝐴′ + 𝜖 = (𝐴 + 𝜖) ∪ (𝐴 + 3𝜖) and  is small enough. 

Corollary (5.3.18)[260]: (Avil´es-Plebanek-Rodr´ıguez). 

(𝐴 + 𝜖)𝑎(𝐶(𝛽𝜔2), 𝑤𝑒𝑎𝑘) ≠ (𝐴 + 𝜖)𝑎(𝐶(𝛽𝜔2), 𝜏𝑝) . 
Using results from we can also give a simpler proof of the above theorem: 

Proof: We shall show that, for any ultra filter  ℘ ∈ 𝜔2
∗

, the measure  �̂�℘  is not  (𝐴 +

𝜖)𝑎(𝐶(𝛽𝜔2), 𝜏𝑝) -measurable. Assume the contrary. Then there exists a countable subset 𝑋 

of  𝛽𝜔2  such that �̂�℘  is measurable with respect to the  𝜎 -algebra of subsets of  𝐶(𝛽𝜔2) 

generated by{𝛿𝑥: 𝑥 ∈ 𝑋 }. Corollary(5.3.5) implies that �̂�℘  vanishes on the closure of  𝑋 ∩

𝜔2
∗

 in  𝛽𝜔2  . Take   𝐴 ⊆ 𝜔2  such that 𝑋 ∩ 𝜔2
∗
 ⊆ �̅�   and  �̂�℘(�̅�) < 1 . Let 𝐸 = { 𝑓 ∈

𝐶(𝛽𝜔2): 𝑓\�̅� ≡ 0} . Observe that   �̂�℘\𝐸  is measurable with respect to the  𝜎  -algebra 

generated by{𝛿𝑥: 𝑥 ∈ 𝑋 ∩ 𝜔
2 }, and for any subset 𝐶  of  𝐴 + 𝜖 = 𝜔2\𝐴  the characteristic 

function 𝑥𝑐̅: 𝛽𝜔
2 → ℝ belongs to 𝐸 . Then the measure 𝑣: 𝑝(𝜔2) → [0,1] defined by 

𝑣(𝑍) = 𝑑℘(𝑍 ∩ (𝐴 + 𝜖)) =  �̂�℘(𝑍 ∩ (𝐴 + 𝜖)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅) =  �̂�℘(𝑥𝑍∩(𝐴+𝜖)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅), 

For 𝑍 ∈ 𝑝(𝜔2), is nonzero, Borel-measurable and vanishes on points of 𝜔2, a con-tradiction 

with Proposition (5.3.2).  

Note finally that for any compact space K we have the following inclusions 

(𝐴 + 𝜖)𝑎(𝐶(𝐾), 𝜏𝑝)       ⊂      𝐵𝑜𝑟𝑒𝑙(𝐶(𝑘), 𝜏𝑝) 

                                        ∩                                        ∩ 

       (𝐴 + 𝜖)𝑎(𝐶(𝐾),𝑤𝑒𝑎𝑘) ⊂ 𝐵𝑜𝑟𝑒𝑙(𝐶(𝑘),𝑤𝑒𝑎𝑘) ⊂ 𝐵𝑜𝑟𝑒𝑙(𝐶(𝐾), 𝑛𝑜𝑟𝑚) 
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The space 𝐾 = 2𝜔1
2
  is an example of a nonmetrizable compactum 𝐾 for which all the five 𝜎-

algebras on 𝐶(𝑘) are equal, see [214]. From previous results and the proposition below it 

follows that all inclusions in the above diagram are strict for the space 𝐾 = 𝛽𝜔2 . Since 𝛽𝜔2  

is a continuous image of 𝜔2
∗
, this is also the case for  𝐾 = 𝜔2

∗
. [194]. 

Corollary (5.3.19)[260]: 𝐵𝑜𝑟(𝐶((𝛼 + 𝜖)𝜔2), 𝜏𝑝) ⊈. 𝐵𝑎(𝐶((𝛼 + 𝜖)𝜔
2),𝑤𝑒𝑎𝑘). 

Proof: Let {𝐴𝛼: 𝛼 < 𝜔1
2 } be a family of almost disjoint subsets of 𝜔2 . For every 𝛼 < 𝜔1

2 we 

pick ℱ𝛼 ∈ 𝜔
2∗ such that 𝐴𝛼 ∈ ℱ𝛼 . Let us consider the set 𝑉 = {𝑓 ∈ 𝐶((𝛼 + 𝜖)𝜔2): 𝑓(ℱ𝛼) >

0 for some 𝛼 < 𝜔1
2 . 

Then 𝑉  is 𝜏𝑝-open; we shall check that 𝑉 ∉  𝐵𝑎(𝐶((𝛼 + 𝜖)𝜔2),𝑤𝑒𝑎𝑘) . 

Suppose otherwise; the 𝑉 lies in the 𝜎 -algebra generated by{ 𝛿𝑛: 𝑛 ∈ 𝜔
2}  and some family 

{ 𝜇𝑛: 𝑛 ∈ 𝜔
2}, where every 𝜇𝑛 is a probability measure on 𝜔2

∗
. There is  𝛼 + 𝜖 < 𝜔1

2 such 

that 𝜇𝑛(𝐴𝛼+𝜖̅̅ ̅̅ ̅̅ ) = 0  for every 𝑛 . Let 𝐹  be the set of all 0 -1-valued functions in 𝐶((𝛼 +
𝜖)𝜔2) which vanish outside 𝐴𝛼+𝜖̅̅ ̅̅ ̅̅ . It follows that the set 𝐹 ∩ 𝑉  lies in the 𝜎  -algebra of 

subsets of 𝐹  which is generated by the restrictions of   𝜇𝑛
,𝑠 and 𝛿𝑛

,𝑠 to 𝐹  which is simply 

the  𝜎 -algebra generated by 𝛿𝑛  for 𝑛 ∈ 𝐴𝛼+𝜖  . On the other hand,  𝐹 ∩ 𝑉 = {𝑥�̅�: 𝑁 ∈
ℱ𝛼+𝜖 , 𝑁 ⊆ 𝐴𝛼+𝜖} , a contradiction, since ℱ𝛼+𝜖 ∩ 2

𝐴𝛼+𝜖 is not Borel in the Cantor set 2𝐴𝛼+𝜖  .   
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Chapter 6 

Factors of Type 𝐈𝐈𝟏and Ultra Product 𝚰𝚰𝟏 Factors 

We study the results rely on the recent work of Ioana, Peterson and Popa, who showd 

the existence of type II1 factors without outer automorphisms. Let 𝑀𝑛 be a sequence of finite 

factors with dim 𝑀𝑛 → ∞ and denote 𝑀 = ΙΙ𝜔𝑀𝑛 their ultraproduct over a free ultrafilter 𝜔. 

Some related independence properties for subalgebras in ultraproduct  ΙΙ1   factors arealso 

discussed 

Section (6.1): Non-Trivial Finite Index Subfactors  

We say that a subfactor N ⊂ M of finite index is trivial, if there exists n ∈ ℕ such that 

N ⊂ M is isomorphic with 1 ⊗  N ⊂  Mn (ℂ)  ⊗  N. We show that there exist type II1  

factors all of whose finite index sub factors are trivial. An M-M-bimodule M HM1is said to 

be bifinite if dim (HM)  < ∞  and dim (MH)  < ∞.  In the language of Cannes’ 

correspondences, our main theorem then tells that there exist type II1 factors M such that 

every bifinite M-M-bimodule is trivial, i.e. isomorphic with a direct sum of copies 

of M𝐿
2
(M)M. 

Such II1 factors are very special. Indeed, any automorphism 𝛼 ∈  𝐴𝑢𝑡(𝑀) gives rise to 

an M-M-bimodule 𝐻(𝛼) on the Hilbert space 𝐿2(𝑀) by the formula 

𝑥 ·  𝜉 =  𝑎(𝑥)𝜉 𝑎𝑛𝑑 𝜉 ·  𝑥 =  𝜉𝑥 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑥 ∈  𝑀, 𝜉 ∈  𝐿2(𝑀) . 
This M-M-bimodule is trivial if and only if 𝛼 is an inner automorphism. So, absence of non-

trivial finite index subfactors implies absence of outer automorphisms. Further, if p is a 

projection in M and 𝜋 ∶  𝑀 →  𝑝𝑀𝑝 a *isomorphism, one considers analogously the M-M-

bimodule 𝑝(𝑀)𝐿
2
𝐿2(𝑝𝑀)𝑀. Hence, absence of non-trivialfinite index subfactors implies 

triviality of the fundamental group. 

Because of the constructions, the bifinite M-M-bimodules, should be considered as the 

generalized symmetries of the II1 factor M. The main statement then becomes that there exist 

type II1 factors all of whose generalized symmetries are inner. 

In general, computing the outer automorphism group Out (M) of a II1 factor M is very 

hard. Connes discovered in [221] that Out (M) is countable whenever M is the group von 

Neumann algebra of an ICC property (T) group. Only very recently, Ioana, Peterson and Popa 

showd the existence of type II1 Factors M with Out (M) trivial, see [223]. Their theorem is an 

existence result in the same way as is the main result. We comment on that below. Explicit 

examples of II1 factors with trivial outer automo rphism group were constructed by Popa and 

[231], using crossed products by generalized Bernoulli actions and relying on the techniques 

of Popa’s breakthrough von Neumann strong rigidity results in [226], [227]. Note that in 

[231], it is shown as well that any group of finite presentation can be explicitly realized as the 

outer autom Orphism group of a II1 factor. 

Also the fundamental group of a II1factor, introduced by Murray and von Neumann in 

[118], is very hard to compute, unless, of course, you deal with a McDuff factor and get ℝ+
∗ as 

its fundamental group. Connes showd in [221] that the fundamental group of the group von 

Neumann algebra of an ICC property (T) group is countable. The first example of a II1 factor 

with trivial fundamental group was given by Popa in [228], as the group von Neumann 

algebra of 𝑆𝐿(2, ℤ)  ⋉ ℤ2. Many other such examples are given in [223], [226], [227], [231]. 
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In [226], Popa constructs type II1 factors with an arbitrarily prescribed countable subgroup of 

ℝ+
∗  as a fundamental group. An alternative construction is given in [223]. 

The type II1 factors studied are of the form 𝑀 =  𝑅 ⋊ Γ, where Γ =  Γ0 ∗ Γ1the free 

product of two infinite groups is and Γ ↷  𝑅 is an action by outer automorphisms on the 

hyperfinite II1 factor R. 

We formulate strong conditions on the groups and the actions involved, that ensure that 

all bifinite M-Mbimodules, are trivial. But, we do not give explicit examples of actions that 

satisfy all these requirements: as in [223], we rather show the existence of such actions 

through a Baire category argument. 

The following argument, due to Ioana, Peterson and Popa [223] is a key ingredient to 

show that, under suitable conditions, every bifinite M-M-bimodule is trivial when 𝑀 =  𝑅 ⋊
 (Γ0 ∗  Γ1). one first assumes that R ⊂ M has the relative property (T). The free product Γ0 ∗
 Γ1gives rise to a strong deformation property of M. 

Combined with the relative property (T) for R ⊂ M, this fixes somehow the position of R 

inside 𝑀. It allows to conclude that any finite index inclusion 𝜋 ∶  𝑀 →  𝑀𝑡  can be unitarily 

conjugated into one in which 𝜋(𝑅) ⊂  𝑅𝑡 , see Theorem (6.1.6) and Propositions (6.1.7) 

and(6.1.8) . 

Throughout, (𝑀,𝒯) denotes a von Neumann algebra M with a faithful normal tracial 

state 𝒯. We denote, for all 𝑛 ∈  ℕ0 and all(𝑀,𝒯), 
𝑀𝑛:𝑀𝑛(ℂ) ⊗  𝑀 . 

We use the convention 𝑁0 = {1, 2, . . . }. If M is a II1 factor and t > 0, we also introduce the 

usual notation 𝑀𝑡 =  𝑝𝑀𝑛𝑝 whenever 𝑝 ∈ 𝑀𝑛is a projection with non-normalized trace equal 

to t. 

We make an extensive use of Popa’s technique of intertwining subalgebras using 

bimodules. Let (𝑀,𝒯) be a von Neumann algebra with a fixed faithful normal tracial state 𝒯. 

Let A, B ⊂ M be von Neumann subalgebras. We say that A embeds into B inside M and 

write  

𝐴 
≺
𝑀
𝐵 

If 𝐿2(𝑀) contains a non-zero A-B-subbimodule H that is finitely generated as a right B-

module. We write 

𝐴 
𝑓
≺
𝑀
𝐵 

 

 if for every non-zero projection 𝑝 ∈  𝐴′ ∩  𝑀, 𝐿2 (𝑝𝑀)  contains a non-zero A-B-

subbimodule that is finitely generated as a right B-module. 

The normalizer of 𝐴 ⊂ M consists of the unitaries u ∈ U (M) satisfying 𝑢𝐴𝑢∗ =  𝐴 and is 

denoted by𝑁𝑀(𝐴). We say that A ⊂ M is regular if 𝒩𝑀(𝐴)′′ =  𝑀. 

 If 𝐴 ⊂  (𝑀, 𝒯) is a von Neumann subalgebra, we say that 𝛼 ∈  𝑀 quasi-normalizes A 

if there exist 𝑎1, . . . , 𝑎𝑛, 𝑏1, . . . , 𝑏𝑚 ∈  𝑀 satisfying 𝐴𝑎 ⊂ ∑ 𝑎𝑖
𝑛
𝑖=1 𝐴 and 𝑎𝐴 ⊂ ∑ 𝐴𝑏𝑗

𝑚
𝑗=1  . The 

set of elements quasinormalizing A is denoted by 𝑄𝑁𝑀 (𝐴) and is a unital*j-subalgebra of M 

containing A. We call quasinormalizer of A inside M the von Neumann algebra 𝑄𝑁𝑀(𝐴)
′′ 
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generated by the elements quasi-normalizingA. If 𝑄𝑁𝑀(𝐴)
′′ =  𝑀, we say that the inclusion 

A ⊂ M is quasi-regular. 

If 𝐴 ⊂  (𝑀,𝒯) is a von Neumann subalgebra, Jones’ basic construction [225] is denoted by 

〈𝑀, 𝑒𝐴〉and definedas the von Neumann algebra acting on 𝐿2(𝑀) generated by A and the 

orthogonal projection 𝑒𝐴 ) of 𝐿2(𝐴) . Note that A commutes with 𝑒𝐴  and that 𝑒𝐴𝑥𝑒𝐴 =
 𝐸𝐴(𝑥)𝑒𝐴 for all 𝑥 ∈  𝑀 , where 𝐸𝐴: 𝑀 →  𝐴  denotes the unique t-preserving conditional 

expectation. Equivalently, 〈𝑀, 𝑒𝐴〉 equals the commutant of the right A-action on 𝐿2(𝑀). 
If (A, t) is a von Neumann algebra with a fixed faithful normal tracial state t and if H𝐴is a 

right A-module, the commutant 𝐴′of the right A-action on H is equipped with a canonical 

normal faithful semifinite trace Tr that can be characterized as follows: 

𝑇𝑟(𝑇 𝑇∗) = 𝜏(𝑇∗𝑇)whenever 𝑇: 𝐿2(𝐴) → 𝐴: 𝑇(𝜉𝑎) = (𝑇 𝜉) a for all 𝜉 ∈ 𝐻, 𝑎 ∈ 𝐴 . 
One defines 

 𝑑𝑖𝑚(𝐻𝐴) ∶=  𝑇𝑟(1) 
and one calls dim(𝐻𝐴) the coupling constant or the relative dimension of the right A-module 

(𝐻𝐴). As such, the definition of dim(𝐻𝐴) depends on the choice of tracial state 𝑡  on A. 

Throughout, either A will be a 𝐼𝐼1factor, in which case the coupling constant is canonically 

defined, or A will inherit a trace from a natural ambient 𝐼𝐼1factor. 

For 𝐼𝐼1 factors, the coupling constant is canonically defined and it is then a complete invariant 

of Hilbert A-modules. If A has a non-trivial center, a complete invariant of Hilbert A-

modules can be given in terms of the center-valued trace. We shall only use the following 

corollary: if 𝑑𝑖𝑚(𝐻𝐴) < ∞ and 휀 >  0, there exists a central projection 𝑧 ∈  𝑍(𝐴), 𝑛 ∈ ℕ 

and a projection 𝑝 ∈  𝐴𝑁  such that 𝑡(1 − 𝑧)  <  휀    and (𝐻𝑧)𝐴 ≅ (𝑝𝐿
2(𝐴)⨂𝑛)𝐴 as A-

modules. 

Let 𝐴 ⊂  (𝑀, 𝑡). Regarding the basic construction and 〈𝑀, 𝑒𝐴〉 i as the commutant of 

the right A-action on 𝐿2(𝑀), we get a natural normal faithful semifinite trace Tr on 〈𝑀, 𝑒𝐴〉. It 
is characterized by the formula 𝑇𝑟(𝑥𝑒𝑦)  =  𝜏(𝑥𝑦), 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑥, 𝑦 ∈  𝑀. 
If MHM is an M-M-bimodule and A ⊂ M a von Neumann subalgebra, a vector 𝜉 ∈  𝐻 is said 

to be A-central if  𝑎𝜉 =  𝜉𝑎 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑎 ∈  𝐴. 

In [228], Popa defined the relative property (T) for an inclusion 𝐴 ⊂  (𝑀, 𝑡) of von Neumann 

algebra A into the von Neumann algebra M equipped with a faithful normal tracial state 𝑡. An 

equivalent form of this definition goes as follows. For every 휀 >  0, there exists a finite subset 

ℱ ⊂  𝑀 and a 𝛿 >  0 such that every M-M-bimodule that admits a unit vector ξ with the 

property 

|〈𝜉, 𝑎𝜉𝑏〉  −  𝑡(𝑎𝑏)|  < 𝛿 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑎, 𝑏 ∈ ℱ 
 admits an A-central vector 𝜉0satisfying ‖𝜉0 − 𝜉‖ < 휀 

If M is a type II1factor and MHM an M-M-bimodule, we say that H is bifinite if dim 

(MH) < ∞ and dim (HM) <∞ . The fusion algebra of M is defined as the set of all bifinite M-

M-bimodules modulo isomorphism of bimodules and is denoted as FAlg (M). Note that FAlg 

(M) is equipped with the operations of direct sum and Cannes tensor product, see 

V.Appendix B in [220] and the brief review below. One has the obvious notion of an 

irreducible element in FAlg (M), and every element in FAlg(M) is the direct sum of a finite 

number of irreducibles. 
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Every M-M-bimodule MHM has a contragredient M-M-bimodule M �̅�M. Its carrier 

Hilbert space is the adjoint Hilbert space �̅� while its bimodule structure is given by 

𝑥 · 𝜉̅  =  𝜉𝑎∗̅̅ ̅̅̅𝑎𝑛𝑑 𝜉̅  ·  𝑎 =  𝑎∗𝜉̅̅̅̅̅ . 
If H and K are bifinite M-M-bimodules, then H and K are disjoint if and only if H ⊗MK is 

disjoint from the trivial bimodule M𝐿2 (M)M if and only if H ⊗K �̅�is disjoint from the trivial 

bimodule. 

 Finally, recall Frobenius reciprocity: if H, K, L ∈ Flag (M), the multiplicity of H in K ⊗M L 

equals the multiplicity of K in H ⊗M�̅� and equals the multiplicity of L in �̅� ⊗MH. 

We briefly recall the Connes tensor product. If MHM is an M-M-bimodule, there is a natural 

dense subbimodule ℋ ⊂  𝐻  and H is a 𝑊∗ -M-M-bimodule, meaning that there is an M-

valued scalar product on ℋ. More precisely, ℋ consists of those vectors 𝜉 ∈  𝐻 such that 

there exists 𝜆 >  0 satisfying  ‖𝜉𝑎‖ ≤  𝜆‖𝑎‖2 
For all a ∈ M. If now MKM is another M-M-bimodule, the Connes tensor product 

H⊗MK is defined as the separation and completion of the algebraic tensor product H ⊗algK 

for the scalar product  

〈𝑎 ⊗  𝜉, 𝑏 ⊗  𝜂〉 ∶=  〈𝜉, 〈𝑎, 𝑏〉𝑀𝜂〉 
The M-M-bimodule structure on H ⊗algK is given by  

𝑎 ·  (𝑏 ⊗  𝜉)  =  𝑎𝑏 ⊗  𝜉 𝑎𝑛𝑑 (𝑏 ⊗  𝜉)  ·  𝑎 =  𝑏 ⊗ (𝜉𝑎) . 
When there is no risk for misunderstanding, the tensor product H ⊗MK is sometimes simply 

denoted by HK. 

In particular, every automorphism 𝑎 ∈  𝐴𝑢𝑡(𝑀)  defines the element 𝐻(𝑎) ∈
 𝐹𝐴𝑙𝑔(𝑀) and as such, one considers Out (M) ⊂ Flag (M). 

Note that every bifinite M-M-bimodule is isomorphic with some H( 𝜓). Moreover, if 𝜓 ∶
 𝑀 →  𝑝𝑀𝑁𝑝 and 𝜃 ∶  𝑀 →  𝑞𝑀𝑚𝑞 are finite index inclusions, the M-M-bimodules H (𝜓) 

and H(θ) are isomorphic if and only if there exists a unitary 𝑢 ∈  𝑝(𝑀𝑛,𝑚(ℂ) ⊗
 𝑀)𝑞 satisfying 𝜃(𝑥)  =  𝑢∗𝜓(𝑥)𝑢 for all x ∈ M. Also note that  𝐻(𝜓) ⊗𝑀𝐻(𝜃) ≅
𝐻((𝑖𝑑 ⊗ 𝜃)𝜓). 

A subset ℱ ⊂  𝐹𝐴𝑙𝑔(𝑀)  is called a fusion subalgebra if ℱ  is closed under taking 

submodules, direct sums and tensor products. An important role is played by freeness 

between fusion subalgebras. 

Definition (6.1.1)[218]: Let M be a II1factor. Two fusion subalgebras ℱ1, ℱ2 ⊂  𝐹𝐴𝑙𝑔(𝑀) 
are said to be free if thefollowing two conditions hold. 

(i) Every tensor product of non-trivial irreducible bimodules, with factors alternatingly from 

ℱ1,and ℱ2is irreducible. 

(ii) Two tensor products of non-trivial irreducible bimodules, with factors alternatingly from  

ℱ1,and ℱ2, are equivalent if and only if they are factor by factor equivalent. 

Equivalently, ℱ1,and ℱ2are free if every tensor product of non-trivial irreducible bimodules, 

with factors alternatingly from  ℱ1,and ℱ2, is disjoint from the trivial bimodule. 

Whenever a ∈ Aut (M), we defined the bimodule H (a) ∈ Flag (M). So, if Γ ↷ 𝑀 is an 

outer action, we can regard Γ as a fusion subalgebra of FAlg (M). 

Definition (6.1.2)[218]:  Let the countable group  Γ act outerly on the II1  factor N. The 

almost normalizer of Γ ↷ 𝑁 inside FAlg(N) is defined as the fusion subalgebra of FAlg(N) 
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generated by the bifinite N-N-bimodules that can be realized as an N-N-subbimodules of a 

bifinite (𝑁 ⋊ Γ) − (𝑁 ⋊ Γ) −bimodule. 

We show some results on the almost normalizing bimodules for Γ ↷ 𝑁  There, the 

terminology of bimodules almost normalizing Γ ↷ 𝑁, will become more clear as well. 

Lemma(6.1.3)[218]:  Let Γ ↷ 𝑁 be an outer action on the II1factor N. If Γ0 < Γ is a finite 

index subgroup, the almost normalizers of Γ0  ↷ 𝑁 and Γ ↷ 𝑁 inside FAlg(N), coincide. 

Proof: Tensoring with the obvious inclusion bimodule 

 𝐻𝑖𝑛𝑐𝑙(Γ0, Γ)  =𝑁⋊Γ0 𝐿
2(𝑁 ⋊  Γ)𝑁⋊Γ 

 and its contragredient, one goes back and forth between bifinite bimodules for 𝑁 ⋊
Γ0 and 𝑁 ⋊ Γ. 

We fix infinite groups Γ0and Γ1. We set Γ =  Γ0 ∗ Γ1and take an outer action Γ ↷  𝑁 of 

Γ on the II 1factor N. We set 𝑀 =  𝑁 ⋊ Γ, with subalgebras 𝑀𝑖 =  𝑁 ⋊ Γ𝑖. 
We record from [223] the following result. The first statement follows from [388], and the 

second one from [223], Theorem (1.1.1). 

Theorem(6.1.4)[218]:   (Ioana-Peterson-Popa, [223]). The following results hold. 

(i) If Q ⊂ M is a von Neumann subalgebra with the relative property (T), there exists i ∈ {0, 

1} such that 𝑄 
≺
𝑀
𝑀𝑖 . 

(ii) If t > 0, i ∈ {0, 1} and if Q ⊂  Mi
t is a von Neumann subalgebra such that Q 

≮
Mi
t𝑁𝑡, then 

the quasi -normalizer of Q inside 𝑀t is contained in Mi
t. 

Corollary (6.1.5)[218]: Suppose that t > 0 and that 𝑄 ⊂  𝑀𝑡 is a subfactor with the relative 

property (T) whose quasi-normalizer has finite index in 𝑀𝑡then Q 
≺
Mt
𝑁𝑡 

Proof: Set 𝑀𝑖 =  𝑁 ⋊ Γ𝑖  . Replacing Q by 𝑄1/𝑡, we may assume that t = 1. Suppose that 

𝑄 
≮
𝑀
𝑁.. The first statement in (6.1.4) yields i ∈ {0, 1} such that 𝑄 

≺
𝑀
𝑀𝑖 .. Take a projection  ∈

 𝑁𝑛  , a unital *-homomorphism 𝜓 ∶  𝑄 →  𝑝𝑀𝑖
𝑛𝑝  and a non-zero partial isometry 𝑣 ∈

 (𝑀1,𝑛(ℂ) ⊗𝑀)𝑝 satisfying 𝑥𝑣 =  𝑣𝜓(𝑥) for all 𝑥 ∈ 𝑄. By construction, the bimodule 

𝜓(𝑄)(𝑝(𝐿2(𝑀𝑖)
⊕𝑛)𝑀𝑖 . 

 is isomorphic with a sub-bimodule of𝑄𝐿
2
(𝑀)𝑀𝑖. Since we are supposing that 𝑄 

≮
𝑀
𝑁. We get 

that Ψ(𝑄)
≮

𝑝𝑀𝑖
𝑛𝑝  Denote by 𝑄1  the quasi-normalizer of 𝜓(𝑄)  inside 𝑝𝑀𝑛𝑝 , The second 

statement of Theorem(6.1.4) implies that 𝑄1 ⊂ 𝑝𝑀𝑖
𝑛𝑝 . But, if 𝑄0  denotes the quasi-

normalizer of Q inside M, it is clear that 𝑣∗𝑄0𝑣 ⊂ 𝑄1.Since we assume that 𝑄0  has finite 

index in M, we arrive at a contradiction. 

The following result is a first step towards the main theorem. 

Theorem(6.1.6)[218]:   Let Γ0and Γ1be infinite groups, Γ =  Γ0 ∗ Γ1 their free product and 

Γ ↷  𝑁 an outer action on the II1 factor N. Set 𝑀 =  𝑁 ⋊  Γand suppose that 𝑁 ⊂  𝑀 has the 

relative property (T). 

If t > 0 and 𝜋 ∶  𝑀 →  𝑀𝑡is a finite index, irreducible inclusion, then 

𝜋(𝑁)
≺
𝑀𝑡
𝑁𝑡𝑎𝑛𝑑 𝑁𝑡

≺
𝑀𝑡
𝜋(𝑁) 

 Proof: By Corollary (6.1.5) , we get that 𝜋(𝑁)
≺
𝑀𝑡
𝑁𝑡. 
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Realize 𝑀𝑡 =  𝑝𝑀𝑛𝑝 . Since 𝜋(𝑀) ⊂  𝑀𝑡  has finite index, we can take a projection  𝑝1 ∈
𝜋(𝑀)𝑚, a finite index inclusion 𝜓 ∶  𝑀𝑡 → 𝑝1𝜋(𝑀)

𝑚𝑝1 and a non-zero partial is ometry 𝑣 ∈
 𝑝(𝑀𝑛,𝑚 (ℂ)  ⊗  𝑀)𝑝1  satisfying 𝑥𝑣 =  𝑣𝜓(𝑥) 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑥 ∈  𝑀𝑡 . Write 𝜋(𝑀)𝑠: =

 𝑝1𝜋(𝑀)
𝑚𝑝1. Cutting down if necessary, we may assume that 𝐸𝜋(𝑀)𝑠(𝑣

∗𝑣) has support 𝑝1. 

Then, 𝜓(𝑁𝑡)  ⊂ 𝜋(𝑀)𝑠 has the relative property (T). The quasi-normalizer of 𝜓(𝑁𝑡) inside 

𝜋(𝑀)𝑠  contains 𝜓(𝑁𝑡)and hence, is of finite index. By Corollary (6.1.5), we get that 

𝜓(𝑁𝑡) 
≺

𝜋(𝑀)𝑠𝜋(𝑁)
𝑠.  so, we find a projection 𝑝2 ∈  𝜋(𝑁)

𝑘,  a unital*-homomorphism 𝜃 ∶

 𝜓(𝑁𝑡)  →  𝑝2𝜋(𝑁)
𝑘𝑝2  and a non-zero partial is ometry 𝑤 ∈  𝑝1(𝑀𝑚,𝑘(ℂ) ⊗  𝜋(𝑀))𝑝2  

satisfying 𝑥𝑤 =  𝑤𝜃(𝑥) 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑥 ∈  𝜓(𝑁𝑡). 
Since 𝐸𝜋(𝑀)𝑠(𝑣

∗𝑣) has support 𝑝1and since w has coefficients in 𝜋(𝑀), it follows that 𝑣𝑤 ≠

 0. Moreover ,𝑁𝑡𝑣𝑤 ⊂  𝑣𝑤𝜋(𝑁)𝑘We have shown that 𝑁𝑡
≺
𝑀𝑡
𝜋(𝑁). 

          First of all, Propositions (6.1.7) and(6.1.8) describe the structure of irreducible bifinite 

(𝑃 ⋊  𝛬) − (𝑁 ⋊ Γ) -bimodule containing a bifinite P-N-subbimodule. 

The condition of containing a bifinite P-N-subbimodule is of course a very strong one. 

Typically, an application of the deformation /rigidity techniques explained yields the 

existence of a P-N-subbimodule of finite N-dimension and the existence of another P-N-

subbimodule of finite P-dimension. In Proposition (6.1.9), we show that in good cases this 

suffices to get the existence of a bifinite P-N-subbimodule. 

Note that Proposition(6.1.8) is a generalization of Lemma 8.4 in [223], but we avoid 

the use of Connes’ result about vanishing of 1-cocycles for finite group actions. 

Proposition (6.1.7)[218]: Let 𝑀0 be a II1 factor with regular subfactor N. Suppose that Γ ↷
 𝑁 is an outer action of the ICC group Γ on theII1 factor N. Let H be an irreducible bifinite 

𝑀0(𝑁 ⋊ Γ) −bimodule containing abifinite 𝑁0 −𝑁 subbimodule. 

Then, there exists a projection 𝑝 ∈  𝑁𝑛 and an irreducible finite index inclusion 𝜓 ∶  𝑀 →
𝑝(𝑁 ⋊ Γ)𝑛𝑝 satisfying 

(i) 𝐻 ≅ 𝐻(𝜓) 𝑎𝑠 𝑀0 − (𝑁 ⋊ Γ)-bimodules; 

(ii) 𝜓(𝑁0)  ⊂  𝑝𝑁
𝑛𝑝 and this inclusion has finite index; 

(iii)The relative commutant 𝑝(𝑁 ⋊ Γ)𝑛𝑝⋂ 𝜓(𝑁0)′𝑒𝑞𝑢𝑎𝑙𝑠 𝑝𝑁
𝑛𝑝 ⋂ 𝜓(𝑁0)′. 

Proof: Let H be an irreducible bifinite 𝑀0 = (𝑁 ⋊ Γ) -bimodule containing a bifinite 𝑁0 −
𝑁 subbimodule. Since 𝑁 ⊂  𝑁 ⋊  Γ is irreducible, the von Neumann algebra A consisting of 

𝑀0  − 𝑁-bimodular operators on H is finite-dimensional. Since the elements of A are M -

modular, we write A as acting on the right on H. 

 Take an irreducible bifinite 𝑁0  − 𝑁 -subbimodule K ⊂ H. Define H as the closed linear span 

of 𝑀0 𝐾𝐴. We denote by z the orthogonal projection onto H and observe that 𝑧 ∈  𝑍(𝐴). 
When ever 𝑣 ∈  𝑈(𝐴),𝐾𝑣 ≅ 𝐾 as 𝑁0 −𝑁-bimodules. So, the regularity of 𝑁0 ⊂ 𝑀0 ensures 

that H is a direct sum of 𝑁0 −𝑁 -bimodules isomorphic with one of the 𝑢𝐾 for𝑢 ∈ 𝒩𝑀0(𝑁). 

Since Z(A) is a finite-dimensional abelian algebra normalized by the unitaries u𝑔, g ∈

 Γ, we can define the finite index subgroup Γ0 <  Γ consisting of 𝑔 ∈ Γ  such that z and 

𝑢g commute. Hence, for 𝑔 ∈ Γ0, we have 𝐾𝑢𝑔 ⊂ ℋ, implying that there exists 𝑢 ∈  𝒩𝑀0(𝑁0) 

satisfying 𝐾𝑢𝑔 ≅ 𝑢𝐾 as N-N-bimodules. Next define the subset 𝐼 ⊂  Γ as  

𝐼 ∶=  {𝑔 ∈ Γ | 𝐾𝑢𝑔 ≅ 𝐾 𝑎𝑠 𝑁0 −𝑁 − 𝑏𝑖𝑚𝑜𝑑𝑢𝑙𝑒𝑠 } . 
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It is easily checked that I is globally normalized by the elements of Γ0. Moreover, if𝑔 ∈  𝐼, 
we have that 𝐻(𝜎g) is contained in �̅�  ⊗𝑁0 𝐾, implying that I is finite. The ICC property of Γ 

yields that I = {e}. 

Set 𝑀 =  𝑁 ⋊  Γ. Take an irreducible finite index inclusion 𝜃 ∶  𝑀0 →  𝑞𝑀
𝑚𝑞 such 

that 𝐻 ≅ 𝐻(𝜃) as 𝑀0 −𝑀-bimodules. 

The presence of K ⊂ H is then translated to the existence of a non-zero partial isometry 

𝑣 ∈  𝑞(𝑀𝑚,𝑛 (ℂ)  ⊗  𝑀)𝑝1  and an irreducible finite index inclusion𝜓1: 𝑁0⟶ 𝑝1𝑁
𝑛𝑝1 such 

that  

𝜃(𝑥)𝑣 = 𝑣𝜓1(𝑥) 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑥 ∈  𝑁0, 
 𝐾 ≅ 𝐻(𝜓1)𝑎𝑠 𝑁0 −𝑁 − 𝑏𝑖𝑚𝑜𝑑𝑢𝑙𝑒𝑠 

 We claim that 𝑝1 𝑀
𝑛 𝑝1⋂𝜓1(𝑁0)

′ = ℂ𝑝1 . Indeed, if ∑ 𝑥𝑔𝑢𝑔𝑔∈Γ  with 𝑥𝑔 ∈

 𝑝1𝑁
𝑛 𝜎𝑔(𝑝1) commutes with 𝜓1(𝑁0), it follows that 

 X g s g(𝜓1 (y)) = 𝜓1 (y)x g for all g ∈ G, y ∈N. 

𝑥𝑔𝜎𝑔(𝜓1(𝑦)) = 𝜓1(𝑦)𝑥𝑔 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑔 ∈ Γ, 𝑦 ∈ 𝑁0 

So, whenever 𝑥𝑔 ≠  0, 𝐾𝑢𝑔 ≅ 𝐾⊗𝑁 𝐻(𝜎𝑔) ≅  𝐾 and hence g = e. It follows that our relative 

commutant lives inside 𝑝1𝑁
𝑛𝑝1and so, is trivial by the irreducibility of 𝜓1(𝑁0)  ⊂  𝑝1𝑁

𝑛𝑝1. 

The claim is shown. 

In particular, we conclude that 𝑣∗𝑣 =  𝑝1and that 𝑣𝑣∗1is a minimal projection in 𝑞𝑀𝑚𝑞 ∩
𝜃(𝑁0)

′. 𝐴𝑙𝑠𝑜, 𝑣∗𝜃(𝑁0)𝑣 ⊂  𝑝1𝑁
𝑛𝑝1 and this is a finite index inclusion. 

Set 𝐵 =  𝑞𝑀𝑚𝑞 ∩ 𝜃(𝑁0)
′.  By irreducibility of 𝜃(𝑀0)  ⊂  𝑞𝑀

𝑚𝑞,  we know that Ad 

𝜃(𝒩𝑀0(𝑁0)) yields an ergodic action on B. Since B admits the minimal projection 𝑣𝑣∗, 𝐵 is 

finite-dimensional. Denote by z the central support of 𝑣𝑣∗  in B. Let (𝑓𝑖𝑗) be matrix units 

for𝑧𝐵 with 𝑓00 = 𝑣𝑣
∗. Take a finite set of 𝑢𝐾 ∈ 𝒩𝑀0(𝑁0) such that ∑ 𝑢𝑘𝑧𝑢𝑘

∗ =  𝑞𝑘 . Finally, 

take partial isometries 𝑣𝐾𝑖 in 𝑁n (enlarging n if necessary) satisfying 𝑣𝑘𝑖𝑣𝑘𝑖
∗ = 𝑝1 for all 𝑘, 𝑖 

and 𝑝 = ∑ 𝑣𝑘𝑖
∗  𝑣𝑘𝑖𝑘,𝑖 a projection in 𝑁n Defining  

𝑤 ≔∑𝑢𝑘𝑓𝑖0𝑣𝑣𝑘𝑖
𝑘𝑖

𝑎𝑛𝑑 𝜓:𝑀0 →  𝑝(𝑁 ⋊ Γ)
𝑛𝑝 ∶  𝜓(𝑦)  =  𝑤∗ 𝜃(𝑦)𝑤 

We are done. 

Proposition (6.1.8)[218]:  Let 𝛬 
𝜌
↷
𝑃 and Γ 

𝜎 
↷
 𝑁 be outer actions of the ICC groups 𝛬, Γ on 

the II1 factors P, N. 

Suppose that H is a bifinite (𝑃 ⋊  𝛬) − (𝑁 ⋊  Γ) -bimodule containing a bifinite P-N-

subbimodule. 

Then there exists an irreducible finite index inclusion 𝜓 ∶  𝑃 ⋊  𝛬 →  𝑝(𝑁 ⋊ Γ)𝑛𝑝 with 𝑝 ∈
 𝑁𝑛 and an isomorphism 𝛿 ∶  𝛬 → Γ0 between finite index subgroups of 𝛬, Γ, satisfying 

(i) 𝐻 ≅ 𝐻(𝜓), 
(ii)𝜓(𝑃)𝑝𝑁𝑛𝑝  p and this is a finite index inclusion satisfying 𝑝(𝑁 ⋊ Γ)𝑛𝑝 ∩  𝜓(𝑃)′ =
𝑝𝑁𝑛𝑝 ∩ 𝜓(𝑃)′ ; 
(iii) for some non-zero projection 𝑧 ∈  𝑍(𝑝𝑁𝑛𝑝 ∩ 𝜓(𝑃)′)  commuting with 𝜓(𝑃 ⋊ 𝛬0  we 

have. 

𝑧𝜓(𝑢𝑔) = xδ(g)uδ(g)for unitaries xs ∈  zN
nσs(z) when s ∈ Γ0,  
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Proof: By Proposition (6.1.7), we get 𝐻 ≅ 𝐻(𝜓)where 𝜓 ∶  𝑃 ⋊  𝛬 →  𝑝(𝑁 ⋊  Γ)p is a 

finite index inclusion satisfying 𝑝 ∈  𝑁𝑛, 𝜓(𝑃)  ⊂  𝑝𝑁𝑛𝑝  a finite index inclusion and 

𝑝(𝑁 ⋊ Γ)𝑛𝑝 ∩  𝜓(𝑃)′ = pNnp ∩ ψ(P)′ 
Let 𝑝0 be a minimal projection in the finite dimensional algebra pNnp ∩ ψ(P)′ and set 

𝜓0(𝑥) =  𝜓(𝑥)𝑝  for 𝑥 ∈  𝑃 . Define 𝐾 =  𝐻(𝜓0)  as a bifinite P-N-bimodule. As in the 

beginning of the proof of Proposition (6.1.7), we get finite index subgroups 𝛬0 < 𝛬 and Γ0 <
Γ defined by 

𝛬0: =  {𝑔 ∈  𝛬 | ∃ℎ ∈  𝐺 , 𝐻(𝜌𝑔)𝐾 ≅ 𝐾𝐻(𝜎ℎ)} , 

Γ0: =  {ℎ ∈  Γ | ∃𝑔 ∈ 𝛬  , 𝐾𝐻(𝜎ℎ) ≅ 𝐻(𝜌𝑔)𝐾} , 

and an isomorphism 𝛿 ∶  𝛬0 → Γ0 such that 𝐻(𝜌𝑔)𝐾 ≅ 𝐾𝐻(𝜎𝛿(𝐺))for all g ∈  Λ0. 

Let 𝑧0 ∈  𝑍(𝜓(𝑃)′ ∩  𝑝𝑁
𝑛𝑝) be the central support of 𝑝0 .Take 𝑔 ∈  𝛬0. It follows that 

𝜓(𝜌𝑔(. )) 𝑧0𝑎𝑛𝑑𝑠 𝜎𝛿(𝑔)(𝜓(·)𝑧0) define isomorphic P-N bimodules. So, there exists a unitary 

𝑣 ∈ 𝜎𝛿(𝑔)(𝑧0)𝑁
𝑛𝑧0 such that 𝑣 𝜓(𝜌𝑔(𝑥))  =  𝜎𝛿(𝑔)(𝜓(𝑥))𝑣 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑥 ∈  𝑃. It follows that 

𝑢𝛿(𝑔)
∗ 𝑑(𝑢𝑔) commutes with𝜓(𝑃)  and hence, belongs to𝑝𝑁𝑛 𝑝. It follows that 𝑧0𝜓(𝑢𝑔) ∈

𝑢𝛿(𝑔)𝑁
𝑛 for all 𝑔 ∈ 𝛬0. But then. 

 (𝜓(𝑢ℎ)∗𝑧0𝜓(𝑢ℎ)𝜓(𝑢𝑔) = (𝑧0𝜓(𝑢ℎ))
∗
 (𝑧0𝜓(𝑢ℎ𝑔)) 

 Belongs to 𝑢𝛿(𝑔)𝑁
𝑛 as well, for all ℎ, 𝑔 ∈  𝛬0. Setting 𝑧 = ⋁ 𝜓(𝑢ℎ)

∗𝑧0𝜓(𝑢ℎ)ℎ∈𝛬0 , we are 

done. 

The second condition in the next proposition is quite artificial. In the application, one 

might as well suppose that A ⊂ M is a quasi-regular inclusion, i.e. 𝑀 =  𝑄𝑁𝑀(𝐴)′′ . 
Elsewhere, we plan another application of the proposition: there it is known that whenever 

𝐻 ⊂  𝐿2(𝑀, 𝑡) is an A-A-subbimodule with dim(𝐻𝐴) <  ∞, then ac tually 𝐻 ⊂  𝐿2(𝐴). 
Proposition (6.1.9)[218]:  Let(𝑀, 𝜏) (M, t) be avon Neumann algebra with faithful normal 

tracial state 𝜏  . Suppose that A, B ⊂ M are von Neumann subalgebras that satisfy the 

following conditions. 

(i) 𝐴 
≺
𝑀
𝐵 and 𝐵

𝑓
≺
𝑀
𝐴 

(ii) If 𝐻 ⊂  𝐿2(𝑀, 𝑡) . is an A-A-subbimodule with dim (𝐻𝐴) < ∞  Then, 𝐻 ⊂
 𝐿2(𝑄𝑁𝑀  (𝐴)

′′). 
 Then there exists a B-A-subbimodule 𝑘 ⊂  𝐿2(𝑀, 𝜏)satisfying 

dim (B K) < ∞ and dim (K A) <∞, 

So, there exists a projection 𝑝 ∈  𝑀𝑛 (ℂ) ⊗  𝐴 , a non-zero partial isometry 𝑣 ∈

(𝑀1,𝑛(ℂ)⨂𝑀)𝑝 and a unital *-homomorphism 𝜃 ∶  𝐵 →  𝑝𝐴𝑛 𝑝 Satisfying 

𝜃(𝐵) ⊂ 𝑝𝐴𝑛 𝑝  ℎ𝑎𝑠 fi𝑛𝑖𝑡𝑒 𝑖𝑛𝑑𝑒𝑥, 𝑎𝑛𝑑 𝑏𝑣 =  𝑣𝜃(𝑏) 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑏 ∈  𝐵 . 
In the above statement, all dimensions are with respect to the restriction of 𝜏 𝑡𝑜 𝐴 and B. In 

particular, the index of 𝜃(𝐵)  ⊂  𝑝𝐴𝑛 𝑝, is defined as dim(𝐿2(𝑝𝐴𝑛𝑝)𝐵), where the right B-

module action is through θ. 

Proof: Denote by J the anti-unitary operator on 𝐿2(𝑀, 𝜏)  given by 𝐽𝑥 =  𝑥∗ . Then, 

𝐽(〈𝑀, 𝑒𝐴〉 ∩ 𝐵
′𝐽 = 〈𝑀, 𝑒𝐵〉 ∩ 𝐴′. So, we get two normal faithful traces on 〈𝑀, 𝑒𝐴〉 ∩ 𝐵

′: one 

denoted by 𝑇𝑟𝐴 and defined by restricting the trace on 〈𝑀, 𝑒𝐴〉and the other denoted by Tr and 

obtained by applying the previous formula and restricting the trace on 〈𝑀, 𝑒𝐴〉. Define 
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𝑝 = ∨ {𝑝0| 𝑝00𝑝𝑟𝑜𝑗𝑒𝑐𝑡𝑖𝑜𝑛 𝑖𝑛 〈𝑀, 𝑒𝐴〉 ∩ 𝐵
′ 𝑤𝑖𝑡ℎ 𝑇𝑟𝐴 (𝑝0)  < ∞} , 

𝑞 = ∨ {𝑞0| 𝑞00𝑝𝑟𝑜𝑗𝑒𝑐𝑡𝑖𝑜𝑛 𝑖𝑛 〈𝑀, 𝑒𝐴〉 ∩ 𝐵
′ 𝑤𝑖𝑡ℎ 𝑇𝑟𝐵 (𝑞0)  < ∞} ,     (1)  

 

 It suffices to show that 𝑝𝑞 ≠  0. Indeed, approximating p and q, we get 𝑝0 with 𝑇𝑟𝐴(𝑝0)  <
∞ and𝑞0  with 𝑇𝑟𝐵 (𝑞0)  < ∞ , satisfying 𝑝0𝑞0 ≠  0 . Taking a spectral projection of the 

positive operator q, we arrive at an orthogonal projection 𝑟 ∈  〈𝑀, 𝑒𝐴〉 ∩ 𝐵
′  satisfying 

𝑇𝑟𝐴(𝑟), 𝑇𝑟𝐵(𝑟)  <  ∞. Taking 𝐾 =  𝑟𝐿2(𝑀, 𝑡), thelemma is showd. 

Take non-zero partial isometries 𝑣,𝑤 ∈  𝑀1,𝑛(ℂ)⊗𝑀 and, possibly non-unital, 

*-homomorphisms 𝜌 ∶  𝐴 →  𝐵𝑛, 𝜃 ∶  𝐵 →  𝐴𝑛such that 

𝑎𝑣 =  𝑣𝜌(𝑎) , 𝑏𝑤 =  𝑤𝜃(𝑏) 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑎 ∈  𝐴, 𝑏 ∈  𝐵 . 

Since 𝐵
𝑓
≺
𝑀
 𝐴, we may assume that 𝑣(1 ⊗  𝑤)  ≠  0. Note that 𝑤𝑤∗ ∈  𝑀 ∩  𝐵′, so that we 

may assume that 𝑣 =  𝑣(1⊗𝑤𝑤∗). By construction, the right A-module generated by the 

(finitely many) coefficients of 𝑣(1⊗𝑤), is also a left A-module. Our assumptions imply that 

the coefficients of 𝑣(1 ⊗  𝑤) belong to 𝑄𝑁𝑀(𝐴)′′. With p defined by (1), it is easily checked 

that 𝐻0: =  𝑝𝐿
2(𝑀, 𝑡) is a right 𝑄𝑁𝑀(𝐴)′′-module. By construction, 

the coefficients of w belong to 𝐻0  and hence, the coefficients of 𝑣∗ =  𝑤(𝑣(1 ⊗  𝑤))∗ 
belong to 𝐻 as well. By construction, the coefficients of 𝑣∗belong to 𝑞𝐿2(𝑀, 𝑡) So, we have 

shown that 𝑝𝑞 ≠  0. 

Theorem(6.1.10)[218]:   Let Γ0, Γ1 be infinite groups acting outerly on the II1 factor N. Make 

the following assumptions. 

(i) The groups Γ0, Γ1, ℤ are two by two not virtually isomorphic. 

(ii)The groups Γ0, Γ1are not virtually is omorphic to a non-trivial free product. 

(iii) Denote by ℱ the fusion subalgebra of FAlg (N) consisting of the bifinite N-N-bimodules 

that almost normalize Γ ↷  𝑁. Then, ℱ and Γ1are free as fusion subalgebras of FAlg (N). (See 

Definitions (6.1.1)  and(6.1.2) for relevant terminology.) 

iv) 𝑁 ⊂  𝑁 ⋊ Γ0 1has the relative property (T). 

 𝑆𝑒𝑡 𝑀 =  𝑁 ⋊ (Γ0 ∗ Γ1)   If MHM is a bifinite M-M-bimodule, there exists a finite-

dimensional unitary representation 𝜃 ∶ Γ0 ∗ Γ1 →  𝑈(𝑛), such that MHM is isomorphic with the 

M-M-bimodule 𝐻𝑟𝑒𝑝 (𝜃) defined below. 

The M-M-bimodule 𝐻𝑟𝑒𝑝 (𝜃)  is defined as follows. The Hilbert space is given by 

ℂ𝑛⊗𝐿2 (𝑀) and 

(𝑥𝑢𝑔)  ·  𝜉 =  (𝜃(𝑔)  ⊗  𝑥𝑢𝑔)𝜉 𝑎𝑛𝑑 𝜉 ·  𝑦 =  𝜉(1 ⊗  𝑦) 

For all 𝜉 ∈ ℂ𝑛⊗ 𝐿2(𝑀), 𝑔 ∈  Γ0 ∗ Γ1, 𝑥 ∈  𝑁 and y ∈ M. 

A given bifinite M-M-bimodule is of the form H(𝜓), where 𝜓 ∶  𝑁 ⋊ Γ → (𝑁 ⋊ Γ)tis a 

finite index inclusion will imply that we may assume that 𝜓(𝑁)  ⊂  𝑁𝑡 and that the latter is a 

finite index inclusion. This allows to show Theorems (6.1.11) and (6.1.10). Theorem (6.1.11) 

follows once we have shown the existence of groups Γ0, Γ1  without nontrivial finite-

dimensional unitary representations, and actions of these groups on the hyperfinite II1 factor 

R satisfying all conditions in Theorem (6.1.10). In order to show this existence, we have to 

establish the following result: if ℱ1and ℱ2are countable fusion subalgebras of FAlg(R), where 
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R is the hyperfinite II1 factor, then the set 𝛼 ∈  𝐴𝑢𝑡(𝑅) such that 𝑎ℱ1𝑎
−1and ℱ2 are free, is a 

Γ -dense subset of Aut(R). This last result generalizes A.3.2 in [223]. 

Proof: Write and  Γ = Γ0 ∗ Γ1 𝑎𝑛𝑑 𝑀 =  𝑁 ⋊  𝐺 . Let H be a bifinite M-M-bimodal. 

Combining Theorem(6.1.6), Proposition(6.1.9) and Proposition (6.1.8), we get 𝐻 ≅ 𝐻(𝜓) 
where 𝜓 ∶  𝑀 →  𝑝𝑀𝑛𝑝 is an irreducible finite index inclusion satisfying 

(i) 𝑝 ∈  𝑁𝑛 and 𝜓(𝑁)  ⊂  𝑝𝑁𝑛𝑝 a finite index inclusion, 

(ii) 𝑝𝑀𝑛𝑝 ∩  𝜓(𝑁)′ =  𝑝𝑁𝑛𝑝 ∩  𝜓(𝑁)′, 
(iii) 𝜓(𝑢𝑔)𝑧 =  𝑥𝛿(𝑔)𝑢𝛿(𝑔) for all g ∈ Λ, where 𝛬 <  Γ is a finite index subgroup, 𝛿 ∶  𝛬 →

 Γ an injective homomorphism with finite index image, 𝑥ℎa unitary in 𝑧𝑁𝑛𝜎ℎ(𝑧) for all ℎ ∈
𝛿(𝛬) and z a central projection in 𝑝𝑁𝑛𝑝 ∩  𝜓(𝑁)′commuting with 𝜓(𝑁 ⋊ 𝛬). 
Denote by K the bifinite N-N-bimodule defined by the inclusion  𝑁 →  𝑧𝑁𝑛 𝑧 ∶  𝑥 ∶ 𝑥 →
 𝜓(𝑥)𝑧. We show that K is a multiple the trivial N-N-bimodule, which will almost end the 

proof of the theorem. 

Set 𝛬𝑖: =  Γ𝑖 ∩  𝛬 and note that 𝛬𝑖  is a finite index subgroup of Γ𝑖 . We assumed that 

Γ0, Γ1, ℤ have no isomorphic finite index subgroups and that the finite index subgroups of  

Γ0, Γ1, are freely indecomposable. 

Hence, the Kurosh theorem implies that 𝑑(𝛬𝑖) is a finite index subgroup of 𝑠𝑖Γi𝑠𝑖
−1 for 

some 𝑠0𝑠1 ∈ Γ . 
Unitary conjugating with 𝑢𝑠0 from the beginning, we may assume that 𝛿(𝛬0) is a finite index 

subgroup of Γ0   and that 𝛿(𝛬1)  is a finite index subgroup of  𝑠Γ1𝑠
−1 . Again unitary 

conjugating, we may assume that either 𝑠 =  𝑒 𝑜𝑟 𝑠 ∈  (Γ1 − {𝑒})  · · ·  (Γ0 − {𝑒}). 
So, the map 𝑁 ⋊ 𝛬0 →  𝑧(𝑁 ⋊ 𝛬0)

𝑛𝑧 ∶ 𝑦 ↦  𝜓(𝑦)𝑧  defines a bifinite (𝑁 ⋊ 𝛬0) − (𝑁 ⋊
𝛬0)-bimodule that contains the N-N-bimodule K. By Lemma (6.1.3), K is almost normalizing 

Γ0 ↷ 𝑁  By our assumptions 𝐾 ∪ Γ0  and Γ1 are free inside FAlg(N). Writing for all  𝑔 ∈
 𝛬1, 𝑑(𝑔)  =  𝑠𝜂(𝑔)𝑠

−1𝑓𝑜𝑟 𝜂(𝑔)  ∈  Γ1  and s as above, the formula 𝜓(𝑢𝑔)𝑧 =

 𝑥𝛿(𝑔)𝑢𝛿(𝑔)implies that 𝐻(𝜎𝑔)𝐾 ≅ 𝐾𝐻(𝜎𝑠𝜂(𝑔)𝑠−1) for every g ∈ 𝛬1. Given the form of s, this 

is acontradiction with the freeness of 𝐾 ∪ Γ0 and Γ1, unless K is a multiple of the trivial N-

N-bimodule. 

Our claim is shown and we find a non-zero partial is ometry 𝑣 ∈  𝑝(𝑀𝑛,1(ℂ) ⊗  𝑁) 
satisfying 

𝜓(𝑥)𝑣 =  𝑣𝑥 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑥 ∈  𝑁 .                     (2) 

Then, 𝑣∗𝑣 =  1 and (2) remains true replacing 𝑣  by 𝑞𝜓(𝑢𝑔)𝑣𝑢𝑔
∗  whenever 𝑔 ∈ Γ and 𝑞 ∈

 𝑝𝑁𝑛𝑝 ∩ 𝜓(𝑁)′. It follows that we can find a unitary 𝑤 ∈  𝑝(𝑀𝑛, 𝑘(ℂ) ⊗  𝑁)  satisfying 

𝑤∗𝜓(𝑥)𝑤 =  1 ⊗  𝑥 for all  𝑥 ∈  𝑁 . It is now an exercise to check that 𝑤∗𝜓(𝑢𝑔)𝑤 =

 𝜃(𝑔)  ⊗ 𝑢𝑔 for some representation 𝜃 ∶ Γ →  𝑈(𝑘). 

Finally, we show the existence of groups and actions satisfying all the requirements in 

Theorem (6.1.10) and moreover such that the groups do not admit finite-dimensional unitary 

representations. 

Theorem (6.1.11)[218]:  There exist II1 factors M with trivial fusion algebra: every bifinite 

M-M-bimodule is isomorphic with M(𝐿2(𝑀)⊕𝑛)𝑀1 for some 𝑛 ∈ ℕ. 

In particular, M has no outer automorphisms, has trivial fundamental group and only has 

trivial finite index subfactors: if N ⊂ M is a finite index subfactor, (𝑁 ⊂  𝑀) ≅ (1 ⊗  𝑁 ⊂
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 𝑀(ℂ) ⊗  𝑁) for some 𝑛 ∈ ℕ. In particular, every finite index irreducible subfactor of M 

equals M. 

The II1 factors in the above theorem are of the form 𝑀 =  𝑅 ⋊ Γ, where R is the hyperfinite  

II1factor,  Γ is the free product of two groups without non-trivial finite dimensional unitary 

representations and the outer action Γ ↷  𝑁 satisfies the following specific conditions. 

Proof : We have to show that there exist infinite groups Γ0, Γ together with outer actions on 

the hyper finite II1 factor R such that all conditions of Theorem (6.1.10) are satisfied and such 

that all finite dimensional unitary representations of Γ0 and Γ are trivial. 

Consider the group 𝐴∞ of finite even permutations ofℕ. It is well known that every finite 

dimensional unitary representation of 𝐴∞is trivial. Consider ℤ/3ℤ ⊂  𝐴∞, identifying 1 and 

the cyclic permutation of {0, 1, 2}. Finally, consider ℤ/3ℤ ⊂  𝑆𝐿(3, ℤ) identifying 1 and the 

matrix  (
0 0 1
1 0 0
0 1 0

)   We then define  

Γ0 =  𝑆𝐿(3, ℤ) 
∗

ℤ/3ℤ𝐴∞𝑎𝑛𝑑 Γ0 = 𝐴∞ 

As stated above, Γ1does not have non-trivial finite dimensional unitary representations. If 𝜋 ∶
 Γ0  →  𝑈(𝑛) is a finite dimensional unitary representation,𝐴∞ ⊂  𝐾𝑒𝑟 𝜋 . In particular,. ℤ/
3ℤ ⊂  𝐾𝑒𝑟𝜋 Since the smallest normal subgroup of 𝑆𝐿(3, ℤ) containing ℤ/3ℤ, is the whole 

of 𝑆𝐿(3, ℤ), it follows that 𝐾𝑒𝑟 𝜋 = Γ0. 

In particular, Γ0 and Γ1 do not have non-trivial finite index subgroups. Both 𝑆𝐿(3, ℤ) 
and 𝐴∞  are freely indecomposable. Then, the Kurosh theorem implies that Γ0  is freely 

indecomposable as well. 

We next claim that there exists an outer action of Γ0 on the hyper finite 𝐼𝐼1 factor R 

such that 𝑅 ⊂  𝑅 ⋊ Γ0 has the relative property (T). First take an outer action of 𝑆𝐿(3, ℤ)on 

R such that 𝑅 ⊂  𝑅 ⋊  𝑆𝐿(3, ℤ)  has the relative property (T). A way of doing so, goes as 

follows. Consider the semi-direct product 𝑆𝐿(3, ℤ) ⋉ (ℤ3 × ℤ3),  where 𝐴 ·  (𝑥, 𝑦)  =
 (𝐴𝑥, (𝐴−1)𝑡𝑦) for all 𝐴 ∈  𝑆𝐿(3, ℤ) and 𝑥, 𝑦 ∈  ℤ3 . It is clear that ℤ3 × ℤ3  is a subgroup 

with the relative property (T). Take an 𝑆𝐿(3, ℤ) -invariant non-degenerate 2-cocycle ω on 

ℤ3 × ℤ3. We then get the required action of 𝑆𝐿(3, ℤ) 𝑜𝑛 𝑅 =  𝐿𝜔(ℤ
3 × ℤ3). Next, take any 

outer action of 𝐴∞ on R. By Cones' uniqueness theorem for outer actions of finite cyclic 

groups on R (see [222]), we may assume that the actions of ℤ/3ℤ ⊂ 𝐴∞ A8 and ℤ/3ℤ ⊂
 𝑆𝐿(3, ℤ) coincide. Hence, we get an action of Γ0 on R. Further modifying the action of A∞ 

by applying Proposition (6.1.14), we have shown that there exists an outer action of Γ0 on R 

that extends the 𝑆𝐿(3, ℤ)  action. Then, 𝑅 ⊂  𝑅 ⋊ Γ0 still has the relative property (T). 

Finally, take any outer action of Γ1 on the hyper finite 𝐼𝐼1 factor R. Denote by ℱ the 

fusion subalgebra of Flag (R) generated by the bifinite R-R-bimodules almost normalizing 

Γ0 ↷  𝑅. By Lemma (6.1.12) below, ℱ is countable. It follows from Theorem (6.1.13) below 

that there exists an automorphism 𝑎 ∈  𝐴𝑢𝑡(𝑅) such that ℱ and 𝑎Γ1𝑎
−1 are free in the sense 

of Definition (6.1.1) . Replacing Γ1𝑏𝑦 𝑎Γ1𝑎
−1, all conditions of Theorem(6.1.10) are fulfilled 

and moreover, 𝛤 only has trivial finite dimensional unitary representations. So, we are done. 

Lemma(6.1.12)[218]:   Let N be a II1 factor and 𝐺 ↷ 𝑁 an outer action such that 𝑁 ⊂  𝑁 ⋊
𝛤 has the relative property (T). Then, the almost normalizer of  𝛤 ↷ 𝑁 in FAlg (N) (in the 

sense of Definition (6.1.2) is countable. 
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Proof: Set𝑀 =  𝑁 ⋊  𝛤. By contradiction and countability of 𝛤 and ℕ, it is sufficient to 

show the following: if 𝑛 ∈  ℕ0and if 𝜓𝑖: 𝑀 →  𝑝𝑖𝑀
𝑛𝑝𝑖  defines an uncountable family of 

bifinite M-M-bimodules 𝐻𝑖  containingnon-zero irreducible bifinite N-N-bimodule 𝐾𝑖 ⊂ 𝐻𝑖 

there exist 𝑖 ≠  𝑗 and 𝑔, ℎ ∈  𝛤 such that 𝐾𝑖 ≅ 𝐻(𝜎𝑔)𝐾𝑗𝐻(𝜎ℎ), 𝑎𝑠 N-N-bimodules. 

Take 휀 >  0 and 𝐹 ⊂  𝑀 finite such that every M-M-bimodule H that admits a vector 𝜉 ∈  𝐻 

with the properties 1 −  휀 ≤ ‖ 𝜉‖  ≤  1 𝑎𝑛𝑑 |〈𝜉, 𝑎𝜉𝑏〉  −  𝜏(𝑎𝑏)|  <  휀  for all a, b ∈ F, 

actually admits a non-zero N-central vector. 

Assume for convenience that 1 ∈  𝐹  and consider the 𝜓𝑖  as non-unital 

homomorphisms 𝑀 →  𝑀𝑛 . By the pigeon hole principle, we can find 𝑖 ≠  𝑗 such that 

‖𝜓𝑖(𝑥)  − 𝜓𝑗(𝑥)‖2 <  휀
‖𝑞𝑖‖2 for all𝑥 ∈  𝐹. Consider the M-M-bimodule 𝑝𝑖𝐿

2(𝑀𝑛)𝑝 𝑗 with 

left action given by 𝜓𝑖  and right action by 𝜓𝑖  . The vector 𝜉 =  ‖𝑝𝑖‖2
−1 𝑝𝑖𝑝𝑗 . satisfies the 

above conditions and we conclude that 𝑝𝑖𝐿
2(𝑀𝑛)𝑝𝑗 contains a non-zero N-central vector. It 

follows that there exist irreducible N-N-subbimodules �̃�𝑖  ⊂  𝐻𝑖  and �̃�𝑗 ⊂ 𝐻𝑗  with �̃�𝑖  ≅

�̃�𝑗𝑎𝑠 𝑁 − 𝑁 bimodules. To conclude to proof, it suffices to observe that for every 𝑖, 𝐻𝑖 as an 

N-N-bimodule is a direct sum of irreducible N-N-bimodules isomorphic 

with 𝐻(𝜎𝑔)𝐾𝑗𝐻(𝜎ℎ), 𝑔, ℎ ∈  𝛤. 

We show the following crucial result: whenever ℱ1, ℱ2  are countable fusion 

subalgebras of FAlg(R), where R denotes the hyperfinite  𝐼𝐼1   factor, there exists an 

automorphism 𝑎 ∈  𝐴𝑢𝑡(𝑅) such that 

 ℱ1
𝑎: =  𝐻(𝑎 − 1)ℱ1𝐻(𝑎) and ℱ2 

are free. In [219], this implies that any two hyperfinite 𝐼𝐼1 nite index subfactors admit a 

hyperfinite realization of their free composition (see page 94 in [219]. 

Theorem(6.1.13)[218]:  Let R be the hyperfinite 𝐼𝐼1 factor. Letℱ1, ℱ2be countable fusion 

algebras of bifinite R-Rbimodules. Then, 

{𝑎 ∈  𝐴𝑢𝑡(𝑅) | 𝐹1
𝑎 𝑎𝑛𝑑 ℱ2𝑎𝑟𝑒 𝑓𝑟𝑒𝑒} 

is a G𝛿 dense subset of Aut(R). 

Recall that if MHM is an M-M-bimodule and A ⊂ M a von Neumann subalgebra, a vector 𝜉 ∈
 𝐻 is said to be A-central if 𝑎𝜉 =  𝜉𝑎 for all a ∈ A. Note that if p denotes the orthogonal 

projection onto the subspace of A-central vectors, 𝑝𝜉 is precisely the element of minimal 

norm in the closed convex hull 𝑐𝑜̅̅ ̅{𝑢𝜉𝑢∗| 𝑢 ∈  𝑈(𝐴)} . 
In what follows, we make use of the following special property for a bifinite bimodules RH R 

over the hyperfinite II1factor R. Fix a free ultrafilter ω on ℕ and consider the ultrapower 

algebra 𝑅ω. We claim that there exists 𝑛 ∈ ℕ and an R-R-bimodular isometric embedding𝑉 ∶

 𝐻 →  𝐿𝑅𝐿
2
(𝑅𝜔)⊕𝑛 in to the n-fold direct sum of 𝑅𝐿

2
(𝑅𝜔)𝑅  Denoting by ℋ  the W*-

bimodule of bounded vectors in H, we can take 𝑉ℋ ⊂  𝑀𝑛,1(ℂ)⨂𝑅
𝜔. To show the existence 

of such an embedding, take 𝜓 ∶  𝑅 →  𝑝𝑅𝑛𝑝 such that 𝐻 ≅ 𝐻(𝜓). We can take a partial 

isometry 𝐴 ∈  𝑀𝑛 (ℂ) ⊗ 𝑅𝜔  satisfying 𝐴∗𝐴 =  𝑝 and (1 ⊗ 𝑥)𝐴 =  𝐴𝜓(𝑥) for all 𝑥 ∈  𝑅 . 

It then suffices to define 

𝑝(𝐿2(𝑅)⊕𝑛)  →  𝐿2(𝑅𝜔)⊕𝑛: 𝜉 ↦  𝐴𝜉 . 
Moreover, RHR does not contain the trivial bimodule if and only if(𝑖𝑑 ⊗ 𝐸𝑅′∩𝑅𝜔)(𝑉 𝜉)  =
 0 𝑓𝑜𝑟 𝑎𝑙𝑙 𝜉 ∈ ℋ. 
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We are now ready to show Theorem (6.1.13) and the proof will be based on the technical 

Proposition (6.1.17)  below. 

Proof: Suppose that H0, . . . , H2k are irreducible bifinite R-R-bimodules, with 𝐻𝐽 non-trivial if 

1 ≤ 𝑗 ≤  2𝑘 −  1. When a ∈ Aut(R) and 𝐻 ∈  𝐹𝐴𝑙𝑔(𝑅), we write 𝐻𝑎: =  𝐻(𝑎−1)𝐻𝐻(𝑎) 
and define 

𝐾(𝑎) ∶=  𝐻0𝐻1
𝑎𝐻2𝐻3

𝑎 · · · 𝐻2𝐾−1
𝑎  𝐻2𝐾 . 

We have to show that 

 𝑊 ∶=  {𝑎 ∈  𝐴𝑢𝑡(𝑅) | 𝐾(𝑎) 𝑖𝑠 𝑑𝑖𝑠𝑗𝑜𝑖𝑛𝑡 𝑓𝑟𝑜𝑚 𝑡ℎ𝑒 𝑡𝑟𝑖𝑣𝑖𝑎𝑙 𝑏𝑖𝑚𝑜𝑑𝑢𝑙𝑒} 
is a 𝐺𝛿 dense subset of Aut (R). 

 

Let ℋ𝑖 ⊂ 𝐻𝑖 denote the W*-M-M-bimodules that sit densely in side 𝐻𝑖. Take n sufficiently 

large and take isometric embeddings 

𝑉𝑖: 𝐻𝑖 → 𝐿
2(𝑅𝜔)⊕𝑛 𝑤𝑖𝑡ℎ 𝑉𝑖  ℋ𝑖 ⊂ 𝑀𝑛,1(ℂ)𝑅

𝜔. 

Denote by 𝑝𝑐𝑒𝑛𝑡𝑟
𝐾(𝑎)

  the orthogonal projection onto the R-central vectors of 𝑅𝐾(𝑎)𝑅. When ever 

𝜉 ∈ ℋ𝑖 and 휀 >  0, we define  

𝑊(𝜉0, . . . , 𝜉2𝑘;  휀) ∶=  {𝑎 ∈  𝐴𝑢𝑡(𝑅) | ‖𝑝𝑐𝑒𝑛𝑡𝑟
𝐾(𝑎)

  (𝜉0⊗ · · · ⊗ 𝜉2𝑘‖) <  휀} . 

 We show three statements. 

(i). Every W(𝜉0, . . . , 𝜉2𝑘;  휀) is open in Aut(R). 

(ii). Every W(𝜉0, . . . , 𝜉2𝑘;  휀) is dense in Aut(R). 

(iii). Taking the intersection of W(𝜉0, . . . , 𝜉2𝑘;
1

𝑚
) where m runs through ℕ0and the 𝜉𝑖  run 

through a countable ‖. ‖2-dense subset of ℋi, we precisely obtain W. 

By the Baire category theorem, these statements together show that W is a G 

dense subset of Aut(R). To show the first statement, observe that W (ξ (𝜉0, . . . , 𝜉2𝑘;  휀) is the 

union of all 

  {𝑎 ∈  𝐴𝑢𝑡(𝑅), ‖|∑⋋𝑖 𝑢𝑖

𝑛

𝑖=1

𝑢𝑖
∗(𝜉0⊗ · · · ⊗ 𝜉2𝑘)‖

𝑘(𝛼)

< 휀} 

where n runs through  ℕ0   . where ⋋1, …… ,⋋𝑛  runs through all n-tuples of positive real 

numbers with sum 1 and where 𝑢1, . . . , 𝑢 runs through all n-tuples of unitaries in R. All these 

sets are easily seen to be open. 

To show the second statement, set𝑉𝑖  𝜉𝑖 = 𝑦𝑖 = (𝑦𝑖(1), . . . , 𝑦𝑖(𝑛))
𝑡 ∈  𝑀𝑛,1(ℂ) ⊗ 𝑅

𝜔. Then, 

extending an automorphism of R to an automorphism of 𝑅𝜔in the canonical way, we have. 

‖𝑝𝑐𝑒𝑛𝑡𝑟
𝐾(𝑎)

  (𝜉1⊗ · · · ⊗ 𝜉2𝑘)‖
2

= ∑ 𝐸𝑅′∩𝑅𝜔‖𝑦0(𝑖0)𝛼(𝑦1(𝑖1))𝑦2(𝑖2)… . 𝛼(𝑦2𝑘−1(𝑘2𝑘−1))𝑦2𝑘‖2
2

𝑛

𝑖0,...,𝑖2𝑘=1

       (3) 

 Fix 𝛽 ∈  𝐴𝑢𝑡(𝑅).  We show that 𝛽  is in the closure of 𝑊(𝜉0,… , 𝜉2𝑘; 휀)  Write 𝑅  as the 

infinite tensor product of 2 by 2 matrices, yielding 𝑅 =  𝑀2𝑠(ℂ) ⊗ 𝑅𝑠. It is sufficient to 

show that, for every  𝑠 ∈ ℕ , there exists a unitary u ∈ Rs such that (𝐴𝑑 𝑢)𝛽 ∈
 𝑊(𝜉0, . . . , 𝜉2𝑘;  휀). The existence of u follows combining (3), and the following observations. 
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(i) If Hi is disjoint from the trivial bimodule and 𝛽 ∈  𝐴𝑢𝑡(𝑅) is arbitrary, 𝐻𝑖
𝛽

 does not admit 

non-zero R-central vectors either and hence, does not even admit non-zero R - central 

vectors. So, 

𝐸𝑅𝑠
′ ∩ 𝑅𝜔(𝛽(𝑦𝑖(𝑗)))  =  0 

For all j = 1, . . . n, all s and all 𝛽 ∈  𝐴𝑢𝑡(𝑅). 
(ii) By construction, the elements 𝛽(𝑦𝑖(𝑗))  ∈  𝑅

𝜔  quasi-normalize R for all  𝛽 ∈  𝐴𝑢𝑡(𝑅). 
Hence, they quasi-normalize 𝑅𝑠 for all s. 

(iii) We apply Proposition (6.1.17) to the subfactor 𝑅𝑠 of the von Neumann algebra generated 

by R, the 𝑦2𝑖(𝑗) 𝑎𝑛𝑑 𝛽(𝑦2𝑖+1(𝑗)).  
It remains to show the third statement. If 𝑎 ∈  𝑊, then 𝑎 ∈  𝑊(𝜉0, . . . , 𝜉2𝑘; 휀) for all ξ𝑖and 

휀 >  0. Conversely, if a belongs to the intersection stated above, we have 

 𝑝𝑐𝑒𝑛𝑡𝑟
𝐾(𝑎)

  (𝜉0⊗ · · · ⊗ 𝜉2𝑘)  =  0 

 for dense families of 𝜉𝑖 ∈  𝐻𝑖 . But this implies that 𝑝𝑐𝑒𝑛𝑡𝑟
𝐾(𝑎)

  =  0 and so a ∈ W. 

We have the following variant of Theorem (6.1.13) that we use in the proof of 

Theorem(6.1.11) . 

Proposition(6.1.14)[218]:   Suppose that the countable groups Γ0, Γ1have a common finite 

subgroup K. Let Γ0
∗
𝑘
Γ1 act on the hyperfinite II1 factor R. Suppose that both Γ0  and Γ1for act 

outerly. Denote by 𝐴𝑢𝑡𝐾  (𝑅)  the automorphisms of R that commute with all the 

automorphisms in K. Then, 

{𝑎 ∈  𝐴𝑢𝑡𝐾  (𝑅) | The subgroups Γ0and 𝑎Γ1𝑎
−1 of Out(R) are free with amalgamation over 

K} is 𝑎 𝐺𝛿 dense subset of 𝐴𝑢𝑡𝐾  (𝑅). 
Proof: One can almost entirely copy the proof of Theorem(6.1.13) , using the following 

observation. Let a ∈ Aut(R) be such that σkα is outer for every k ∈ K. Denote by 𝑅𝐾  the fixed 

point algebra of K. We claim that the R-R-bimodule H (a) has no non-zero RK⊂ R implies 

that there exists a unitary 𝑣 ∈  𝑅  such that 𝑣𝑎(𝑥)𝑣∗ = 𝑥 - for all 𝑥 ∈  𝑅𝐾 . By Jones’ 

uniqueness theorem for outer actions of finite groups (see [224]), we may assume that the 

action of K is dual and conclude that (𝐴𝑑 𝑣)𝛼 = 𝜎𝑘 for some 𝑘 ∈  𝐾. This contradicts our 

assumption and shows that 𝐻(𝑎)  has no non-zero  𝑅𝐾 -central vectors. Writing 𝑅𝐾  as an 

infinite tensor product of 2 by 2 matrices, we get R𝑅𝐾 = 𝑀2𝐾(ℂ)⨂𝑅𝐾. 

If 𝐴 ∈  𝑅𝜔  is a unitary implementing 𝑎, it follows as in the proof of(6.1.13)  that 𝐸𝑅𝐾′ ∩

𝑅𝜔(𝐴) =  0. this is again the starting point to apply Proposition(6.1.17) . 

The following is the crucial result to obtain Theorem(6.1.13) . Most of the proof is taken 

almost literally from Lemmas 1.2,1.3 and 1.4 in [260]. We repeat the argument, since slight 

modifications are needed: in [230], the relative commutant 𝑁′ ∩  𝑀 is assumed to be finite-

dimensional, while we assume that N is a factor and the inclusion N ⊂ M quasi-regular. This 

forces us to show the extra below. 

Lemma(6.1.15)[218]:   Let (M, t) be a von Neumann algebra with faithful normal tracial 

state t. Let N ⊂ M be a von Neumann subalgebra. Suppose that N is a factor of type 𝐼𝐼1 and 

that N is quasi-regular in M. Let 𝑓 ∈  𝑁 be a non-zero projection and 𝑉 ⊂  𝑀 a finite subset 

such that 𝐸𝑁′∩𝑀(𝑓𝐴𝑓)  =  0 for all 𝐴 ∈  𝑉. 

For every 휀 >  0 and every 𝐾 ∈  ℕ0 ,  there exists a partial isometry 𝑣 ∈  𝑓𝑁𝑓 satisfying 

𝑣𝑣∗  = 𝑣∗𝑣, 𝑡(𝑣𝑣∗) ≥ 𝑡(𝑓)/4 and 
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 ‖𝐸𝑁′∩𝑀(𝐴0𝑣
𝑘1𝐴1𝑣

𝑘2𝐴2 · · · 𝑣
𝑘𝑛  𝐴𝑛‖2 < 휀 

 for all 1 ≤  𝑛 ≤  𝐾, 1 ≤  |𝑘𝑖|  ≤  𝐾, 𝐴0, 𝐴𝑛 ∈  𝑉 ∪ {1} and 𝐴1, … , 𝐴𝑛−1 ∈ 𝑉. 
Here, and in what follows, we use the convention that 𝑣0: =  𝑣𝑣

∗and 𝑣−𝑘: =  (𝑣∗)𝑓𝑜𝑟 𝑘 ∈
 ℕ0, whenever v isa partial isometry satisfying 𝑣𝑣∗ = 𝑣∗𝑣. 
Proof: We may assume that ‖𝐴‖ ≤  1 for all 𝐴 ∈  𝑉. Since ‖𝑧‖2

2 ≤ ‖𝑧‖ ‖𝑧‖1 , we show the 

following: for every 휀 >  0 and every 𝐾 ∈ ℕ0 , there exists a partial isometry 𝑣 ∈  𝑓𝑁𝑓 such 

that 𝑣𝑣∗  = 𝑣∗𝑣, 𝑡(𝑣𝑣∗) ≥ 𝑡(𝑓)/4 and 

‖𝐸𝑁′∩𝑀(𝐴0𝑣
𝑘1𝐴1𝑣

𝑘2𝐴2 · · · 𝑣
𝑘𝑛  𝐴𝑛‖1 < 휀 

for all 1 ≤  𝑛 ≤  𝐾, 1 ≤  |𝑘𝑖|  ≤  𝐾, 𝐴0, 𝐴𝑛 ∈  𝑉 ∪  {1} and 𝐴1 · · ·  𝑣𝑛−1 ∈  𝑉. 

Fix 휀 >  0  and 𝐾 ∈  ℕ0. 𝐿𝑒𝑡 휀0 >  0  and define 휀𝑛 = 2
𝑛+1휀𝑛−1, 𝑢𝑝 𝑡𝑜 휀𝑘 take 휀0 small 

enough such that 휀𝐾 <  휀. Define I as the set of partial isometries 𝑣 ∈  𝑓𝑁𝑓 satisfying 𝑣𝑣∗  =
𝑣∗𝑣 and  

‖𝐸𝑁′∩𝑀(𝐴0𝑣
𝑘1𝐴1𝑣

𝑘2𝐴2 · · · 𝑣
𝑘𝑛  𝐴𝑛‖1 ≤ 휀𝑛𝑡

(𝑣𝑣∗) 

 

For all 1 ≤  𝑛 ≤  𝐾, 1 ≤  |𝑘𝑖|  ≤  𝐾, 𝐴1, . . . , 𝐴𝑛−1 ∈  𝑉, 𝐴0 ∈  𝑉 ∪  𝑓𝑉 ∪  {1} 𝑎𝑛𝑑 𝐴𝑛 ∈
 𝑉 ∪  𝑉𝑓 ∪  {1}. 
Order I by inclusion of partial isometries. By Zorn’s lemma, take a maximal element 𝑣 ∈  𝐼 
and set 𝑝 =  𝑣𝑣∗. It might be that 𝑣 =  0. If 𝜏(𝑝) ≥  𝜏(𝑓)/4, we are done. Otherwise 𝑡(𝑝)  <
 𝑡(𝑓)/4 and we set𝑝1 ∶=  𝑓 −  𝑝. Note that 𝑡(𝑝)/𝑡(𝑝1)  =  1/3. Write 𝑀1: =  𝑝1𝑀𝑝1 , with 

normalized tracial state 𝑡1 and corresponding norms  ‖·‖1,𝑀1  𝑎𝑛𝑑 ‖·‖2,𝑀1  . Applying Theorem 

A.1.4 in [229] to the inclusion 𝑝1𝑁𝑝1 ⊂ 𝑝1𝑀𝑝1 , take a non-zero projection 𝑞 ∈ 𝑝1𝑁𝑝1 such 

that 

‖𝑞𝑥𝑞 − 𝐸(𝑁′∩𝑀)𝑝1
(𝑝1𝑥𝑝1)𝑞‖

2,𝑀1
≤ 휀0‖𝑞‖2,𝑀1  

for all 𝑥 =  𝐴1𝑣
𝑘1 · · ·  𝑣𝑘𝑠−1 , 𝐴𝑠  and all 1 ≤  𝑠 ≤  𝐾, 1 ≤  |𝑘𝑖  | ≤  𝐾  and 𝐴1, … . , 𝐴𝑠 ∈  𝑉 . 

We shall show that aunitary 𝑤 ∈  𝑞𝑁𝑞 can be chosen in such a way that 𝑣 +  𝑤 ∈  𝐼. This 

then contradicts the maximality of v. 

Let 𝑥 =  𝐴1𝑣
𝑘1 · · ·  𝑣𝑘𝑠−1𝐴𝑠with 1 ≤  𝑠 ≤  𝐾, 1 ≤  |𝑘𝑖|  =  𝐾 and 𝐴1, . . . . , 𝐴𝑠 ∈  𝑉. Observe 

that  

‖𝑞𝑥𝑞 − 𝐸(𝑁′∩𝑀)𝑃1(𝑝1𝑥𝑝1)𝑞‖1,𝑀1
≤ ‖𝑞𝑥𝑞 − 𝐸(𝑁′∩𝑀)𝑃1(𝑝1𝑥𝑝1)𝑞‖2,𝑀1

‖𝑞‖2,𝑀1 ≤ 휀0𝑡1(𝑞) 

One checks that‖ 𝐸(𝑁′∩𝑀)𝑃1(𝑝1𝑥𝑝1)𝑞‖1,𝑀1
≤ ‖ 𝐸(𝑁′∩𝑀)𝑃1(𝑥𝑝1)‖1

𝜏1(𝑞)/𝜏(𝑝1). On the other 

hand, 

‖ 𝐸(𝑁′∩𝑀)𝑃1(𝑥𝑝1)‖1
 ‖𝐸(𝑁′∩𝑀)𝑃1(𝑥𝑓)‖1

+ ‖𝐸(𝑁′∩𝑀)(𝑥𝑝)‖1
= ‖𝐸(𝑁′∩𝑀)(𝑥𝑓)‖1

‖𝐸(𝑁′∩𝑀)𝑃1(𝑣𝑥𝑣
∗) ≤ (휀𝑠−1 + 휀𝑠+1)𝑡(𝑝)‖1

. 

It follows that ‖ 𝐸(𝑁′∩𝑀)𝑃1(𝑝1𝑥𝑝1)𝑞‖1,𝑀1
≤ 𝜏1(𝑞)(휀𝑠−1 + 휀𝑠+1)/3 Altogether, we conclude 

that  

‖𝑞𝑥𝑞‖1 ≤
휀𝑠+1𝜏(𝑞)

2
.                                                   (4) 

By Lemma (6.1.16) below, take a unitary 𝑤 ∈  𝑞𝑁𝑞 such that 

‖𝐸𝑁′∩𝑀(𝐴0𝑣
𝑘1 …𝐴𝑗−1𝑤

𝑘𝑗𝐴𝑗 …𝑣
𝑘𝑛𝐴𝑛)‖1 ≤

휀𝑛𝜏(𝑞)

4𝑛
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For all 1 ≤  𝑛 ≤  𝐾, 1 ≤  𝑗 ≤  𝑛, 1 ≤   |𝑘𝑖| ≤  𝐾, 𝐴1, . . . , 𝐴𝑛−1 ∈  𝑉 ∪  𝑉𝑓 ∪ {1}. 𝑎𝑛𝑑 𝐴𝑛 ∈
 𝑉 ∪  𝑉𝑓 ∪  {1} 
Claim: the partial isometry 𝑣 + 𝑤 belongs to I, contradicting the maximality of v. To show 

the claim, take 1 ≤  𝑛 ≤  𝐾, 1 ≤ |𝑘𝑖|  ≤  𝐾, 𝐴1, . . . , 𝐴𝑛−1 ∈  𝑉, 𝐴0 ∈  𝑉 ∪  𝑓𝑉 ∪ {1} 
and 𝐴𝑛 ∈  𝑉 ∪  𝑉𝑓 ∪  {1}. We develop the sums in the expression 

 𝐸𝑁′∩𝑀(𝐴0(𝑣
𝑘1 +𝑤𝑘1)𝐴1(𝑣

𝑘2 +𝑤𝑘2)𝐴2…(𝑣
𝑘2 +𝑤𝑘2)𝐴𝑛).                        (5) 

(i) There is one term with only 𝑣’𝑠  appearing. Its  ‖·‖1  -norm is bounded by 휀𝑛𝑡(𝑝) , 

because𝑣 ∈  𝐼. 
(ii) There are n terms with w appearing at one place. Each term has it s ‖·‖1 . bounded by 
𝑛𝑡(𝑝)

4𝑛
 Altogether, their ‖·‖1-norm is bounded by ent(q)/4. 

(iii) There is 1 term with w appearing in position 1 and position n and with v’s in the other 

positions. This term contains the subexpression 

 𝑞𝐴1𝑣
𝑘2 · · ·  𝑣𝑘𝑛−1𝐴𝑛−1𝑞 . 

Because of (4), thek‖·‖1-norm of this term is bounded by 휀𝑛𝑡(𝑞)/2. 

(iii) There are less than 2𝑛-1n terms where w appears on at least two positions that are not 

exactly the positions 1, n. In every such term, we have the subexpression 

𝑞𝐴𝑖𝑣
𝑘𝑖+1 · · ·  𝑣𝑘𝑗𝐴𝑗𝑞 . 

with 1 ≤  𝑖 ≤  𝑗 ≤  𝑛 −  1 𝑎𝑛𝑑 0 ≤  𝑗 −  𝑖 ≤  𝑛 −  3. 𝐵𝑦 (4) , the ‖·‖1  -norm of this 

subexpression is bounded by 휀𝑛−1 𝑡(𝑞)/2. It follows that the sum of all the terms of this type 

has ‖·‖1-norm bounded by 2𝑛−1휀𝑛−1 𝑡(𝑞) ≤ =  휀𝑛𝑡(𝑞)/4 
 It follows that the ‖·‖1.-norm of the expression in (5) is bounded by 휀𝑛(𝜏(𝑝)  +  𝜏(𝑞))  =
 휀𝑛𝑡(𝑝 +  𝑞), proving that 𝑣 +  𝑤 ∈  𝐼. 
Lemma(6.1.16)[218]: Let (M, t) be a von Neumann algebra with faithful normal tracial state. 

Let N ⊂ M be a von Neumann subalgebra. Suppose that N is a factor of type II1 and that N is 

quasi-regular in M. If w is a bounded sequence in N that converges weakly to 0, then 

‖𝐸𝑁′∩𝑀(𝑎𝑤𝑛𝑏)‖2 → 0 

 for all a, b ∈ M. 

Proof: Step 1. Let 𝑎 ∈  𝑀 with ‖𝑎 ‖ ≤  1. The sequence ‖𝐸𝑁′∩𝑀(𝑎𝑤𝑛)‖2 converges to 0, 

whenever w is a bounded sequence in N that converges weakly to zero. Indeed, 

writing𝐸𝑁′∩𝑀 = 𝐸𝑁′∩𝑀𝜊𝐸𝑁⋁(𝑁′∩𝑀), we may assume that 𝑎 ∈  𝑁 ∨  (𝑁′ ∩  𝑀). So, we may 

assume that 𝑎 =  𝑥𝑦  with 𝑥 ∈  𝑁′ ∩  𝑀  and 𝑦 ∈  𝑁 . Because N is a factor, 𝐸𝑁′∩𝑀(𝑧)  =
 𝑡(𝑧)1 for all 𝑧 ∈  𝑁. Hence, 𝐸𝑁′∩𝑀(𝑦𝑤𝑛)𝑥 =  𝑡(𝑦𝑤𝑛)𝑥 and this last sequence converges to 

0 in ‖·‖2. 
Step 2. Let 𝜉 ∈  𝐿2(𝑀).  The sequence ‖𝐸𝑁′∩𝑀(𝜉𝑤𝑛)‖2converges to 0, whenever 𝑤𝑛  is a 

bounded sequence in N that converges weakly to zero. This follows immediately from Step 1.  

Step 3, proof of the lemma. Define K as the closure of 𝑁𝑏𝑁 in 𝐿2(𝑀). Since 𝑁 ⊂  𝑀  is 

quasiregular, we may assume that dim(𝐾𝑁) <  ∞ We then find 𝜉 ∈  𝑀1,𝑛 (ℂ)⊗ 𝐾, and a, 

possibly non-until, *-homomorphism 𝜓 ∶  𝑁 →  𝑀𝑛(ℂ)⨂𝑁 .such that 𝑥𝜉 =  𝜉𝜓(𝑥)  for all 

𝑥 ∈  𝑁 and such that K equals the closure of 𝜉(𝑀𝑛,1 (𝐶)  ⊗ 𝑁). So, we may assume that 

𝑏 =  𝜉𝑑 for some 𝑑 ∈  𝑀𝑛,1(ℂ)  ⊗ 𝑁. But then, 𝑎𝑤𝑛𝑏 = 𝑎𝜉𝜓(𝑤𝑛)𝑑. 

Since 𝜓(𝑤𝑛)is a bounded sequence in (𝑀𝑛,1 (𝐶)  ⊗ 𝑁) that converges weakly to zero, the 

lemma follows from Step 2. 
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Proposition (6.1.17)[218]:  Let (M, t) be a von Neumann algebra with faithful normal tracial 

state t. Let N ⊂ M be a von Neumann subalgebra. Suppose that N is a factor of type II1 and 

that N is quasi-regular in M. Let 𝑉 ⊂  𝑀 be a finite subset such that 𝐸𝑁′∩𝑀(𝐴)  =  0 for all A 

∈ V. 
For every 휀 >  0 and every 𝐾 ∈  ℕ0, there exists a unitary 𝑢 ∈  𝑁 such that 

‖𝐸𝑁′∩𝑀(𝐴0𝑢
𝑘1𝐴1𝑢

𝑘2𝐴2 · · ·  𝑢
𝑘𝑛𝐴𝑛)‖2 < 휀 

for all 1 ≤  𝑛 ≤  𝐾, 1 ≤  |𝑘𝑖|  ≤  𝐾, 𝐴0, 𝐴𝑛 ∈  𝑉 ∪  {1} and 𝐴1, . . . , 𝐴𝑛−1 ∈  𝑉. 
Proposition (6.1.17) is shown below, after the following preliminary result. 

Proof: Let 𝑁 ⊂  (𝑀, 𝑡) be a quasi-regular inclusion. Suppose that N is a II1 factor. 

Claim 1. Let ω be a free ultrafilter on ℕ and 𝑓 ∈  𝑁𝜔 a non-zero projection. If 𝑉 ⊂  𝑁𝜔 is a 

countable set with 𝐸(𝑁′∩𝑀)𝜔(𝑓𝑥𝑓)  =  0  for all 𝑥 ∈  𝑉 , there exists a non-zero partial 

isometry 𝑣 ∈  𝑓𝑁𝜔𝑓 satisfying 𝑣𝑣∗ = 𝑣∗𝑣  and 𝐸(𝑁′∩𝑀)𝜔(𝑦)  =  0 for every product y with 

factors alternatingly from V and {𝑣𝑘| 𝑘 ∈  ℤ, 𝑘 ≠  0}. 
Proof : Write 𝑓 =  (𝑓𝑛) where 𝑓𝑛 a non-zero projection in N for every n. Write 𝑉 =  {𝑥|𝑘 ∈
 ℕ} and choose representatives 𝑥𝑘 = (𝑥𝑘, 𝑛)𝑛 such that 𝐸𝑁′∩𝑀(𝑓𝑛𝑥𝑘,𝑛𝑓𝑛)  =  0 for all k, n. By 

Lemma (6.1.15), take partial isometries 𝑣𝑛 ∈  𝑓𝑛𝑁𝑓𝑛  such that 𝑣𝑛𝑣𝑛
∗ = 𝑣𝑛

∗𝑣𝑛, 𝑡(𝑣𝑛𝑣𝑛
∗)  ≥

 𝑡(𝑓𝑛)/4 𝑎𝑛𝑑 ‖𝐸𝑁′∩𝑀(𝑦)‖2 < 1/𝑛  whenever y is a product of at most 2𝑛 + 1  factors 

alternatingly from {𝑥0,𝑛, . . . , 𝑥𝑛,𝑛} 𝑎𝑛𝑑 {𝑣𝑛
𝑘| 1 ≤  |𝑘|  ≤  𝑛}. 

Then, 𝑣 ∶=  (𝑣𝑛) does the job. 

Claim 2. Let ω be a free ultrafilter on ℕ and 𝑉 ⊂  𝑀𝜔 a countable set with 𝐸(𝑁′∩𝑀)𝜔(𝑥)  =

 0  for all 𝑥 ∈  𝑉 . There exists a unitary 𝑢 ∈  𝑁𝜔  satisfying 𝐸(𝑁′∩𝑀)𝜔(𝑦)  =  0  for every 

product y with factors alternatingly from 𝑉 and {𝑢𝐾 | 𝑘 ∈  ℤ, 𝑘 ≠  0}. 
Proof: Define I as the set of partial isometries 𝑣 ∈  Nω satisfying 𝑣𝑣∗ = 𝑣∗𝑣  and 

𝐸(𝑁′∩𝑀)𝜔(𝑦)  =  0whenever y is a product with factors alternatingly from V and {𝑣𝑘| 𝑘 ∈

 ℤ, 𝑘 ≠  0}. By Zorn’s lemma, I admits a maximal element v. If v is a unitary, we are done. 

Otherwise, 𝑣𝑣∗ =  𝑝 <  1 and we set 𝑓 =  1 −  𝑝. 

Define W as the (countable) set of products y with factors alternatingly from V and {𝑣𝑘| 𝑘 ∈
 ℤ, 𝑘 ≠  0} and such that the product y starts and ends with a factor from V. Observe that 

𝐸(𝑁′∩𝑀)𝜔(𝑓𝑦𝑓)  =  0 for all 𝑦 ∈  𝑊. Indeed, 

𝐸(𝑁′∩𝑀)𝜔(𝑓𝑦𝑓)  =  𝐸(𝑁′∩𝑀)𝜔(𝑦)  − 𝐸(𝑁′∩𝑀)𝜔(𝑦𝑝)  =  0 − 𝐸(𝑁′∩𝑀)𝜔(𝑣𝑦𝑣
∗)  =  0; . 

Using Claim 1, take a non-zero partial isometry 𝑤 ∈  𝑓𝑁𝜔𝑓  satisfying 𝑤𝑤∗  =  𝑤 𝑤∗   and 

𝐸(𝑁′∩𝑀)𝜔(𝑦) = 0for every product y with factors alternatingly from W and {𝑤𝑘| 𝑘 ∈  ℤ, 𝑘 ≠

 0}. Then, 𝑣 +  𝑤 ∈  𝐼, contradicting 

the maximality of v. 

Proof: Consider 𝑉 ⊂  𝑀 ⊂  𝑀𝜔  with 𝐸(𝑁′∩𝑀)(𝑥) = 0 for all 𝑥 ∈  𝑉 . Claim 2 yields a 

unitary 𝑢 ∈  𝑁𝜔  such that 𝐸(𝑁′∩𝑀)𝜔(𝑦) = 0 for every product y with factors alternatingly 

from V and{𝑢𝑘| 𝑘 ∈  ℤ, 𝑘 ≠  0}. Writing 𝑢 =  (𝑢𝑛) with ununitary for all n, some 𝑢𝑛 for n 

big enough will do the job since the elements of V are represented by constant sequences in 

𝑀ω. 

We briefly recall Popa’s technique of intertwining subalgebras of a II1  factor using 

bimodules, introduced in [226], [228] (see also Appendix C in [232]). 
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Definition (6.1.18)[218]: (6.1.21). Let (𝑀, 𝑡) be a von Neumann algebra with faithful normal 

tracial state𝑡. Suppose that A, B ⊂ M are von Neumann subalgebras. We say that A embeds 

into B inside M and write 𝐴 
≺
𝑀
𝐵, if one of the following equivalent conditions is satisfied. 

(i) 𝐿2 < (𝑀, 𝑡) admits a non-zero A-B-subbimodule H satisfying dim(𝐻𝐵) < ∞ 

(ii) 〈𝑀, 𝑒𝐵〉 +∩ 𝐴
′contains an element x with 0 <  𝑇𝑟(𝑥)  <  ∞. 

(iii) There exists a projection 𝑝 ∈  𝐵𝑛, a normal*B-homomorphism 𝜓 ∶  𝐴 →  𝑝𝐵𝑛𝑝 and a 

non-zero partialisometry 𝑣 ∈  𝑀1,𝑛 (ℂ) ⊗  𝑀 satisfying 𝑥𝑣 =  𝑣𝜓(𝑥) for all 𝑥 ∈  𝐴. 

(iv) There does not exist a generalized sequence (𝑢𝑖)𝑖∈𝐼of unitaries in A satisfying  

‖𝐸𝐵(𝑎𝑢𝑖𝑏)‖2  → 0𝑓𝑜𝑟 𝑎𝑙𝑙 𝑎, 𝑏 ∈  𝑀 . 

 We write 𝐴
𝑓
≺
𝑀
𝐵 B, if one of the following equivalent conditions is satisfied. 

(vi) For every non-zero projection 𝑝 ∈  𝑀𝑛𝐴′, 𝐿2(𝑝𝑀, 𝑡)  admits a non-zero Ap-B-

subbimodule H satisfying dim(𝐻𝐵)  < ∞. 

vii) For every 휀 >  0, there exists a projection 𝑝 ∈  𝐵𝑛, a normal* -homomorphism 𝜓 ∶  𝐴 →

 𝑝𝐵𝑛𝑝  and a partial isometry 𝑣 ∈  𝑀1,𝑛 (ℂ) ⊗  𝑀  satisfying 𝜏(1 –  𝑣𝑣∗) < 휀  and 𝑥𝑣 =
 𝑣𝜓(𝑥) for all 𝑥 ∈  𝐴. 

Let 𝐴 ⊂  (𝑀, 𝑡). The set 𝑄𝑁𝑀 (𝐴) of elements quasi-normalizing A was introduced, as well 

as the quasi-normalizer 𝑄𝑁𝑀(𝐴)′′. Then, 𝑄𝑁𝑀(𝐴)′′is as well the weak closure of all 𝑥 ∈  𝑀 

for which the closure of 𝐴𝑥𝐴 in 𝐿2 (𝑀, 𝑡) has finite dimension both as a right A-module and 

as a left A-module. 

Let 𝐴, 𝐵 ⊂  (𝑀, 𝑡). Define 𝑝 = ∨ {𝑝0| 𝑝0 ∈ 〈𝑀, 𝑒𝐸〉 ∩ 𝐴
′ is a projection satisfying 𝑇𝑟(𝑝0) <

 ∞} . 

Then, 𝑝𝐿2(𝑀, 𝑡) clearly is an A-B-subbimodule of 𝐿2(𝑀, 𝑡) . In fact, it is easy to check 

that it actually is a 𝑄𝑁𝑀(𝐴)′′ − 𝑄𝑁𝑀(𝐵)′′-subbimodule. 

Corollary (6.1.19)[260]: Suppose that 𝜖 ≥  0 and that 𝑄𝑟−2 ⊂ 𝑀𝑟−2
1+𝜖 is a subfactor with the 

relative property (T) whose quasi-normalizer has finite index in 𝑀𝑟−2
1+𝜖 then Q 

≺
𝑀𝑟−2
1+ϵ𝑁𝑟−2

1+𝜖. 

Proof: Set (𝑀𝑟−2)𝑖 = 𝑁𝑟−2 ⋊ (Γ𝑟−2)𝑖  . Replacing 𝑄𝑟−2  by 𝑄𝑟−2
1

1+𝜖 , we may assume that 

𝜖 = 0 . Suppose that 𝑄𝑟−2 
≮
𝑀𝑟−2

𝑁𝑟−2 . The first statement yields 𝑖 ∈  {0, 1}  such that 

𝑄𝑟−2 
≺
𝑀𝑟−2

(𝑀𝑟−2)𝑖 . . Take a projection  ∈  𝑁𝑟−2
𝑛  , a unital *-homomorphism 𝜓 ∶  𝑄𝑟−2 →

 𝑝(𝑀𝑟−2)𝑖
𝑛𝑝 and a non-zero partial isometry 𝑣 ∈  ((𝑀𝑟−2)1,𝑛(ℂ) ⊗𝑀𝑟−2)𝑝 satisfying 𝑥𝑣 =

 𝑣𝜓(𝑥) for all 𝑥 ∈ 𝑄𝑟−2. By construction, the bimodule 

𝜓(𝑄𝑟−2)(𝑝(𝐿
2((𝑀𝑟−2)𝑖)

⊕𝑛)(𝑀𝑟−2)𝑖 . 

 is isomorphic with a sub-bimodule of 𝑄𝑟−2
𝐿2 (𝑀𝑟−2)(𝑀𝑟−2)𝑖 . Since we are supposing that 

𝑄𝑟−2 
≮
𝑀𝑟−2

𝑁.  We get that Ψ(𝑀𝑟−2)
≮

𝑝𝑀𝑖
𝑛𝑝  Denote by 𝑄𝑟  the quasi-normalizer of 𝜓(𝑄𝑟−2) 

inside 𝑝𝑀𝑟−2
𝑛 𝑝, The second statement of Theorem(6.1.4) implies that 𝑄𝑟 ⊂ 𝑝(𝑀𝑟−2)𝑖

𝑛𝑝. But, 

if 𝑄r−1 denotes the quasi-normalizer of 𝑄𝑟−2 inside 𝑀𝑟−2, it is clear that 𝑣∗𝑄𝑟−1 ⊂ 𝑄𝑟. Since 

we assume that 𝑄r−1 has finite index in 𝑀𝑟−2, we arrive at a contradiction. 
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Corollary (6.1.20)[260]: Let Γr−1 and Γ𝑟 be infinite groups, Γ𝑟−2 = Γ𝑟−1 ∗ Γ𝑟  their free 

product and Γ𝑟−2 ↷ 𝑁𝑟−2 an outer action on the II1 factor 𝑁𝑟−2. Set 𝑀𝑟−2  =  𝑁𝑟−2 ⋊ Γ𝑟−2 

and suppose that 𝑁𝑟−2  ⊂  𝑀𝑟−2 has the relative property (T). 

If 𝜖 ≥  0 and 𝜋 ∶  𝑀𝑟−2  →  𝑀𝑟−2 
1+𝜖 is a finite index, irreducible inclusion, then 

𝜋(𝑁)
≺
𝑀𝑟−2
1+𝜖𝑁𝑟−2

1+𝜖  and 𝑁𝑟−2
1+𝜖 ≺
𝑀𝑟−2
1+𝜖𝜋(𝑁𝑟−2) 

 Proof: By Corollary (6.1.5) , we get that 𝜋(𝑁𝑟−2)
≺
𝑀𝑟−2
1+𝜖𝑁𝑟−2

1+𝜖. 

Realize 𝑀𝑟−2
1+𝜖 =  𝑝𝑀𝑟−2

𝑛 𝑝 . Since 𝜋(𝑀𝑟−2) ⊂  𝑀𝑟−2
1+𝜖  has finite index, we can take a 

projection 𝑝1 ∈ 𝜋(𝑀𝑟−2)
𝑚, a finite index inclusion 𝜓 ∶  𝑀𝑟−2

1+𝜖 → 𝑝1𝜋(𝑀𝑟−2)
𝑚𝑝1 and a non-

zero partial is ometry 𝑣 ∈  𝑝((𝑀𝑟−2)𝑛,𝑚 (ℂ)  ⊗ 𝑀𝑟−2)𝑝1  satisfying 𝑥𝑣 =  𝑣𝜓(𝑥)  for all 

𝑥 ∈  𝑀𝑟−2
1+𝜖. Write 𝜋(𝑀𝑟−2)

𝑠: =  𝑝1𝜋(𝑀𝑟−2)
𝑚𝑝1. Cutting down if necessary, we may assume 

that 𝐸𝜋(𝑀𝑟−2)𝑠(𝑣
∗𝑣) has support 𝑝1. 

Then, 𝜓(𝑁𝑟−2
1+𝜖)  ⊂ 𝜋(𝑀𝑟−2)

𝑠 has the relative property (T). The quasi-normalizer of 𝜓(𝑁𝑟−2
1+𝜖) 

inside 𝜋(𝑀𝑟−2)
𝑠 contains 𝜓(𝑁𝑟−2

1+𝜖)and hence, is of finite index. By Corollary (6.1.5), we get 

that 𝜓(𝑁𝑟−2
1+𝜖) 

≺
𝜋(𝑀𝑟−2)

𝑠𝜋(𝑁𝑟−2)
𝑠.  so, we find a projection 𝑝2 ∈  𝜋(𝑁𝑟−2)

𝑘,  a unital*-

homomorphism 𝜃 ∶  𝜓(𝑁𝑟−2
1+𝜖)  →  𝑝2𝜋(𝑁𝑟−2)

𝑘𝑝2  and a non-zero partial is ometry 𝑤 ∈
 𝑝1((𝑀𝑟−2)𝑚,𝑘(ℂ) ⊗  𝜋(𝑀𝑟−2))𝑝2 satisfying 𝑥𝑤 =  𝑤𝜃(𝑥) for all 𝑥 ∈  𝜓(𝑁𝑟−2

1+𝜖). 
Since 𝐸𝜋(𝑀𝑟−2)𝑠(𝑣

∗𝑣) has support 𝑝1and since w has coefficients in 𝜋(𝑀𝑟−2), it follows that 

𝑣𝑤 ≠  0. Moreover ,𝑁𝑟−2
1+𝜖𝑣𝑤 ⊂  𝑣𝑤𝜋(𝑁𝑟−2)

𝑘. We have shown that 𝑁𝑟−2
1+𝜖 ≺
𝑀𝑟−2
1+𝜖𝜋(𝑁𝑟−2). 

Corollary (6.1.21)[260]: Let (𝑀, 𝑡) be a von Neumann algebra with faithful normal tracial 

state. Let N ⊂ M be a von Neumann subalgebra. Suppose that N is a factor of type II1 and 

that N is quasi-regular in M. If 𝑤𝑟 is a bounded sequence in N that converges weakly to 0, 

then 

‖𝐸𝑁′∩𝑀(𝑎𝑤𝑛
𝑟(𝑎 + 𝜖))‖2 → 0 

 for all 𝑎, (𝑎 + 𝜖) ∈ M. 

Proof: Step 1. Let 𝑎 ∈  𝑀 with ‖𝑎 ‖ ≤  1. The sequence ‖𝐸𝑁′∩𝑀(𝑎𝑤𝑛
𝑟)‖2 converges to 0, 

whenever 𝑤𝑟  is a bounded sequence in N that converges weakly to zero. Indeed, 

writing𝐸𝑁′∩𝑀 = 𝐸𝑁′∩𝑀𝜊𝐸𝑁⋁(𝑁′∩𝑀), we may assume that 𝑎 ∈  𝑁 ∨  (𝑁′ ∩  𝑀). So, we may 

assume that 𝑎 =  𝑥(𝑥 + 𝜖)  with 𝑥 ∈  𝑁′ ∩  𝑀  and (𝑥 + 𝜖)  ∈  𝑁 . Because N is a factor, 

𝐸𝑁′∩𝑀(𝑥 + 2𝜖)  =  𝑡(𝑥 + 2𝜖)  for all (𝑥 + 2𝜖)  ∈  𝑁 . Hence, 𝐸𝑁′∩𝑀((𝑥 + 𝜖)𝑤𝑛
𝑟)𝑥 =

 𝑡((𝑥 + 𝜖)𝑤𝑛
𝑟)𝑥 and this last sequence converges to 0 in ‖·‖2. 

Step 2. Let 𝜉 ∈  𝐿2(𝑀).  The sequence ‖𝐸𝑁′∩𝑀(𝜉𝑤𝑛
𝑟)‖2converges to 0, whenever 𝑤𝑛

𝑟  is a 

bounded sequence in N that converges weakly to zero. This follows immediately from Step 1.  

Step 3, proof of the lemma. Define K as the closure of 𝑁(𝑎 + 𝜖)𝑁 in 𝐿2(𝑀). Since 𝑁 ⊂  𝑀 

is quasiregular, we may assume that dim(𝐾𝑁) <  ∞. We then find 𝜉 ∈  𝑀1,𝑛 (ℂ)⊗ 𝐾, and a, 

possibly non-until, *-homomorphism 𝜓 ∶  𝑁 →  𝑀𝑛(ℂ)⨂𝑁. Such that 𝑥𝜉 =  𝜉𝜓(𝑥) for all 

𝑥 ∈  𝑁 and such that K equals the closure of 𝜉(𝑀𝑛,1 (𝐶)  ⊗ 𝑁). So, we may assume that 𝑎 +
𝜖 =  𝜉𝑑 for some 𝑑 ∈  𝑀𝑛,1(ℂ) ⊗ 𝑁. But then, 𝑎𝑤𝑛

𝑟(𝑎 + 𝜖) = 𝑎𝜉𝜓(𝑤𝑛
𝑟)𝑑. 

Since 𝜓(𝑤𝑛
𝑟)is a bounded sequence in (𝑀𝑛,1 (𝐶)  ⊗ 𝑁) that converges weakly to zero, the 

lemma follows from Step 2. 
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Section (6.2): Independence Properties in Subalgebras 

We continue the investigation of independence properties in subalgebras of 

ultraproduct 1II  factors, from [229], [256]. The main result we show along these lines is the 

following:  

Theorem (6.2.1)[233]: Let nM  be a sequence of finite factors with nMdim  and denote by 

M the ultraproduct 1II   factor nMII , over a  free ultrafilter   on N . Let MQ  be a von 

Neumann subalgebra satisfying one of the following: 

(a) Q  = nQII  , for some von Neumann subalgebras nn MQ   satisfying the condition 𝑄𝑛 ≮

𝑀𝑛𝑄′𝑛 ∩𝑀𝑛  , ∀n (in [226]); 

(b) BQ   ∩M, for some separable amenable von Neumann subalgebra MB  . 

Then given any separable subspace  MQMX   , there exists adiffuse abelian von 

Neumann  subalgebra QA    such that A  is free independent to X , relative to 

MQEeiMQ  ., (  

n

i ii xax
10 ) = 0, for all   niCAaXxxxn ii  1,,1,1 1 . 

Note that the particular case when nn MQ   are 1II  factors with atomic relative commutant, for 

which one clearly has nnnn MQMQ   , recovers (2.1 in [230]). 

The conclusion in Theorem (6.2.1) above can alternatively be interpreted as follows: 

given any separable von Neumann subalgebra P of M that makes a commuting square with 

MQ   (in the sense of 1.2 in [110]) and we let )(1 MQPB   , there exists a separable von 

Neumann subalgebra QB 0 , such that  010 1

~ BBPBP B   (amalgamated free product of 

finite von Neumann algebras over a common subalgebra, see [257], [251]). Since in the case 

(b) of Theorem (6.2.1) we have BMQ    (see Theorem (6.2.8)) and all embeddings into an 

ultraproduct 1II  factor M of an amenable separable von Neumann algebra B are conjugate by 

unitaries in M, Theorem (6.2.1) shows in particular that if two separable finite von Neumann 

algebras 21, NN  containing copies of B are embeddable into M , then 21 NN B  is embeddable 

into M as well. Note that the case B atomic of this result already appears in [230], while the 

case B arbitrary but with  RM  was shown in [237]. Theorem (6.2.1) implies the following 

strengthening of these results: 

Corollary (6.2.2) [233]:Let  nMIIM  be an ultraproduct  1II factor as in Theorem (6.2.1).  

Let MNi   be separable finite MQ  von Neumann subalgebras with amenable von 

Neumann subalgebras 2,1,  iNB ii  ,such that  
21 \2\1 ,~),( BB BB   Then there exists a unitary 

element Mu so that 21 BuuB  and so that, after identifying  21
~ BBB  this way, we have

2121
~ NNNuuN B

   . 

To show Theorem (6.2.1), we first construct unitaries Qu  that are approximately n-

independent with respect to given finite sets MQX  . Taking larger and larger n , larger and 

larger finite sets X and better and better approximations, and combining with a 

diagonalization procedure, one can then get unitaries that are free independent to a given 

countable set, due to the ultraproduct framework. 

The approximately independent unitary u is constructed by patching together 

incremental pieces of it, while controlling the trace of alternating words involving u and a 

given set X . This technique was initiated in [250], being then fully developed in [230], where 
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it has been used to show a particular case of Theorem (6.2.1) (a). More recently, it has been 

used in [256] to establish existence of free independence in ultraproducts of maximal abelian 

∗-subalgebras (abbreviated hereafter MASA) nn MA    that are singular in the sense of [97] 

(i.e., any unitary element in nM that normalizes nA  must lie in nA ), thus settling the Kadison-

Singer problem for the corresponding ultrapower inclusion nn MIIAII   . 

If in turn the normalizers of the MASAs nn MA  are large, then one can still detect 

certain independence properties inside A , by using the same type of techniques. Thus, it was 

shown in [256] that 3-independence always occurs in A, and we show here that given any 

countable group of unitaries   in M , that normalizes A  and acts freely on it, there exists a 

diffuse subalgebra 𝐵0 in 𝐴 such that any word  iii

n

i ubu
1

 with 0Bbi  ℂ and distinct iu , 

has trace 0. This actually amounts to 0B  being the base of a Bernoulli   -action, more 

precisely: 

Theorem (6.2.3) [233]: Let nn MA  be MASAs in finite factors, as before, and denote A = 

MMAA nn   . Assume M  is a countable group of unitaries nor- malizing A and 

acting freely on it, and let H  be an amenable subgroup. Given any separable abelian von 

Neumann subalgebra AB  , there exists a  -invariant subalgebra AA such that BA,  are τ -

independent and Γ ↷ 𝐴 is isomorphic to the generalized Bernoulli action Γ ↷ 𝐿∞ 
H/])1,0([   . 

Note that if the above ultraproduct inclusion MA  comes from a sequence of finite 

dimensional diagonal inclusions nnn MD  ,(ℂ) or is of the form  RD  , where RD   is the 

unique (up to conjugacy by an automorphism, by [109]) Cartan subalgebra of the hyperfinite

1II  factor, then a countable group   can be embedded into the normalizer )(ANM  of A in M , 

in a way that it acts freely on A  , iff it is sofic (in [258], [249]). Thus, with the terminology in 

[238], where an action of a sofic group ↷ 𝑋 is called sofic if the inclusion )()( XLXL    ⋊ 

  admits a commuting square embedding into MA , with  embedding into )(ANM , it 

follows from Theorem (6.2.3) that if X  is sofic then any product action↷ YX   with

↷ 𝑌  = ]1,[ O  a generalized Bernoulli action corresponding to the left action of  on a set 

ii HI / , for some countable family of amenable subgroups iH  , is sofic. This 

generalizes a result in [238]. 

We recall some basic facts needed, such as the local quantization lemma from [92], 

[229] and the criterion for (non-)conjugacy of subalgebras from [226]. We also show a 

general fact about centralizers (or commutants) of countable sets in ultraproduct 1II  factors. 

We show some bicentralizer results concerning amenable algebras and groups, in ultrapower 

framework, that we need in the proofs of Theorem (6.2.1) and respectively Theorem (6.2.3). 

We conjecture that, in fact, the bicentralizer property characterizes amenability. 

We show the main technical result needed in the proof of Theorem(6.2.1) , by using 

incremental patching techniques. This result, stated as Lemma (6.2.13), actually amounts to 

an “approximate version” of the free independence result in Theorem (6.2.1). We derive 

Theorem (6.2.1) (in fact a stregthening of it, stated as Theorem (6.2.16), by using Lemma 

(6.2.13) and an appropriate diagonalization procedure. 

We show Theorem (6.2.3) (stated as Theorem (6.2.18). Also, we use the incremental 

patching technique to show (see Theorem (6.2.20) that if nn MA  are Cartansubalgebras in 
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finite factors, with dim nM  → ∞, and i are countable subgroups of the normalizer  N of 

nAA   in nMM   , acting freely on A , with iiH   isomorphic amenable subgroups, 

then there exists Nu  such that 21 HuuH   and such that the group generated by  uu 1  and 

2  is the amalgamated free product 21  H  , where H is the identification of 21,HH  via 

Ad(u). Taking nM  finite dimensional, this recovers a result from [239], [248], on the soficity 

of amalgamated free products of sofic groups over amenable subgroups and on the 

uniqueness of sofic embeddings of an amenable group. 

All von Neumann algebras M  considered are finite (in [118]) and come equipped with 

a fixed faithful normal trace state, generically denoted . We denote by  MU  the group of 

unitary elements of M  and by  MP  the set of projections of M . Recall that a von Neumann 

algebra is a factor if its center is reduced to the scalars. Recall that there exists a unique trace 

state on a finite factor ([162]). A finite factor M  is either finite dimensional (in which case 

nnMM ~  (ℂ) for some 1n   with its unique trace state τ given by the normalized trace 

nTrtr / ) or infinite dimensional. In this latter case, it is called a 1II  factor, and is 

characterized by the fact that the range of the trace on the set of projections satisfies  

 1,0))(( Mp . 

More generally, a finite von Neumann algebra splits as a direct sum 21 MMM   with 

1M  of type I (i.e.   nnnn ACMM  11
~  , where nA  are abelian von Neumann algebras, 

possibly equal to 0) and 2M  of type 1II  (which by definition means 2M  has no type I 

summand). 

We denote by 
2

x  =     21l
xx , Mx , the 2L  Hilbert-norm given by the trace. We denote by 

ML2  the completion of M  in this norm. We often view M  in its standard representation, 

acting ML2 on by left multiplication.  

We will also use the 2L  norm 
1

on M , defined by 
1

x  := τ (|x|) = sup

 1,)(  yMyxy . We denote by ML1  the completion of M in the norm
1
. Note that by 

the Cauchy-Schwartz inequality we have 
21

xx   , while by the inequality xxxx    we 

have xxx
1

2

2
 . 

If BM   is a von Neumann subalgebra, then BMEB :  denotes the (unique) τ -

preserving conditional expectation of M onto B , which is contractible in both the operatorial 

norm  and the above PL  -norms, 2,1p  . If we view M  in its standard representation on 

ML2 , then the expectation BE  is implemented by the orthogonal projection Be  of  ML2 onto

MLBL 22    (viewed as the closure in the normof )MB  , b
2
y   MxexExee BBBB  ,  .Given 

avon Neumann subalgebra MB  and aset MX  ,we say that X is perependicular to B and 

write BX  if   .,0 BbandXxbx   

A finite von Neumann algebra  ,M  is separable if it is separable withrespect to the 

Hilbert norm 2
. Note that this condition is equivalent to thefactthat M  is countably 

generated as a von Neumann algebra. More generally, MX   is asubspace, then X is 

separable if it is seprable with respect to the norm
2  

. 
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The von Neumann algebra M  is atomic if iiM e1  with Mei   a family of mutually 

orthogonal minimal projections Mei  (or equivalently, atomic projections, i.e. with the 

property that 𝑒𝑖𝑀𝑒𝑖 = ℂ𝑒𝑖 . M is diffuse if it has no minimal (non zero) projection. Any 

abelian von Neumann algebra A which is diffuse and separable is isomorphic to   1,0L  (or 

to 𝐿∞(𝕋)). Moreover, if A is endowed with a faithful normal state τ , then the isomorphism

  1,0~  LA   can be taken so that to carry   onto the integral  d. . , where   is the Lebesgue 

measure on [0, 1]. 

We will often consider maximal abelian ∗-subalgebras (MASA) A  in a finite von 

Neumann algebra .., eiM M, i.e. abelian ∗-subalgebras MA  with MA   = A . In such a case, 

we denote }|)({)( AuAuMUuANM   , the normalize of A  in M . Following [243], if the 

normalizer generates M as a von Neumann algebra, we call A a Cartan subalgebra in M . An 

isomorphism of Cartan inclusions   ;~);( 1100 MAMA   is a trace preserving isomorphism 

of 0M  onto 1M  carrying 0A  onto 1A . 

If 00 MA  is Cartan and 11 MA    is an arbitrary MASA, then a Cartanembedding (or 

simply an embedding) of 00 MA   into 11 MA  is a trace preserving embedding of 0M  into 1M  

that carries 0A  into 1A  such that 010 AAM  , with the commuting square condition
 

001 AMA EEE   satisfied (see Theorem (6.2.8)), and such that
 

   10 10
ANAN MM   . 

For various other general facts about finite von Neumann algebras, see [162]. 

. Two von Neumann subalgebras 21,BB M   are in commuting square position if the 

expectations 
21

, BB EE  commute (see Sec. 1.2 in [104]). Note that if this is the case then we in 

fact have 
211221

,, BBBBBB EEEEE  . Also, for this to happen it is sufficient that   2121
BBBEB   

. 

A typical example when the commuting square condition is satisfied is the following: 

let MPQ   be von Neumann algebras; then P  and MQ   are in commuting square 

position (see 1.2.2 in [104]). 

We notice here an observation showing that in the statement of Theorem(6.2.1) , we 

may equivalently take the space X  to be a separable von Neumann algebra making a 

commuting square wit MQ  , a fact that we will not use in the sequel but is good to keep in 

mind. See also (3.8 in [256]) for a similar statement. 

Lemma (6.2.4)[233]: Let MN  be a von Neumann subalgebra in the finite von Neumann 

algebra M . If MX  is a separable subspace, then there exists a separable von Neumann 

subalgebra MP   that contains X  and makes a commuting square with N . 

Proof: We let 0P M be the (separable) von Neumann algebra generated by X   and then 

construct recursively a increasing sequence of inclusions of separable von Neumann algebra 

1,  npB nn , by letting nB be the von Neumann algebra generated by NE  ( 1nP ) and np  be the 

von Neumann algebra generated by nB  and 1nP . 

If we now define B  = 


nnBU and P  = 


nnBU  , then both algebras are separable and

NPB  , by construction. Moreover, we have   1 nnN BPE P , implying that 

  NPBPEN   ,i.e.N,P make a commuting square with PNB  .  
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.An important example of a (separable)  1II factor is the hyperfinite 1II factor R of Murray and 

von Neumann ([118]), defined as the infinite tensor product ),( R     
kk trCMR ,, 22 . By 

[118], R  is the unique approximately finite dimensional ( AFD ) separable 1II factor (a 

separable finite von Neumann algebra algebra ( ,M ) is AFD  if there exists an increasing 

sequence of finite dimensional von Neumann subalgebras MM n   such that nnMU  is dense 

in M in the norm 
2
). 

By Connes’ results in [96], R  is in fact the unique amenable separable 1II factor. Recall 

in this respect that a finite von Neumann algebra ( ,M ) is called amenable if there exists a 

state   on  MLB 2 that has M (when viewed in its standard representation on ML2 )in 

itscentralizer,      MLBTMxTxxT 2,,  , and such that M\  = τ . Note that the latter 

condition is redundant in case M  is a factor, because M\  is a trace and because of the 

uniqueness of the trace on factors. Connes Fundamental Theorem in [96] actually shows that 

amenability is equivalent to the AFD  property, for any finite von Neumann algebra. 

From all this, it follows that R  can be represented in many different ways, for instance 

as the group measure space 1II  factor  XL ⋊  , associated with a free ergodic measure 

preserving action of a countable amenable group  ona probability space ( uX , ) ([118]). 

When viewed this way, R  has  XLD  as a natural Cartan subalgebra. By [109], [246] the 

Cartan subalgebra of R is in fact unique, up to conjugacy by an automorphism of R . We may 

thus represent RD    as the infinite tensor product   222  MD
Kk (ℂ))𝑘 ,where 2D  is the 

diagonalsubalgebra in 22M (ℂ). 

More generally, by [97], if 00 RA    is a Cartan subalgebra in an amenable separable 

finite von Neumann algebra 0R  , then there exists an increasing sequence of finite 

dimensional Cartan inclusions ( )() 00,0,0 RARA nn  (with Cartan embeddings, as defined 

before) such that 


nnnn RURAAU ,000,0   . 

We recall here a result from [92], [229], showing that if MQ   are 1II von Neumann 

algebras, then one can “simulate” the expectation onto the commutant MQ   by “squeezing” 

with appropriate projections in Q , a phenomenon called “local quantization” in [229]: 

Theorem (6.2.5)[233]: (i) Let M be a finite von Neumann algebra and MQ   a von Neumann 

subalgebra. Given any finite set  QMF   ( MQ  ) and any 0 , there exists a projection 

Qq  such that FXqqxq  ),(
1

 . 

(ii) Let MQ   be MQ   an inclusion of  1II von Neumann algebras. Given any finite 

set MX   and any 0 , there exists a projection Qq   such that 

  XxqqxEqxq MQ   ),(
1

 . Moreover, 𝑞 can be taken so that to have scalar central trace 

in Q . 

Proof: Part (i) is already showd in [92] (see also Theorem 3.6 in [256]), while part (ii) is 

(Theorem A.1.4 in [229]). 

Let MPQ ,  be von Neumann subalgebras of the finite von Neumann algebra M. 

Following [226], we say that a corner of Q  can be embedded into P inside M and write  

PQ M   if the following condition holds true: there exist non-zero projections QqPp  , , a 
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unitalisomorphism pPpqQq:  (not necessarily onto) and a partial isometr Mv   such that

  00,,,,,)(,)(   ximpliesxvvqQqxandqQqxxvxvpMpqQqvvqMqqQqvv   . 

We will actually consider cases when the above condition is not satisfied. We recall from (2.1 

in [229]) a useful necessary and sufficient criterion for this to happen: 

Theorem (6.2.6): Let M  be a finite von Neumann algebra and MQP ,  von Neumann 

subalgebras. For each  qQquufixQPq q  ),(  a subgroup generating qQq as a von Neumann 

algebra. Then 𝑄 ≮𝑀 P if and only if the following condition holds true: 

 Given any )(Qpq and any separable subspace MX   there exists a sequence of unitary 

elements nu ∈ 
qU such that   XyxyxuE nPn  ,,0lim

2
. 

We fix once for all an (arbitrary) free ultrafilter   onℕ. If 1, nM n  , is a sequence of 

finite von Neumann algebras then, we denote by Mn  their -ultraproduct, i.e., the finite 

von Neumann algebra obtained as the quotient of nn M  by its ideal T  = {( nx ) | lim  τ (
nn xx

 ) 

= 0}, endowed with the trace τ ( y ) = lim τ ( ny ), where   nnnn My  is in the class y ∈

IMy nn /   ([259]). 

Recall that if nM  are factors and dim nM → ∞, then nM  is a 1II factor ([259])and it is 

non-separable ([259]). 

If nn MQ   are von Neumann subalgebras, 1n  , then the ultraproduct nQII identifies 

naturally to a von Neumann subalgebra in Mn  and its centralizer (or commutant) in nM  

is given by the formula    nnnn MQMQ  


   (see e.g. [92]). 

If M  is a finite von Neumann algebra, then M  denotes its  -ultrapower, i.e. the 

ultraproduct of infinitely many copies of M . Note that M  naturally embeds into M , as the 

von Neumann subalgebra of constant sequences, and that if M  is a  1II factor then M  is a 

(non-separable by [242]) 1II factor. 

Let   
nnbS  be a countable subset in the ultrapower R of the hyperfinite 1II factor R

and let  
mmnn bb ,  be representations of each of its elements with 



nrkkmn MCMRb   ))(( 22, , where nM  is the tensor product of the first n copies of 

 CM 22 . Thus, we may assume that for for each m,     mkmnmn Mb 
, , for a large enough mk  . 

Then we have  
 RMb

mkn  , ∀n, viewed as a subalgebra of R .But then the ultra product 

subalgebra   
 RRM

mk  ~  commutes with the set 
nnb  . This shows that the centralizer of 

any separable von Neumann subalgebra of R  is a type 1II von Neumann algebra without 

separable direct summands. 

However, for general ultra products nMII  and ultra powers M , we may have 

countable (or even finite) subsets S that have trivial centralizer: For instance, if M  is a non-

Gamma 1II factor ([118]), such as the group 1II factor )( LM assoiated with an infinit 

conjugacy(ICC) countable group  Γ  with the property(T) of Kazhdan (for example, 

  )3,,  nZnPSL . Then M is finitely generated and 𝑀′ ∩𝑀𝜔 = ℂ.Similarly, by results in 

[234], it follows that if for some fixed 3n   we take ( mm H, ) to be any sequence of finite 

dimensional irreducible representations of  ZnPSL ,  so that  mm HK dim ,then the von 
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Neumann subalgebra M  generated by    gg
mm |  in the ultraproduct 1II factor 

mm kKM  (ℂ) isomorphie to the group factor )(L and has trivial relative commutant. 

The following result shows that in fact the centralizer of a any separable von 

Neumann subalgebra P of an arbitrary ultraproduct 1II factor nMM : , coming from a 

sequence of finite factors nM  with dim nM , splits as the direct sum of an atomic von 

Neumann algebra and a diffuse von Neumann algebra with only non-separable direct 

summands. 

Theorem (6.2.7)[233]: If P  is a separable von Neumann subalgebra of M  then 

10 BBMq   , with 0B atomic and 1B diffuse and having no separable direct summand (even 

more: any MASA of 1B   has only non-separable direct summands). 

Proof: Denote MPQ  and let  QZz  be the maximal central projection with the property 

that ZQ  is diffuse. We have to show that ZQ ′ is non-separable for any central projection

 
ZQZz  . By replacing MP   by zMzPZ  , we may clearly assume 1z . 

Assuming by contradiction that Q  has separable direct summands, we may further 

reduce with the maximal central projection 0z in Q  with the property that 
0ZQ  is separable to 

actually assume, by contradiction, that MP   is separable with MPQ  diffuse and 

separable. 

Let  Pb
nn   be a countable subset of the unit ball of P , dense in the Hilbert norm

2

.Let  
mmnn bb , be representations of nb  with mmn Mb , , mnbb nmn ,,   . Let also Qu be a 

Haar unitary generating a maximal abelian ∗-subalgebra 0A Qof , and let u  =  
mmu  be a 

representation of u with   mMUu mm  ,  . 

The fact that u belongs to   MbQ nn 


  translates into the condition                        
                               

 

  ,1,0,lim
2, 


kub mmk

m 
                                                 (6)   

 While the fact that u is a Haar unitary amounts to the condition                       

,0,0)(lim 


ju j

m
m




.                                                        (7) 

Let nV denote the set of all Nm  with the property that 

              
  .21,1,2)(,2,

2, njnkuub nj

m

n

mmk   
                                 

(8) 

If we identify  ℕwith the algebra  C of continuous functions on its spectruma (via 

the GNS representation), and we view   as a point in  , then by (6) and (7)it follows that nV  

correspond to an open-closed neighborhoods of   . Let now 0, nWn , be defined 

recursively as follows: 0W = ℕand  nnnn WnNnVWW min|11    . Note that, with the 

same identification as before, nW  correspond to a strictly decreasing sequence of 

neighborhoods of   .  

Noticing that the sets  
11\

 nnn WW  form a partition of N , we define mmvv )( by letting 

n

mm uv    for nn WWm \1  . Since )( mm MUv  , it follows that v is a unitary element in M . By the 

first relation in (15), if 1\  nn WWm then                  
         

      njn

mmmk

n

j

j

m

n

mmkmmk nuubuubub 


  2,||,, 2

1

,

1

02
,2, ,          (9)                   
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for all nk 1  , while by the second relation in (8) we have 

                                    
nj

mmuv 2)(                                                     (10)                              

  for all nj 1  . 

But then (9) implies QMPMnbv n  }{ , while by (10) we have 0)( jvu , for all

0j , i.e. Qv  is perpendicular to the maximal abelian ∗-subalgebra }{0
 uA  of Q generated 

by Qu  . Since by construction we have vuuv  , this shows that at the same time we have

0}{ AQuv    and 0Av  ,a contradiction. This also shows the stronger form of the statement. 

Theorem (6.2.8) [233]:(i) Let nM  be a sequence of finite factors with dim nM  and denote

nMM  . If MB   is a separable amenable von Neumann subalgebra, then BMMB   )( . 

Moreover, MB  is of type  1II and has only non-separable direct summands. 

(ii) If R denotes the hyper finite 1II factor then RRRR    )( . 

Proof: Part (ii) is just a particular case of part (i), so we only need to show (i). By Cannes’ 

Theorem ([96]), since B is amenable and separable, it is approximately finite dimensional, so


nnBUB  , for some increasing sequence of finite dimensional von Neumann subalgebras

BBn  . Note that )( MBMB nn   and that for each n we have nn BMMB   )( (in fact, it 

is trivial to see that given any inclusion of von Neumann algebras MN  with dim N  and 

M a factor, we have ))( NMMN   . We first need to show the following: 

Fact. Let MP  be an inclusion of finite von Neumann algebras. Let )( MPMx  

and 0 . There exists a unitary element Pu such that
2

2
)( xuxux    . 

To show this, let xK denote the weak closure of the convex set co )}(|{ PUuuxu  and 

note right away that xy  and xKyxy  ,
22

. Thus, xK is a weakly closed bounded 

subspace in both M and ML2 . In particular, there exists a unique element xKy 0  of minimal 

Hilbert-norm:  xkyyy |min
220  . Since xK is A d ))(( PU -invariant (because it is the weak 

closure of the A d ))(( PU - invariant set co )}(|{ PUuuxu   and since
20

2
0 yuuy   , by the 

uniqueness of y0 it follows that )(,00 PUuyuuy  . Thus, )(,00 puuyuy  . By taking linear 

combinations of u, this implies
 

MPy 0 . But by its construction, the entire xK  lies in 

)( MPM   . Thus,
 0y  is both in MP   and perpendicular to it, implying that xKeiy  0..,00 . 

Assuming now that we have 
2

2
)( xuxux    , for all )(PUu  , by taking convex 

combinations over )(PUu  and then weak closure, it follows that
2

2
)( xyx      , for all 

Py . In particular, 
2

20 )(0 xyx     , forcing 0x . This ends the proof of the above Fact. 

Denote for simplicity MBQ  and note that MQB  . Assume there exists

MQx   with Bx . In particular MMBBx nn  )(  . By applying the Fact to the 

inclusion MMBn   and the element x, it follows that there exists a unitary element 

MBu nn   such that nxuux n

nn   ,2)(  . 

Let 
nk

k

n Be }{ denote the (finite) pseudo group of all partial is ometries in nB  that can be 

obtained as a sum of elements from a given matrix unit of nB , and which we take so that 
i

n

ie }{  

is a subset of .,}{ 1 ne j

n

j   Let m

n

mk

n

k ee )( , , with m

n

mk Me ,  chosen so that 
n

k

n

mk ee ,
 and 
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j

n

mji

n

mi ee }{}{ 1

,,

  for all mn, . Let also
mmnn uu )( ,  , with )(, mmn MUu  . Then the above properties 

translate into       

    n

mnmmnm
m

n

mkmn
m

uxuxeu 


 2lim,0,lim ,,

2
,, 


,                (11)                   

Foral K  and all n , where mmxx )( with mm Mx  . Let nV denote the set of all Nm with the 

property that 

 
    kxuxuxeu mnmmnm

nn

mkmn   ,2/,2,
2

2,,
2

,,  .                  (12)                   

By (11), it follows that nV corresponds to an open-closed neighborhood of   in the 

spectrum   of  ℕ , under the identificationℓ∞ℕ = 𝐶(Ω) . Let now 0, nWn , be defined 

recursively as follows:𝑊0 = ℕ𝑎𝑛𝑑 𝑊𝑛+1 = 𝑊𝑛+1 ∩ {𝑛 ∈ ℕ|𝑛 > 𝑚𝑖𝑛𝑊𝑛} . Note that, with 

the same identification as before,
 

nW correspond to a strictly decreasing sequence of 

neighborhoods of
 
  . Define mmvv )( by letting mnm uv ,   for nn WWm \1  . Since )( mm MUv  , 

it follows that
 
v is a unitary element in M, while by the first relation in (12) and the fact that

i

n

mji

n

mi ee }{}{ 1

,,

  it follows that QMBMBv nn   . By the second relation in (12), we also 

have   2\
2

2
xvxvx   . But MQx  by our assumption, thus xvxv  , giving

2

2
)( xvxvx  , 

a contradiction. 

If )1( zQQQ Z  with
 
z a non-zero central projection of Q  and ZQ  separable, then by 

the bi-commutant property we have Bz and by Proposition (6.1.17) ZQ  is atomic. Thus,
 

zMzQB zZ )(   would follow non-separable, a contradiction. 

Assume now that )1( zQQQ Z  with ))(( QZpz such that ZQ is type I. By the ib -

commutation relation, it follows again that Bz  and that zMzQB zz )(  is non-separable 

(because the commutant of any abelian von Neumann subalgebra of M is non-separable, by 

4.3 in [92], or 2.3 in [256]). 

Theorem (6.2.9) [233]:  Let nn MA   be a sequence of MASAs in finite factors and denote

)(, ANNMMAA Mnn   . 

(i) If NH   is a countable amenable subgroup, then HAMAH   )( . 

(ii) Assume the MASAs nn MA  are Cartan. Let MR 0 be a separable amenable von 

Neumann subalgebra such that ARD 00   is a Cartan subalgebra in 0R with 𝒩𝑅0(𝐷0) ⊂

𝒩(𝑖. 𝑒.  )( 00 RD  ⊂  )( MA is a cartan embeddeding, in the sense of 1.3) .Then

)())(( 00 00
DNNNDN RR   . 

Moreover, if 11 RD   is another Cartan inclusion witch is cartan embedded in into

MA , then given any isomorphism );();(: 1100  RDRD  , there exists Nu  such 

that 0)( RonpuAd   .  

Proof: (i) Let first 
j

n

je }{  be an increasing sequence of finite partitions in )(Ap such that

HuuEuee A

n

j

n

jjn  ,0)(lim

2

 (e.g., by [98], or 3.3 in [297]). If we denote by 0A  the von 

Neumann subalgebra of A  generated by 


unjeU n

jHu U },\{  and HAR  00 , then H normalizes 

00 , AA is a Cartan subalgebra of
 

0R  and 0RAHA  . In particular, ARAH  0
 . 

Moreover, since H is amenable, 0R  follows amenable so by ([109], [246]) there exists an 
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increasing sequence of finite pseudo groups of partial isometries j

n

jn eG }{ , normalizing 0A  

(and A as well), with source and targets either equal or mutually orthogonal, for each n ≥ 1, 

and such tha },\{ njen

j  generate 0R . 

It is then trivial to see that
 

)( AGAH nn    and nnn AAGAAG ,)(   . Then the 

rest of the proof proceeds with a “diagonalization” argument, exactly as at the end of the 

proof of Theorem (6.2.8). 

(ii) The proof of this part is similar to the one of Theorem (6.2.8)(i) and of Theorem (6.2.9)(i). 

 (i) It is well known (and trivial to show) that if nM  is a sequence of finite factors with dim

nM and ),( B is a finite separable AFD von Neumann algebra, then there exists a trace 

preserving embedding 𝜃0: 𝐵 ↪ 𝑀 ≔ ΠωMnand that given any other such trace preserving 

embedding𝜃1: 𝐵 ↪ 𝑀, there exists a unitary element Mu such that Bbubub  ,)()( 01  . In 

particular, any two copies of ),( B  in M  are unitary conjugate. By Connes’ theorem [96], 

this means that the same holds true for any finite, separable, amenable B . 

Moreover, by a result of K. Jung in [244], the converse is also true: if a finite separable 

von Neumann algebra ),( B  has a unique (up to unitary conjugacy) embedding into either an 

ultraproduct nnM  (ℂ)or in R , then B is amenable (see [230]). In fact, by a result of N. 

Brown in [236], if RB  is non-amenable, then there exist uncountably many non conjugate 

copies of RinB . 

Since given any ultraproduct 1II  factors nMM   , all embeddings 𝐵 ↪ 𝑀 of a given 

separable amenable finite von Neumann algebra are unitary conjugate in M , it seems 

interesting to investigate the converse in this general setting: is it true that if MB   is a 

separable non-amenable von Neumann algebra of an arbitrary utraproduct 1II  factor, then 

there exist “many” non-conjugate copies of MinB ? (see [241].) 

On the other hand, related to Theorem (6.2.8)  above, we propose the following new 

characterization of amenability for separable finite von Neumann algebras: 

Conjecture (6.2.10)[233]: Let P be a separable finite von Neumann subalgebra of an 

ultraproduct 1II factor M  (notably, of RM  , or of nnMM    (ℂ) . If the bicentralizer 

condition PMMP   )(  is satisfied, then P  is amenable. In particular, if M is a separable

1II  factor such that RMthenMMMM  ~)(   . 

Note that for a separable von Neumann subalgebra  of an ultraproduct 1II  

factor,conjecture is equivalent to the following statement:  

Conjecture (6.2.11)[233]: Let P be a separable von Neumann subalgebra of an ultraproduct 

1II  factor M . If P is the centralizer of a von Neumann subalgebra MQ  , i.e., 
MQP   , 

then P is necessarily amenable. 

Indeed, one clearly has that Conjecture (6.2.11) implies Conjecture (6.2.10). Assume in 

turn that Conjecture (6.2.10) holds true. Let MQ  be so that MQP  is separable and 

denote MPQ 
~

. Then we still have PMQ 
~

, so P  satisfies the bicentralizer condition 

and it is separable, thus P  is amenable. 

Note also that the bicentraliser condition MMMM    )(   for a separable 1II  factor 

M , implies that M must be McDuff ([101]), i.e., it splits off the hyperfinite 1II factor (or else 
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MM  is abelian, implying that the bicentralizer is non-separable), but that it cannot be of 

the form RN , with N  non-Gamma ([118]). In fact, if M  has a 1II  von Neumann subalgebra

MN    satisfying the spectral gap condition  )( MNMN    ([255]), then M  cannot 

satisfy the bicentralizer condition MMMM    )( . Indeed, this is because taking 

bicentralizer is an operation preserving inclusions of algebras, and thus the bicentralizer of 

M  in M  contains the bicentralizer of N in M , which is equal to  NMMN   ))(( . But 

the latter is non-separable, so it cannot be contained in M , which is separable. 

(i) Since by ([109]), any Cartan inclusion 00 MA  with 0M separable amenable finite von 

Neumann algebra is a limit of an increasing sequence of finite dimensional Cartan inclusions, 

it follows that any isomorphism between two embeddings of 00 MA   into an ultraproduct 

inclusion MA  is implemented by a unitary element in )(ANM . Indeed, this is clear for 

finite dimensional 00 MA  , and the general case follows by a diagonalisation procedure. 

If in turn 00 MA    is a Cartan subalgebra with 0M non-amenable, and 00 MA   is 

embeddable into an ultraproduct MA  which is either of the form nnn MD    (ℂ), or of 

the form  RD   , then any two copies of 00 MA    into MA  that are conjugate by a 

unitary in )(ANM , will have the corresponding copies of 0M   unitary conjugate in M . The 

procedure of constructing “many” non-conjugate embeddings of a non-amenable MM 0  in 

the proof of (8.1 of [236]), is easily seen to actually give embeddings of 00 MA   into MA . 

Thus, (8.1 in [266]) also implies that there exist uncountably many non-conjugate 

embeddings of 00 MA   into MA . Altogether, this gives an analogue for Cartan inclusions 

(equivalently, for countable equivalence relations [243]), of K . Jung’s characterization of 

amenability in [244], by a “unique embedding” - type property. 

Part (ii) of Theorem(6.2.9) above suggests that, for a separable Cartan inclusion 

00 MA  embedded into an ultraproduct of Cartan inclusions MA , the bicentralizer property 

of the inclusion of full groups )( 00
ANM )(ANM  characterizes the amenability of 00 MA  . 

(iii) G. Elek and G. Szabo showd in [239] the following “unique embedding” type 

characterization of the amenability property for a countable group H , analogue to the one for 

finite separable von Neumann algebras in [244]: if H   is amenable then any two embeddings 

of H into the normalizer N of nnn MDA    (ℂ) = 𝑀, acting freely on A, are conjugate 

by a unitary in N (this easily implies the same thing for MRDA    ; note that by 

Corollary (6.2.19) below, the same “unique embedding” result actually holds true for ANY 

ultraproduct inclusion MA );and that if H is sofic and non-amenable, then there exist at 

least two embeddings of H  into N acting freely on A , non-conjugate by unitaries in N . In 

fact, as we mentioned, by (8.1 in [236]) there even exist uncountably many non-conjugate 

such embeddings. 

Part (i) of Theorem (6.2.9) suggests the following alternative “bicentralizer” 

characterization of amenability for countable groups: 

Conjecture (6.2.12): Let H be a countable group embeddable into the normalize of an 

ultraproduct MASA MA  (notably nnn MDorRD  
  (ℂ)), such that H acts freely 

on A  and such that it satisfies the bicentralizer condition HAMAH   )(  . Then H  is 

amenable. 
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Lemma (6.2.13)[233]: Let MQ   be an inclusion of 1II  von Neumann algebras and 

assum 𝑄 ≮ 𝑄′ ∩ 𝑀. Let Qf  be a non-zero projection. For any 1n  and any 0  , there 

exists a partial isometry 𝑣. in 𝑓𝑄𝑓suth that 𝑣 𝑣∗ = 𝑣∗𝑣, τ(𝑣 𝑣∗) > 𝜏(𝑓)/and‖EQ′∩M(x)‖1
≤

ε, ∀x ∈ ⋃ Fv.
kn

k=1  

Proof: It is clearly sufficient to show the statement in case 
 FF  and Fxx  ,1 Let 0 . 

Denote 1,2, 1

1

0  

 kk

k

k  .Denot 

},1),()(),(|{
1

k

vkMQ FxnkvvxEQPvvvvfQfvW  
  . 

Endow W  with the order ≤ in which 21 ww  iff 1121 wwww   . (W ,≤) is then clearly inductively 

ordered. Let v be a maximal element in W . Assume 4/)()( fvv     and denote vvfP   . 

Note that this implies 3/1)(/)(  pvv  . 

If w  is a partial isometry in pQp  with wwwwq     and we let wvu   , then for

k

uii

k

i
Fxuxx 

1
0   we have 

                         ijjijiii

k

i zwizxvxx  1,010    ,              (13)                   

where the sum is taken over all k,...,2,1 and all  iii ,...,1  , with kii  ...1 1 , and 

where ww ji  (resp. 
 ww ji ) whenever vv ji  (resp. 

 vv ji ), 

pxvvpxzpxxvxz ijjiijijjiii 1111111110,0 ...,...   , for  j1 , and 
kkii xvpxz ...

1, 


  . 

By applying MQE  to the above equation, then taking
1

 and applying triangle 

inequality, we then get: 

       
1

,1,0
1

101
)()()(    




 i ijijjiii

k

iMQ zwzxvxxE                  (14) 

Since Wv , the first term on the right side in  (14)is majorized by )( vvk , so we are 

left with estimating the terms ijijji zwzz ,1,0


 in the double summation on the right hand side, 

which all have 1  number of appearances of powers of     

We first deal with the terms where 2 . 

Since for Myyy ,, 21 with 1,1 21  yy  we have
1121121 )( yyyyyyyE MQ  , it follows that 

for any 2  we have: 

)()...()(
1,1,112,11122,1101

pqqzqqzwzwzwzwzwzEzE
pMpiiiiiiiiiiiiMQMQ    ,    (15)   

where MppMp  1)(   and 
pMp,1

 denotes the 
1L  -norm on pMp  associated with this trace. 

By applying Theorem (6.1.4) to the inclusion pMppQp    (with its trace pMp ) and to 

the finite set pMpX   of all elements of the form piMQi MQpMpzEZ
p

)()( ,1)(,1 
   , for 

some i = (i1, . . . , iℓ), 2 , we obtain that for any α > 0, there exists )( pQpPq   such that 

                         )()(
,1,1)(,1 qqzEqqz pMppMpipMQi    .                 (16) 

 Thus, by combining (15) and (16) we get 

                             )()(
,1,11

qqqzzE
pMpiMQ   

≤ )())()(
,1,1)( pqqzE pMp
pMp

ipMQ   

= )()()()(
,1,1)( qpqzE

pMppMp
ipMQ 


  



225 

                         = )()()(
,1,1)( qpzE
pMp

ipMQ   .                                                 (17) 

We now take into account that by the definition of the norm 
1
, we have 

}1)(|)(/)(sup{)( ,1
,1,1)(  yMQypyzzE Pi
pMp

ipMQ    

= sup }1,|)(/|))1(...)1(({| 121211  



 yMQypvvxvvxvvy iiii                       (18) 

But since MQy  commutes with Qvvv  1,  and   is a trace, we actually have 

)....().....())1(...)1(( 12112112 vxxyvxyxvvxxvvy iiiiii 









   , so the last term in (18) is further 

majorized by 

}1|)(/)...(sup{ 111 2211
 yMQypxvvyx iiii   

                     
}1|)(/)...(sup{ 111 2211

 

 yMQypvxvvxyv iiii   

                      = 
1

111 )...((
2211  iiiiMQ xvvxE    

                   
 pxvvxvE iiiiMQ /...(

1
111 2211 


  .                                                                            (19) 

Note at this point that
 

111 2211
...  iiii xvvx  lies in

 
112 ii

vF  and vxvvxv iiii 111 2211
... 

  lies in 112 ii

vF  . 

Also,
 

kii  112 , with the only case when
 

kii  112  corresponding to the case ,2,,1 21  lkii

i.e., to the (single) term   kkkk xwpxvxvpxwxz 1122110 ...   of the double summation in(14) . Thus by 

combining (17) and (19) and using that 3/1)(/)(  pvv  and choosing 3/   (which is less 

than jjj   ,3/)( 2 , for this particular z we get 

)(/2()()3/3/()()())(/)(()())(/)(()( 221
qqqqpvvqpvvzE kkkkkMQ   



  
(20) 

While for any z  with ,1112  kii we get 

)(/2()()3/3/()()())(/)(()())(/)(()( 113131
qqqqpvvqpvvzE kkkkkMQ   







   

(21) 

Since
 

kk

k  


1

12  and since there are   12
2




kk k
k

i
i

elements in the double sum in (13) 

for which 2 , of which exactly one has kii  112  and the rest satisfy ,1112  kii by 

summing up (21) and (22), we get 

                                       
 12 ,1,0  





i ijijji zwz
                               

 

                            
)()3/2()()3/2)(22( 1 qqk kk

k      

                              )()3/)(42()( 1 qkq kk    .                                                                      (22) 

Finally, from the double sum on the right hand side of (14) we will now estimate the terms 

with 1 . These are terms which are obtained from kko xvxvxvx ...2211  by replacing exactly one iv  

by iw , so they are of the form
 

iii zwzz ,1,0   where 
s

i

s

ikkiiiiii vvifwwandxvvpxzpxvxvxzki   ...,...,,...2,1 1,111110,0  

Note that there are k such them. 

One should notice at this point that in the above estimates we only used the fact that
  Qpqwwww    and that it satisfies (16) for appropriate  . But we did not use so far the 

actual form of w. We will make the appropriate choice for w now, by making use of the 

condition 𝑄 ≮ MQ  . Indeed, by Theorem (6.2.1) (2.1 in [226]), this latter condition implies 
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that for all 0  and all finite sets MYY  

11  ⊖ MYYMQ  

22, , there exists a unitary 

element qQqw  such that 

        2211112121 ,)()( YyYyyyEyyE MQMQ     .                           (23) 

Note that since 21,YY are selfadjoint sets, by taking adjoints in (23), from these estimates 

we also get: 

        2211121
1

12 ,)()( YyYyyyEyyE MQMQ  


   .              (24) 

Denote by Z  the set of elements of the form kkiiiio xvvpxorpxvxvx ...,... 11`111   , for all 

possible choices arising from elements in 
n

k

k

vF
1

 . By applying (23), (24) to 

  }|)({},|)({1,2/ 2222121 YyyEyYZZzzEZZYandnkq MQMQk  





   , it follows 

that there exists )(qQqUw such that 

    kqxvvxwpxvxvxExvxvxE kkkjjjjjMQjjMQ 2/)()...))...(...(( 1111111011110     ,           (25) 

 
kqxvvpxExvvxwxvxvxE kkkjjMQkkjjjjjMQ 2/)()...()...()...((( 1

1
1111110      .            (26) 

Thus, for each element with 1  in the double summation
ijjizi j zwII

i
  



,0
1

 , in (13), 

i.e., of the form 
kkjjjiio xvvxwxvxvx ...... 11`111 
, we have the estimate: 

1111110 )......(( kkjjjjjMQ xvvxwxvxvxE                  

11111101 )...()...(2/)(2 kkjjMQjjjMQk xvvxEwxvxvxEkq     

                               kqk /)(1                                                                                          (27) 

where   is the minimum between 

111110111110 )...()()...((   jjMQjjMQ xvxvxEqqxvxvxE    

and 

1111 )...()()...(( kkjjMQkkjjMQ xvvxEqxvvxqE      

Both elements
kkjjiio xvvxxvxvx ...,... 11`111 
 . belong to some nj

vF ,  with
 

1 kj , and at least 

one of them with 0j  . Thus, by the properties of
 

Wv  and the assumption 4/)()( fvv   , 

we have 4/)()()( 11 qqvv kk  



  . 

Hence, the last term in (27)is majorized by 4/)(/)( 11 qkq kk     .Since there are k  terms with 
1 , obtained by taking kj ,...,1   by summing up over j in (27) and combining with  (22), we 

deduce from(14)the following final estimate:  

 
        1

,1,0
1

101
)()()(    




 i ijjijiMQii

k

iMQMQ zwzExvxExE   

)()14/()()3/)42(()( 11 qkqkvv kkkk  

   

  )))((()()(   wvwvwwvv kkk                                                   (28) 

Since wvu    has also the property that uuuu   , it follows from (28) that Wu . But 

this contradicts the maximality of Wv  . 

We conclude that 4/)()( fvv    . If we now take 12

2/  n  , then    2/)2)(1(2 nn

n
 and 

the statement follows. 
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We denote by 𝒬 u  the class of von Neumann subalgebras MQ  which are of the form 

nQQ  , for some sub algebras nn MQ  , and have the property that condition 𝑄 ≮𝑀 MQ  . 

We denote by 𝒬 b the class of von Neumann subalgebras MQ  with the property that MQ 

is separable and QMMQ   )( . 

The next result provides some properties and examples of algebras in these two classes. 

Proposition (6.2.14) [233]: (i) If by 𝑄 𝒬 u , then Q is of type 1II  . 

(ii) If  nn MQ   are von Neumann subalgebras such that  nQ ≮
𝑀 n

nMQ nn   . , then nQQ   

satisfies  nQ ≮
𝑀

MQ  , and thus by 𝑄  𝒬 u . 

(iii) Assume nm  is an increasing sequence of positive integers of the form nnn kdm .  , with 

nn kd .  ∈ ℕ. Let 
nn mmn MM  (ℂ), with 

nn ddn Mp  (ℂ), 
nn kkn MQ  (ℂ), viewed as subalgebras of 

nM that commute and generate nM . Then nQQ  , nQp  satisfy the following properties: 
QMPPMQ   , ; satisfies  Q ≮

𝑀
𝑃, (and thus 𝑄 𝒬 u ) if and only if 0/lim nn kd . 

(iv) If MB  is a separable amenable von Neumann subalgebra, then MBQ :  satisfies 
BMQ   . Thus 𝑄 𝒬 b . 

(v) If thus 𝑄 𝒬 b then Q is of type 1II , has no separable direct summand, and s  Q ≮
𝑀

MQ   (the latter being separable). 

Proof. (i) If an inclusion of finite von Neumann algebras MB  is so that B  is type I, then 

there exists a non-zero projection Be  such that eBe  is abelian, implying that 
eMeeBeeBe )(   , thus MBB M  . Since in our case we have Q ≮

𝑀
MQ  ,this shows that 

Q  cannot have type I summands, thus Q  is 1II  . 

Part (ii) is an immediate consequence and of the fact that )( nn MQMQ  
  with

nnMQMQ xExE
nn

))(()(     , for nnn MMxx  )(  . 

Part (iii) is an easy exercise  while part (iv) is a direct consequence of Theorem (6.2.1). 

To show part (v), note that if Q 𝒬 b  then Q  has no separable direct summand, by the 

same observation we have used in the proof of part (i). 

Note that Conjecture (6.2.10)  predicts that the class 𝒬 b , only consists of centralizers of 

separable amenable subalgebras of M , i.e.,of the examples  Proposition (6.2.14)(iv) above. 

Note that the case B  atomic of Corollary (6.2.17)(ii) above has already been shown in 

[230], while the case B  arbitrary but RM  was shown in [237] (see also [240]). 

A particular case when the assumptions in Corollary (6.2.17)(i) are satisfied, is when 

the subalgebra MP   making a commuting square with MQ  is itself separable. But there 

are interesting non-separable examples as well, that may even allow obtaining free product 

with amalgamation over the entire MQ   (which is non-separable in case by 𝑄  𝒬 u ). For 

instance, if  )(MUU   is a countable group of unitaries normalizing MQ  , then the von 

Neumann algebra P generated by U  and MQ   satisfies all the conditions in Corollary 

(6.2.17)(i) with MQB 1 . 
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Note in this respect that one can alternatively take in the statement of Theorem (6.2.16) 

the separable space X to be of the form PX  ⊝ )( MQP   , for some separable von 

Neumann algebra P  making a commuting square with MQ   . Indeed, due to Lemma (6.2.8), 

the two versions follow equivalent. 

Lemma (6.2.15) [233]:  Let MQ   be a von Neumann subalgebra lying in either the class 

 𝒬 u  or the class  𝒬 b . Let Qf   be a projection and MX  ⊝ )( MQ  a countable set. 

Then there exists a partial isometry v in fQf such that vvvv   , 

1,0)(4/)()(  
 kXxxEandfvv k

vMQ   . 

Proof: Let 1}{  kxX k  be an enumeration of X  and denote 10 x . By applying Lemma 

(6.2.13) to the inclusion of 1II  von Neumann algebras MQ  , the projection Qf  , the positive 

constant  n 2   and the finite set }\{ nkxX kn  , we get a partial isometry wn in fQf  with 

the property that 4/)()(, fwwwwww nnnnnn     and 

                k

n
nk

n

MQ n
XxxE )(,2)(

1 



   .                                  (29) 

Let mmff )(  be a representation of f  with mf  projections. Let also
mmkk xx )( ,  be a 

representation of kx , with mkxxMx kmkmmk ,,, ,,  , and Qww mmkk  )( ,
 a representation of kw  

with 
mkw ,
 partial isometries satisfying mmkmkmkmk fwwww   ,,,,, . 

Assume first that  nQQ  𝒬 u ,  in which case we may clearly also assume  )( mm Qpf   

and mkfQfw mmmmk ,,  . Noticing that if Myy n  )(  then
nnMQMQ yEyE

nn
))(()(     , it follows from 

(29) that 

             
n

mij

i

mn

k

imjMQ
m

xwxE
mm






 2)(lim
1

,,1,0




 ,                (30) 

For all },1{,},1{,,1 0  inijnkjj XxXxxnk   . 

Let nV  be the set of all 𝑚 ∈ ℕ with the property that 

                                   
n

mij

i

mn

k

imjMQ xwxE
mm



  2)(
1

,,1,0


 ,                                          (31) 

for all }.1{,0,11,1 0  ii njifornjnk   By (30) it follows that nV  corresponds to an 

open-closed neighborhood of    in  , under the identification  ℓ∞ℕ = 𝐶(Ω) . Let now 

0, nWn , be defined recursively as follows: 𝑊0 = ℕ 𝑎𝑛𝑑 𝑊𝑛+1 = 𝑊𝑛 ∩ 𝑉𝑛+1 ∩ {𝑛 ∈

ℕ|𝑛 𝑚𝑖𝑛𝑊𝑛} . Note that, with the same identification as before, nW  is a strictly decreasing 

sequence of neighborhoods of  . 

Define mmvv )(  by letting
nnmnm WWmforwv \1,  . It is then easy to check that  v  is a 

partial isometry in fQf  satisfying all the required conditions. 

Assume now that Q 𝒬 b ,. Let MQyv 
}{  be a countable set dense in the unit ball of 

MQ   in the norm
2

. Note that if 
mmyy )( ,   then Mxx nn  )( satisfies Qx iff 

 


,0],[lim
2,mm

m
yx


. Also, MQx   iff  


,0)(lim ,mm

m
yx


. Moreover, if 0  , then


1

)(xE
mm MQ    iff  


,|)(|lim , 


mm

m
yx  . 

  With this in mind, from (29) it follows that the partial isometries Qww mmnn  )( ,
  satisfy 
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for all iXxXxxnk injinjkjo  },1{,},1{,,1   and for all 1 . Also, the fact that nw  

belongs to fQf is equivalent to 

                 0lim;,0],[lim
1,,,, 


mnmmnm

m
mmn

m
wfwfyw


                                  (33) 

Let  nV  be the neighborhood of   consisting of all 𝑚 ∈ ℕ with the property that 

                          ,2|))((| ,,,1,0

n

mmjimn

k

imj yxwx i 

  
 |                                                 (34) 

n

mnmmnm

n

mmn wfwfyw   2;2],[
1,,2,,  ; 

For all n,...,2,1  as well as for all }1{,},1{,,1  injinjo XxXxnk  .Let further:𝑊𝑛 ⊂

ℕ , 𝑛 ≥ 0  . Be defined recursively as follows: follows:𝑊0 = ℕ 𝑎𝑛𝑑 𝑊𝑛+1 = 𝑊𝑛 ∩ 𝑉𝑛+1 ∩
{𝑛 ∈ ℕ|𝑛 𝑚𝑖𝑛𝑊𝑛}  . It follows that nW are all neighborhoods of  , that

nnnnjbjn WWandWWVW   11, . 

We now define mmvv )( , by letting
nnmnm WWmifwv \1,  . By the way 

mnw ,
  have been 

taken, v  follows a partial is ometry with vvvv   , while by the second relation in (34) we have 
fQfv  and by the first relation in (34) we have 1,0)(  kXxxE k

vMQ  .  

Theorem (6.2.16)[233]: Assume MQ   is either in the class If by 𝒬 u , or 𝒬 b ,. If MX  ⊖

)( MQ   is a separable subspace, then there exists a diffuse von Neumann subalgebra QA 

such that A is free independent to X , relative to MQ  , more precisely

 


 iniii

n

i
MQ aXxxniXxallandnallforxaxE ,1,,11,10)( 0

1
0 

A⊖ℂ, ki 1  . 

Proof :We construct recursively a sequence of partial isometries Qvv ,..., 21  such that 

(i) 1,2/11)(,1  

 jvvandvvvvvvv j

jjjjjjjjj  . 

(ii)
 

1,,0)(  kYxxE k

vMQ   . 

Assume we have constructed jv  for mj ,...,1  . If
 mv  is a unitary element, then we let 

mj vv    for all mj   . If mv  is not a unitary element, then let Qvvf mm  1 . Note that 

0)(  xE MQ  , for all
 

k

vk m
YdefXx   x′ . Thus, if we apply Lemma (6.2.15) to MQ  , the 

projection
 

Qf   and the countable set   𝑋 ⊂́ 𝑀 ⊝ (�́� ∩ 𝑀), then we get a partial isometry 

fQfu , with uuuu   satisfying 2/)()( fuu    and 0)(  xE MQ   for all k

uk Xx )(  . But then
 

uvv mm 1 will satisfy both )(i  and )(ii   for 1 mj . 

It follows now from
 

)(i  that the sequence 
jv converges in the norm 

2
to a unitary 

element Qv  , which due to )(ii  will satisfy the condition n

vnMQ XxE   , . ,
 
Now, since 𝑄 is a 

𝐼𝐼1 von Neuman algebra 𝑄 contains a copy of hype finite 𝐼𝐼1 factor, which in turn contains 

ahaar unitary 𝑢0 ∈ 𝑅 .But then unitary  vvuu 0
clearly satisfies the conditions required in part 

(a) of Theorem (6.2.16).  

Corollary (6.2.17)[233]:  With the same assumptions and notations as in Theorem (6.2.16) 

above, we have: 

(i) Let MP   be a von Neumann subalgebra making a commuting square with MQ 

and denote )(1 MQPB   . Assume that PL2  is countably generated both as a left and as a 

right 1B  Hilbert module (equivalently, there exists a separable space PX   such that 1BX   , 
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and 1BXsp  and XBsp 1  are both 
2
-dense in P  ⊖ B1). Then there exists a diffuse von 

Neumann subalgebra QB 0  such that )(~
010 1

BBPBP B  . 

(ii) Let MNi  be separable von Neumann algebras, with amenable subalgebras 2,1, iBi , such 

that ),(~),( 21  BB   . Then there exists a unitary element Mu such that 21 BuuB  and such that, 

after identifying 21
~ BBB  via )(uAd , we have 2121

~ NNuuNN B

   . 

Proof: (i) Let 𝑋0 ⊂ 𝑃⊖𝐵1be a separable subspace such that 10BspX  and 01XspB are
 2

-dense 

in  𝑃 ⊖𝐵1 . By Theorem (6.2.16), there exists a diffuse von Neumann subalgebra QB 0 such 

that 0B is free independent to 0X relative to
 

MQ   . It is sufficient to show that

0101000 ,},1{,0)( ByBXxBXxanyforxyxE iiiiiMQ   ⊝ℂ,1 ≤ 𝑖 ≤ 𝑛. But any element in
 10BX  

can be approximated arbitrarily well by a linear combination of elements in 01XB . The 

“coefficient” in
 1B of each one of these elements commutes with

 
1iy , so we can “move it to 

the left”, being “swollen” by the
101

BXxi  .Thus, in the end, it follows that it is sufficient to 

have 
00,000,0,00,0 ,},1{,0)( ByXxXxforxyxE iiiiiMQ   ⊝ℂ1  , which is indeed the case 

because
 1B is free independent to 0X  relative to MQ   . 

(ii) By the first part of, after possibly conjugating with a unitary Mu 0 , we may 

assume the subalgebras 21,BB coincide. Denote B this common algebra and let MBQ  , 

which by Theorem (6.2.8) satisfies BMQ  and by Proposition (6.2.14)(iv) it belongs to 𝒬 . 

Now apply Theorem (6.2.16) to Q and to the separable space𝑋 = 𝑁1⊖𝐵 +𝑁2⊝𝐵 , to 

conclude that there exists a unitary element Qu 0 such that uuN2  and
 1N generate the free 

amalgamated product
 21
~ NN B  . 

The crucial step in proving Theorem (6.2.16) is Lemma (6.2.13). The technique used in 

its proof consists of building unitaries u that are approximately n-independent with respect to 

certain finite sets, by “patching” together infinitesimal pieces of u . This technique was first 

considered in (2.1 of [250]), to show that given any countable set X  in a finite von Neumann 

algebra M and any diffuse abelian von Neumann subalgebra MA , there exists a Haar 

unitary Au  such that any word that alternates letters from X and }1|{ nun , has 0-trace. This 

result was a key tool in proving that any derivation of a 1II factor into the ideal of compact 

operators is inner, in [250]. 

The technique was substantially refined in [230], to show a particular case of the case  
Q 𝒬 u of Theorem (6.2.16), in which that  nQQ  𝒬 u  is so that nn MQ  are 1II  sub factors 

with atomic relative commutant nn MQ   (which thus clearly satisfy  𝑄 ≮
𝑀 n

nn MQ  ). The 

result in [230] had several applications over the years: Thus, it played an important role in 

developing reconstruction methods in Jones theory of subfactors in ([251], [252], [254]) and 

it led, in combination with ([257]), to the definition of amalgamated free product of 

inclusions of finite von Neumann algebras in [251]. It was also used to show key technical 

results in  [223], [218] and to show that the free product of standard invariants of subfactors 

defined in ([235]) can be realized in the hyper finite
 1II  factor R (see A.3 in [223] and [218]). 

The same incremental patching method was used in [256] to show that if
 nn MA  is a 

sequence of MASAs in  factors, then the abelian von Neumann algebra 

b

1II
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MMAA nn    contains dffuse subalgebras 0B  that are   -independent o any given 

separable subalgebra AB   and 3-independent to any given countable set  𝑋 ⊂ 𝑀⊖𝐴, i.e. 

any alternating word with at most 3 letters from X and 3 letters from  𝐵0⊖ℂ1 has trace 0 

(see 0.2 in [297]). Moreover, if nA   are all singular (in the sense of [97], i.e. any unitary 

normalizing nA  is contained in nA ), then 0B  can be chosen to be free independent to X , 

relative to A , a fact that allowed settling the Kadison-Singer problem for ultraproducts of 

singular MASAs MA  (see 0.1 in [256]). 

A concrete example of a diffuse subalgebra 0B  in an ultraproduct MASA A  satisfying 

the 3-independence property is the following: Let Γ ↷ 𝑋 be an ergodic (but not necessarily 

free) measure preserving action of a discrete group Let Γ on a probability space ),( X and Let 

Γ ↷ 𝑌 = [0,1]Γ be the Bernoulli Γ-action with diffuse base. Let )()( YLXLA    with Γ ↷ 𝐴 

the product action. Let M = A ⋊ Γ and MMAA   If we take )(XLB  and let 

)(1])1,0([10 YLLB    be the base of the Bernoulli action, viewed as a tensor component 

of the infinite tensor product Γ∞(𝑌) =⊗𝑔∈Γ (Γ
∞([0,1]))𝑔,then it is easy to see that 0B  is -

independent to B  and 3-independent with respect to 𝑋 = {𝑢𝑔\𝑔 ∈ Γ}. 

This construction can actually be recovered “asymptotically” inside any group measure 

space von Neumann algebra. Indeed, using the incremental patching technique, we will now 

show that (generalized) Bernoulli Γ-actions can be retrieved inside any free action of  Γ on an 

ultrapower of measure spaces. More generally we have: 

 Theorem (6.2.18) [233]:  Let nn MA   be a sequence of MASAs in finite factors, with dim

nM , and denote MMAA nn   . Assume  Γ ⊂ 𝒩𝑀(Α)  is a countable group of 

unitaries acting freely on A  and let H  be an amenable subgroup. Given any separable 

abelian von Neumann subalgebra AB  , there exists a separable diffuse abelian subalgebra

AA  such that: BA,  are   -independent, of  Γ normalizes A , and the action of of  Γ on A  is 

isomorphic to the generalized Bernoulli action Γ ↷ 𝐿∞([0,1])Γ/H) . 
Proof: Let {𝑢𝑔\𝑔 ∈ Γ} be the unitaries in of  Γ . Denote by of  𝑔0 = 1, 𝑔1, 𝑔2, … ∈ Γ  a set of 

representants of  Γ/𝐻. It is clearly sufficient to construct a Haar unitary 𝑤 in A such that  𝑤 

commutes with 𝑢ℎ∀ℎ ∈ 𝐻, and such that 𝐵 and 𝑢𝑔𝑖{𝑤
𝑛\𝑛 ∈ ℤ}𝑢𝑔𝑖

∗ , 𝑖 = 0,1,2,…, are all multi-

independent, in the sense that for any  𝐾 , any non-zero integers  𝑛𝑗 , distinct non-negative 

integers 𝑚𝑗, and any 𝑏𝜖𝐵 , we have 𝜏(𝑏Π𝑗=0
𝑘 𝑢𝑔𝑚𝑗𝑤

𝑛𝑗𝑢𝑔𝑚𝑗
∗ ) = 0. 

Thus, we let 𝐴0be the subalgebra of all elements in A that are fixed by 𝐻and let  {𝑏𝑛}𝑛 

be a ∥∥2-dense subset of the unit ball of 𝐵. If 𝑣 is a partial isometry in 𝐴0, then we denote by 

𝐹𝑣,𝑛  the set of all elements of the form  𝑏Π𝑗=0
𝑘 𝑢𝑔𝑚𝑗𝑣

𝑛𝑗𝑢𝑔𝑚𝑗
∗  ,where 1 ≤ 𝑖 ≤ 𝑛, 1 ≤ 𝑘 ≤

𝑛,𝑚𝑗are distinct integers beween 0 and 𝑛, and 1 ≤ |𝑛𝑗| ≤ 𝑛 . We first show the following: 

Fact. Given any 𝑛 ≥ 1 and any 𝛿 > 0 , there exists a Haar unitary 𝑣 ∈ 𝐴0such that |𝜏(𝑥)| ≤
𝛿, ∀𝑥 ∈ 𝐹𝑣,𝑛. 

To show this, let𝑤 ≔ {𝑣 ∈ 𝐴0 |  |𝜏(𝑥)| ≤ 𝛿𝜏(𝑣
∗𝑣), ∀𝑥 ∈ 𝐹𝑣,𝑛, 𝜏(𝑣

𝑚) = 0, ∀𝑚 ≠ 0}  . 

Endow  𝑤  with the order ≤ in which  𝑤1 ≤ 𝑤2  iff  𝑤1 = 𝑤2𝑤1
∗𝑤1.  (𝑤, ≤) is then clearly 

inductively ordered. Let 𝑣 be a maximal element in  𝑤  . Assume 𝜏(𝑣∗𝑣) < 1 and denote 𝑝 =
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1 − 𝑣∗𝑣 . If  𝑤 ∈ 𝐴0𝑝is a partial isometry satifying 𝜏(𝑤𝑚) = 0, ∀𝑚 ≠ 0, and we denote𝑢 =
𝑣 + 𝑤 , then we have: 

        𝑏𝑖Π𝑗=0
𝑘 𝑢𝑔𝑚𝑗𝑢

𝑛𝑗𝑢𝑔𝑚𝑗=
∗ 𝑏𝑖Π𝑗=0

𝑘 𝑢𝑔𝑚𝑗𝑣
𝑛𝑗𝑢𝑔𝑚𝑗

∗ + ∑𝑏𝑖 Π𝑗=0
𝑘 𝑢𝑔𝑚𝑗

𝑧
𝑗

𝑛𝑗𝑢𝑔𝑚𝑗
∗ ,    (35) where   𝑧𝑗 ∈

{𝑣,𝑤} and the sum is taken over all possible choicesfor 𝑧𝑗 = 𝑣 or 𝑧𝑗 = 𝑤,with at least one 

occurrence of  𝑧𝑗 = 𝑤 (thus, there are 2𝑘+1 − 1  many terms in the summation). We thus get 

the estimate 

                  |   𝜏( 𝑏𝑖Π𝑗=0
𝑘 𝑢𝑔𝑚𝑗𝑢

𝑛𝑗𝑢𝑔𝑚𝑗
∗ )|   

            ≤ |  𝜏(𝑏𝑖Π𝑗=0
𝑘 𝑢𝑔𝑚𝑗𝑣

𝑛𝑗𝑢𝑔𝑚𝑗
∗ )| + ∑|  𝜏( 𝑏𝑖Π𝑗=0

𝑘 𝑢𝑔𝑚𝑗𝑧𝑗
𝑛𝑗
𝑢𝑔𝑚𝑗
∗ )|  

≤ 𝛿𝜏(𝑣𝑣∗) +∑′| 𝜏(𝑏𝑖Π𝑗=0
𝑘 𝑢𝑔𝑚𝑗𝑧𝑗

𝑛𝑗
𝑢𝑔𝑚𝑗
∗ )| +∑"|  𝜏( 𝑏𝑖Π𝑗=0

𝑘 𝑢𝑔𝑚𝑗𝑧𝑗
𝑛𝑗
𝑢𝑔𝑚𝑗
∗ )|.       (36) 

where the summation ∑ ′contains the terms with just one occurrence of  𝑧𝑗 = 𝑤 and ∑" is the 

summation of the terms that have at least 2 occurrences of 𝑧𝑗 = 𝑤. 

Since  𝐴 is abelian, the terms 𝑢𝑔𝑚𝑗
𝑧
𝑗

𝑛𝑗𝑢𝑔𝑚𝑗
∗  in a product can be permuted arbitrarily. 

Thus, in each summand of   ∑ " we can bring two of the occurrences of  𝑤  so that to be 

adjacent, i.e., of the form 𝑦1𝑢𝑔𝑚𝑗
𝑤𝑛𝑗𝑢𝑔𝑚𝑗

∗ 𝑢𝑔𝑚𝑖
𝑤𝑛𝑖𝑢𝑔𝑚𝑖

∗ 𝑦2  .since 𝑔𝑚𝑖 ≠ 𝑔𝑚𝑗 for all 𝑖 ≠ 𝑗, by 

applying part (i) of Theorem (1.7) to 𝑄 = 𝐴𝑂𝑝 and the finite 

Set 𝐹 = {𝑢𝑔𝑚𝑗
∗ 𝑢𝑔𝑚𝑖

|𝑖 ≠ 𝑗} ⊥ 𝐴⋁𝐻 = 𝐴0
′⋂𝑀 it follows that for any α > 0, there exists a 

non-zero 𝑞 ∈ 𝜌(𝐴0𝑝) such that 

                           ‖𝑞𝑢𝑔𝑚𝑗
∗ 𝑢𝑔𝑚𝑖

𝑞‖
1
< 𝛼𝜏(𝑞), ∀0 ≤ 𝑚𝑖 ≤ 𝑚𝑗 ≤ 𝑛 .                             (37) 

Since there are 2𝑘+1 − (𝑘 + 1) − 1  terms in the summation ∑" , this shows that ∑" <
( 2𝑘+1 − (𝑘 + 1) − 1) ∝ 𝜏(𝑞), for any choice of 𝑤 that has support 𝑞 q satisfying condition 

(37). Thus, if we choose 𝛼 ≤ 2−𝑛−2𝛿, then by (37) we get ∑" ≤ 𝛿𝜏(𝑞)/2. 

So we are left with estimating the terms in the summation ∑ ′, which have just one 

occurrence of 𝑤𝑗 , 𝑗 ≠ 0 ,i.e are of the form |𝜏(𝑦1𝑤
𝑗𝑦2)| = |𝜏(𝑤

𝑗𝐸𝐴(𝑞𝑦2𝑦1𝑞))| , for some 

𝑦1, 𝑦2 ∈ 𝑀, 1 ≤ |𝑗| ≤ 𝑛. There are 𝑘 + 1many such terms for each 𝑘 = 1,… , 𝑛. Let’s denote 

by 𝑌0 the set of all 𝑦1, 𝑦2 which appear this way, and note that this is a finite set in 𝑞𝑀𝑞. Thus 

𝑌 = 𝐸𝐴(𝑞𝑌0. 𝑌0𝑞)is finite as well. 

 It is sufficient now to find a Haar unitary 𝑤 ∈ 𝐴0𝑞 such that|𝜏(𝑤𝑗𝑦)| ≤ 𝛿𝜏(𝑞)/2(𝑛 +
1), ∀𝑦 ∈ 𝑌, 1 ≤ |𝑗| ≤ 𝑛, because thenthe sum of the 𝑘 + 1terms in ∑ ′will be majorized by 

𝛿𝜏(𝑞)/2, altogether showing that for all  𝑥 ∈ 𝐹𝑛,𝑛, we have |𝜏(𝑥)| ≤ 𝛿𝜏(𝑢𝑢∗). Since 𝐴0𝑞 is 

diffuse, it contains a separable diffuse von Neumann subalgebra  𝐴0, which is isomorphic to 

𝐿∞(𝕋) with the Lebesgue measure corresponding to  𝜏(𝑞)−1𝜏𝐴0 . Let then  𝑤0 ∈ 𝐴0be a Haar 

unitary generating 𝐴0 . Since{𝑤0
𝑚}𝑚 tends to 0 in the weak operator topology and 𝑌 ⊂ 𝑞is a 

finite set, there exists 𝑛0 ≥ 𝑛 such that  |𝜏(𝑤0
𝑚𝑦)| ≤ 𝛿𝜏(𝑞)/2(𝑛 + 1),  , for all   𝑦 ∈ 𝑌 

and |𝑚| ≥ 𝑛0  . But then 𝑤 = 𝑤0
𝑛0   is still a Haar unitary and it satisfies all the required 

conditions. 

This ends the proof of the Fact. 

By using this Fact, it follows that for each  𝑛 there exists a unitary element 𝑣𝑛 ∈ 𝐴0 
such that 
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                                          |𝜏(𝑥)| < 2−𝑛, ∀𝑥 ∈ 𝐹𝑣𝑛,,𝑛.                                          (38) 

For each  𝑔 ∈ Γ , let  𝑢𝑔 = (𝑢𝑔,𝑚)𝑚 be a representation of   𝑢𝑔 with  𝑢𝑔,𝑚 ∈ 𝒩𝑀𝑛(𝐴𝑛) 

.Let also 𝑏𝑖 = (𝑏𝑖,𝑚)𝑚an  𝑣𝑛 = (𝑣𝑛,𝑚)𝑚 ∈ 𝐴0, with 𝑏𝑖,𝑚, 𝑣𝑛,𝑚 ∈ 𝐴𝑚, ∀𝑚 . Then (38) becomes 

lim
𝑚→𝜔

|  𝜏( 𝑏𝑖,𝑚Π𝑗=0
𝑘 𝑢𝑔𝑗,𝑚𝑣𝑛,𝑚𝑢𝑔𝑗,𝑚

∗ )| < 2−𝑛            (39) 

for all 1 ≤ 𝑖, 𝑘 ≤ 𝑛, 0 ≤ 𝑗0 < 𝑗1… < 𝑗𝑘 ≤ 𝑛 . Also, the fact that 𝑣𝑛lies in  𝐴0 translates into 

                             lim
𝑚→𝜔

‖[𝑢ℎ,𝑚, 𝑣𝑛,𝑚]‖1 = 0, ∀ℎ ∈← 𝐻, 𝑛 ≥ 1              (40) 

Let then  𝑣𝑛 be the set of all 𝑚 ∈ 𝑁 satisfying the following properties: 

                          |  𝜏( 𝑏𝑖,𝑚Π𝑗=0
𝑘 𝑢𝑔𝑚𝑗,𝑚

𝑣𝑛,𝑚𝑢𝑔𝑚𝑗 ,𝑚
∗ )| < 2−𝑛                               (41) 

‖[𝑢ℎ,𝑚, 𝑣𝑛,𝑚]‖ < 2
−𝑛 

For all 1 ≤ 𝑖, 𝑘 ≤ 𝑛, 0 ≤ 𝑗0 < 𝑗1… < 𝑗𝑘 ≤ 𝑛,where{ℎ𝑖}𝑖 = 𝐻 is an enumeration of  𝐻. Note 

that by (39) and (40),  𝑉𝑛 corresponds to an open-closed neighborhood of 𝜔 in Ω , under the 

identification ℓ∞(ℕ) = 𝐶(Ω). Define now recursively   𝑊0 = ℕ and  𝑊𝑛+_1 =   𝑊𝑛 ∩ 𝑉𝑛+1 ∩
{𝑛 ∈ ℕ|𝑛 > 𝑚𝑖𝑛 𝑊𝑛}  .Then   𝑊𝑛  is a strictly decreasing sequence of neighborhoods of 𝜔 

(under the same identification as before) with   𝑊𝑛 ⊂∩𝑗≤𝑛 𝑉𝑗 . 

We now define 𝑤 = (𝑤𝑚)𝑚, by letting 𝑤𝑚 = 𝑣𝑛,𝑚 if 𝑚 ∈ 𝑊𝑛−1\𝑊𝑛. By the way  𝑣𝑛,𝑚 

have been taken,  𝑤 follows unitary element in 𝐴, while by the second relation in (41) we 

have  𝑤 ∈ 𝐴𝐻 = 𝐴0  . Also, by the first relation in (41) it follows that 𝐵  and 𝑢𝑔𝑖{𝑤
𝑛\𝑛 ∈

ℤ}𝑢𝑔𝑖
∗ , 𝑖 = 0,1,2,…  , are all multi-independent. Thus, if we denote by 𝐴 ⊂ 𝐴  the von 

Neumann algebra generated by  𝑢𝑔𝑖{𝑤
𝑛\𝑛 ∈ ℤ}𝑢𝑔𝑖

∗ , 𝑖 ≥ 0, then  𝐴 and 𝐵 are 𝜏 -independent 

and  𝛤 ↷ 𝐴 is isomorphic to the generalized Bernoulli action  𝛤 ↷ 𝐿∞([0,1]Γ\𝐻 , as desired.  

Corollary (6.2.19)[233]:  As in Theorem (6.2.18), let 𝐴𝑛 ⊂ 𝑀𝑛be a sequence of MASAs in 

finite factors, with  𝑑𝑖𝑚𝑀𝑛 → ∞  , and denote   𝐴 = Πω𝐴𝑛 ⊂ Πω𝑀𝑛 = 𝑀 . Let  𝐺 ↷ 𝑋  be𝑎 

measure preserving (but not necessarily free) action of a countable amenable group 𝐺 on a 

probability space  (𝑋, 𝜇)  . Let  𝜌𝑖: 𝐿
∞(𝑋) ⋊ 𝐺 ↪ 𝑀  be trace preserving embeddings 

taking 𝐿∞(𝑋)  into 𝐴, with commuting squares, and 𝐺 in the normalize 𝒩 of  𝐴 in  𝑀 , such 

that 𝜌𝑖(𝐺) acts freely on   𝐴, 𝑖 = 1,2  . Then there exists  𝑢 ∈ 𝒩  such that  𝑢𝜌1(𝑥)𝑢
∗ =

𝜌2 (𝑥)∀𝑥 ∈ 𝐿
∞(𝑋) ⋊ 𝐻 . In particular, any two embeddings  of  𝐺  into 𝒩acting freely on 𝐴 , 

are conjugate by a unitary in 𝒩 . 

Proof: By Theorem (6.2.18) applied to  𝛤 = 𝐺 and 𝐻 = {1}, each one of the embeddings 𝜌𝑖 
can be extended to embeddings, still denoted by 𝜌𝑖 , of 𝐴 = 𝐿∞(𝑋 × [0,1]𝐺) ⊂ 𝐿∞(𝑋 ×
[0,1]𝐺) ⋊ 𝐺 = 𝑀  into 𝐴 ⊂ 𝑀 , satisfying the same properties, where𝐺 ↷ 𝑋 × [0,1]𝐺 is the 

product action. This action is free, so the corresponding inclusion is Cartan, with 𝑀 AFD. 

Thus, by observation, the specific isomorphism 𝜌2° 𝜌1
−1: 𝜌1(𝑀) ⋍ 𝜌2(𝑀)is implemented by a 

uitary in 𝒩 .  

Finally, let us mention that a slight adaption of the proof of Theorem (6.2.16) allows 

showing that given any two countable groups   Γ1, Γ2  normalizing  𝐷𝜔  in  𝑅𝜔  (where as 

before 𝐷 ⊂ 𝑅 is the Cartan subalgebra of the hyperfinite 𝐼𝐼1  factor), there exists a unitary 

element 𝑢 ∈ 𝒩𝑅𝜔(𝐷
𝜔)that conjugates Γ1 in free position with Γ2. Moreover, if  𝐻 ⊂ Γ1 ∩ Γ2 

is a common amenable group, then u can be taken so that to commute with 𝐻 and so that the 

group Γ  generated by uΓ1𝑢
∗  and Γ2  satisfies Γ ≃ Γ1∗𝐻Γ2 , with   Γ  acting freely if  Γ1, Γ2  act 
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freely. This recovers a result from [248], [239]. We’ll actually state and show only the case Γ𝑖 
act freely of such a statement, for clarity: 

Theorem (6.2.20) [233]: Let 𝐴𝑛 ⊂ 𝑀𝑛 be a sequence of Cartan MASAs in finite factors, with 

 𝑑𝑖𝑚𝑀𝑛 → ∞ , and denote 𝐴 = Π𝜔𝐴𝑛 ⊂ Π𝜔𝑀𝑛 = 𝑀 , as before. AssumeΓ𝑖 ⊂ 𝒩𝑀(𝐴)  are 

countable groups of unitaries acting freely on 𝐴 , with amenable subgroups Hi ⊂ Γ𝑖 , 𝑖 = 1,2 , 

such that H1 ≃ H2. Then there exists a unitary element 𝑢 ∈ 𝒩𝑀(𝐴) such that uH1𝑢
∗ = 𝐻2 

and such that the group generated by uΓ1𝑢
∗  and Γ2 is isomorphic to Γ1∗𝐻Γ2 and acts freely on 

𝐴 , where H is the identification H1 ≃ H2  under 𝐴𝑑(𝑢). 
Proof: By Corollary (6.2.19) above, there exists a unitary element 𝑢0 ∈ 𝒩𝑀(𝐴) such that  

u0H1𝑢0
∗ = 𝐻2. We may thus assume H1 = 𝐻2 , a common subgroup we will denote by  𝐻. 

Denote 𝐴0 = 𝐻
′ ∩ 𝐴  .Let also  𝒩0 = 𝐻

′ ∩ 𝐴  and note that  𝒩0  normalize 𝑠 𝐴0. since by 

Theorem (6.2.9)  we have 𝐴0
′ ∩𝑀 = 𝐴, it follows that 𝐴0 is a MASA in  𝑀0 = 𝐴0⋁ 𝒩0 and 

that 𝒩0  is the normalize𝑠 𝐴0  in 𝑀0  .We denote by 𝒢0 = {𝑢𝑝\𝑢 𝒩0, 𝑝 ∈ 𝒫(𝐴0)}the set of 

partial isometries in 𝑀0 normalize𝑠 𝐴0 

The proof becomes very similar to the proof of Theorem (6.2.16). We will only show 

what the analogue of Lemma (6.2.13) becomes. 

Thus, For each finite subset 𝐹 ⊂ Γ1 ∪ Γ2{1}, 𝑛 ≥ 1, a non-zero projection  𝑓 ∈ 𝐴0  and 

 𝑣 ∈  𝒢0satisfying𝑣𝑣∗ = 𝑣∗𝑣 ≤ 𝑓, we denote by  𝐹𝑣,𝑛 the set of all elements of the form 𝑥 =

𝑢0Π𝑖=1
𝑘 𝑣𝛾𝑖𝑢𝑖  , where 𝑢0 ∈ 𝐹 ∪ {1},  𝑢𝑖 ∈ 𝐹, 𝛾𝑖 = ±1, 1 ≤ 𝑘 ≤ 𝑛  . We need to show that 

given any 휀 > 0 ε > 0, there exists 𝑢 ∈ 𝒢0  such that 𝑢𝑢∗ = 𝑢∗𝑢, ‖𝐸𝐴(𝑥)‖1 ≤ 휀 ∀𝑥 ∈ 𝐹𝑢,𝑛  , 

and 𝜏(𝑢𝑢∗ > 𝜏(𝑓)/4. 

To do this, let 𝛿 = 2−𝑛
2−1휀 and denote  휀0 = 𝛿, 휀𝑘 = 2

𝑘+1휀𝑘−1, 𝑘 ≥ 1 . Note that  휀𝑛 <
휀  . Let  𝑊  denote the set of partial isometries  𝑣 ∈ 𝒢0  with  𝑣𝑣∗ = 𝑣∗𝑣 ≤ 𝑓  such 

t hat ‖𝐸𝐴(𝑥)‖1 ≤ 휀𝑘𝜏( 𝑣𝑣
∗), ∀𝑥 ∈ 𝐹𝑣,𝑘 for all 1 ≤ 𝑘 ≤ 𝑛 , and endow 𝑊  with the order given 

by  𝑤1 ≤ 𝑤2 if 𝑤1 = 𝑤2𝑤1
∗𝑤1 . Noticing that 𝑊 is well ordered with respect to ≤, we let 𝑣 ∈

𝑊  be a maximal element. Assume that  𝜏( 𝑣𝑣∗) ≤ 𝜏(𝑓)/4   and note that  𝑝 = 𝑓 − 𝑣𝑣∗ ∈
𝒫(𝐴0) will then satisfy 𝜏( 𝑣𝑣∗)/𝜏(𝑝) ≤ 1/3 . 

If  𝑤 ∈ 𝒢0 satisfies 𝑤𝑤∗ = 𝑤∗𝑤𝒢0 ≤ 𝑝, then 𝑢 =  𝑣 + 𝑤  belongs to  𝒢0 and satisfies 

𝑢𝑢∗ = 𝑢∗𝑢 . When we develop  𝑢0Π𝑖=1
𝑘 (𝑣 + 𝑤) 𝛾𝑖𝑢𝑖 binomially, we get 

                        ‖𝐸𝐴( 𝑢0Π𝑖=1
𝑘 𝑢 𝛾𝑖𝑢𝑖)‖1 ≤ ‖𝐸𝐴( 𝑢0Π𝑖=1

𝑘 𝑢 𝛾𝑖𝑢𝑖)‖1 +
∑ ′ + ∑ ", 

where ∑" is the sum of the 𝐿1-norm of terms that contain at least two occurrences of 𝑤±1, 

while ∑ ′ is the sum the  𝐿1-norm of terms containing exactly one occurrence of  𝑤±1 . 

To estimate ∑ ", exactly the same is used in the estimates (2) − (10) in the proof of 

Lemma (6.2.13), to get that ∑ " ≤ 휀𝑘𝜏(𝑞) − (2𝑘 + 4)(휀𝑘−1/3) 𝜏(𝑞) , 
Note that in order to do that, we only use the properties of the support 𝑞 of 𝑤, namely 

the fact that given any finite set 𝑌 ⊂ 𝑀⊝𝐴  and any 𝛼 > 0, one can take  𝑞 ∈ 𝒫(𝐴0) such 

that∈ ‖𝑞𝑦𝑞‖1 < 𝛼𝜏(𝑞), ∀𝑦 ∈ 𝑌  (by applying to 𝑄 = 𝐴0  and using the fact that  𝐴0
′ ∩𝑀 =

𝐴). 
Now, in order to estimate ∑ ′, we denote by  𝒰𝑞 the set of partial isometries in  𝒢0 that 

have left and right support equal to 𝑞 , which we view as a subgroup of unitaries in 𝑞𝑀0𝑞. 

Notice that  𝒰𝑞 generate 𝑞𝑀0𝑞 and that 𝑀0 ≮𝑀 𝑀0
′ ∩𝑀  (because this centralizer is separable 

and amenable, and by applying Theorem (6.2.8) and Proposition (6.2.14). Thus, given any 
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finite set  𝑌 ⊂ 𝑀  and any  𝛼 > 0  , there exists unitary elements 𝑤 ∈ 𝒰𝑞   such 

that ‖𝐸𝐴(𝑦1𝑤𝑦2)‖1 < 𝛼𝜏(𝑞), ∀𝑦1, 𝑦2 ∈ 𝑌  . 

Then the same estimates as the ones in (11) − (14) in the proof of Lemma (6.2.13), 

show that by  𝑢 = 𝑣 + 𝑤 ∈ 𝑊, contradicting the maximality of by  𝑣 . Thus, we do have 

indeed  𝜏(𝑣𝑣∗) > 𝜏(𝑓)/4 . With this technical fact in hand, the rest of the proof proceeds 

exactly as the proof of Theorem (6.2.16). 

Theorem (6.2.21)[260]: Assume 𝑄 ⊂ 𝑀 is either in the class 𝑄𝑢, or 𝑄𝑏. If 𝑋 ⊂  𝑀⊖ (𝑄′ ∩
𝑀) is a separable subspace, then there exists a diffuse abelian von Neumann subalgebra 𝐴 ⊂
 𝑄  such that 𝐴  is free independent to 𝑋 , relative to 𝑄′ ∩𝑀 , more precisely 

𝐸𝑄′∩𝑀(𝑥0∏  1+𝜖
𝜖=0 𝑎1+𝜖𝑥1+𝜖)  =  0 , for all 𝜖 ≥ 0  and all 𝑥1+𝜖 ∈  𝑋, 𝜖 ≥ 0 , 𝑥0, 𝑥2+2𝜖  ∈  𝑋 ∪

 {1}, 𝑎1+𝜖 ∈ 𝐴⊖ ℂ, 𝜖 ≥ 0. 

Proof: We construct recursively a sequence of partial isometries 𝑣1, 𝑣2, . . . . ∈  𝑄 such that 

(i) 𝑣2+𝜖𝑣1+𝜖
∗ 𝑣1+𝜖 = 𝑣1+𝜖  , 𝑣1+𝜖𝑣1+𝜖

∗ = 𝑣1+𝜖
∗  𝑣1+𝜖 and 𝜏 (𝑣1+𝜖𝑣1+𝜖

∗  ) ≥ 1 −
1

2(1+𝜖)
 , ∀𝜖 ≥ 0. 

(ii) 𝐸𝑄′∩𝑀(𝑥) = 0, ∀𝑥 ∈  𝑋𝑣1+𝜖
1+𝜖  , 𝜖 ≥ 0. 

Assume we have constructed 𝑣1+𝜖 for 𝜖 = 0, . . . , 𝑚 − 1. If 𝑣𝑚 is a unitary element, then we 

let 𝑣1+𝜖 = 𝑣𝑚 for all 1 + 𝜖 ≥  𝑚. If 𝑣𝑚 is not a unitary element, then let 𝑓 =  1 − 𝑣𝑚
∗  𝑣𝑚  ∈

𝑄 . Note that 𝐸𝑄′∩𝑀(𝑥
′)  =  0 , for all 𝑥′ ∈  𝑋′ ≝∪1+𝜖 𝑋𝑣𝑚

1+𝜖 . Thus, if we apply Lemma 

(6.2.13) to 𝑄 ⊂  𝑀, the projection 𝑓 ∈  𝑄 and the countable set 𝑋′ ⊂  𝑀 ⊖ (𝑄′ ∩  𝑀), then 

we get a partial isometry 𝑢 ∈  𝑓𝑄𝑓 , with 𝑢𝑢∗  =  𝑢∗𝑢  satisfying 𝜏 (𝑢𝑢∗)  ≥  𝜏 (𝑓)/2  and 

𝐸𝑄′∩𝑀(𝑥)  =  0 for all 𝑥 ∈ ∪1+𝜖 (𝑋
′)𝑢
1+𝜖. But then 𝑣𝑚+1 = 𝑣𝑚  +  𝑢 will satisfy both (i) and 

(ii) for 𝜖 = 𝑚. 

It follows now from (i) that the sequence 𝑣1+𝜖 converges in the norm ‖ ‖2 to a unitary 

element 𝑣 ∈ 𝑄, which due to (ii) will satisfy the condition 𝐸𝑄′∩𝑀(𝑥), ∀𝑥 ∈ ∪1+2𝜖 𝑋𝑣
1+2𝜖  . 

Now, since 𝑄 is a II1 von Neumann algebra, 𝑄 contains a copy of the hyperfinite II1 factor, 

which in turn contains a Haar unitary 𝑢0 ∈  𝑅 . But then 𝑢 = 𝑣𝑢0𝑣
∗  clearly satisfies the 

conditions required in part (a) of Theorem (6.2.16). 
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List of Symbols 
Symbol  Page 

⨂: tensor product 8 

sup  : supremum 12 

LUR: locally uniformly rotund 43 

SLD: Small local 𝑑-diameter  43 
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WCD: weakly countably determined  50 
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Co: convex  51 

supp: support 63 

Aut: Automorphism 65 

inf  : infimum 67 

Re: Real  68 

⨁: orthogonal sum 72 

L2: Hilbert space 78 

⊖: Direct difference 78 

e∞(N,M): von Neumann algebra 79 

Mod: modulo  100 
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mat: matrix  100 
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max  : maximum 107 

diag: diagonal  117 

tr: trace 123 

𝐺𝐿2: Hilbert-Lie group 136 

ind: Index  138 

Cyl: cylindrical  167 

dom: domain  171 

seq°: sequential  173 

Ba: Baire 174 

ULT: Ultra  174 

clop: clopen  174 

OUT: Outer  194 

dim: dimension  196 

incl: inclusion  198 

rep: representation  202 

MASA: maximal abelian sub algebras  214 

AFD: approximately finite dimensional 217 

IC: infinite conjugacy    218 
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