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Abstract 

The objective of this paper is to discuss the case of the general linear model that 

suffered from both problems autocorrelation ( AR(1) and AR(2) ) and multicollinearity, 

we used simulation technique to create data containing these problems at the same time , 

and we  used the two stages least squares procedure (2SLS) to deal with problem of 

autocorrelation , and ridge regression (RR) to deal with the problem of multicollinearity 

of the data that had originally treated in consideration of autocorrelation. Moreover we 

used the evaluation methods as a base for the process of evaluation and comparison.  

Throughout the simulation experiment results domain we concluded that dealing 

with autocorrelation from data that suffered from multicollinearity, multicollinearity in-

creases when the error term follows first or second  order autoregressive scheme. 

Whereas, multicollinearity decreases if the model has a few explanatory vari-

ables .Among the types of ridge regression method , if we take the  MSE as a criteria of 

comparison we find that ordinary ridge regression is the best when the sample size is too 

large, otherwise , generalized ridge regression is the best one. 
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 ملخص

ى  ة الأول ن الدرج ذاتي م اط ال شكلة الارتب ن م اني م ذي یع ام ال تتناول الدراسة النموذج الخطي الع

ات  د بیان ي تولی اة ف والدرجة الثانیة بالاضافة لمشكلة التداخل الخطي المتعدد، وقد تم استخدام أسلوب المحاك

ة  ي معالج ات الصغرى ذات المرحلتین ف ة المربع م استخدام طریق تعاني من المشكلتین في وقت واحد ، وت

ُستخدم اسلوب  ا أ ة ، كم ى والثانی ھ الاول ذاتي بدرجتی ة التداخل  Ridg Regressionالارتباط ال ي معالج ف

س  ض المقایی ُستخدمت بع الخطي المتعد من البیانات بعد ازالة مشكلة الارتباط الذاتي منھا علاوة على ذلك أ

 .الاحصائیة في عملیة التقییم والمقارنة

ى أو  ة الاول ن الدرج ذاتي م اط ال ة الارتب ى أن ازال م التوصل ال اة ت ومن خلال نتائج تجربة المحاك

داخل الخطي  ادة خطورة الت ى زی ك ال ؤدي ذل دد ی داخل الخطي المتع ن الت اني م الثانیة من البیانات التى تع

ل یرات التوضیحیة قلی دد المتغ ان ع دار .المتعدد وتقل خطورة المشكلة اذا ك واع أسالیب انح ن ان ن بی ا م أم

ن  MSEالحرف أنھ اذا تم استخدام  د أن أسلوب الحرف العمومي أفضل م ة نج ة المقارن ي عملی كأساس ف

ة  م العین ان حج ً بینما نجد أن الأخیر ھو الافضل اذا ك أسلوب الحرف الاعتیادي اذا كان حجم العینة صغیرا

 .   كبیرا 
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Introduction 

The ordinary least squares method is considered as one of the most important 

ways of estimating the parameters of the general linear model because of its ease 

and simplicity and rationality of the results that obtained when the specific as-

sumptions are achieved regarding the general linear model about error term and 

explanatory variables which are supposed to be orthogonal.  

Yet if these assumptions are not verified , the ordinary least squares method will 

give undesirable results , and there appears the problem of inaccurate estimation , 

one of which is associated with the autocorrelation of errors which occurs when 

the value of the error term in any particular period is correlated with its own pre-

ceding value or values  [ E(Ut Ut-s) = 0     s ≠0  ]  multicollinearity is another sig-

nificant problem , this occurs when the explanatory variables are correlated with 

each other. 

Suppose there is a linear relation between dependent variable Yi and  ex-

planatory variables X1,X2,. . . . ,Xp and error term Ui , we can write this relation as 

follows [Draper & Smith1981:23 ] : 

      Yi =  B0 +B1 X 1i+B2 X 2i+ ……. +Bp X pi+ Ui  ....... (1) 

                                                             i = 1,2,……..,n 
Where: 
      Yi : is the i-th observation of  response variable . 

      X ji : is the i-th observation of explanatory  variable j . 
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      B0 ,B1,B2,, ……. ,Bp : are the parameters or regression coefficients . 

     Ui : is a random error term or disturbance term . 

In matrix form the general linear model GLM (1) is : 

Y = XB + U   ………………………………….  (2) 

Where : 

Y : (nx1) vector observations of the dependent variable . 

X : (nx(p+1)) matrix of explanatory variables . 

B : ((p+1)x1) vector of regression coefficients. 

U : (nx1) vector of errors . 

The estimation of B using OLS  is as follows [Younis & Others ,2002:156] 

    b = (X´X)-1X´Y  ……………………….……(3) 

Autocorrelation Problem 

This problem occurs when the assumption of the classical linear model about the 

independence of the disturbances from observation to others (

) is not verified ,therefore  the errors in one time period are 

correlated with their own values in other periods[Ronald ,2002] . 

 The model with first–order autoregressive process AR(1) has the form           

[John Nester & others ,1985:448] : 

                 Ut = rUt-1 + Vt ……………….…………….(4)   
    Where  

jsUUE sj 0)(
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  r  is autocorrelation parameter(coefficient) (׀r ).1< ׀   

  Vt is a random disturbance , where  

 
The model with second – order autoregressive process AR(2) has form             

                Ut = r1Ut-1 +r2Ut-2 + Vt …………………… (5)   

      To estimate the Autocorrelation Coefficient we used Durbin Two – Step 

Method ,This method proposed by Durbin (1960) [Durbin,1970].The steps in the 

estimation procedure are as follows : 

For AR(1) :- Consider the transformation model : 

         Yt = B0(1- r) +rYt-1+B1X1t-B1rX1t-1+…….+ BpXpt-BprXpt-1+Vt 

      ……………………..(6) 
Let  

a0= B0(1- r)  ,    a1 = B1    ,  a2 = B1r  ....................   , ap = Bpr        

Therefore, we can rewrite equation (6) as  

Yt = a0+rYt-1+a1X1t+a2X1t-1+…….+ aprXpt-1+Vt  …………..(7) 

Estimate the regression equation (7) by OLS  and obtain estimated coefficient of 

the lagged variable Yt-1 (r^) 

For AR(2): Consider the transformation model   

(Yt -r1Yt-1-r2Yt-2) = B0(1- r1 -r2) +B1(X1t- r1X1t-1- r2X1t-2)+…….               + Bp 

(Xpt- r1Xpt-1- r2Xpt-2)+Wt     …………………………..(8) 

00

0)(

),0(~
2
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Where        Wt = r1Ut-1 +r2Ut-2 

We rewritten equation (8) as follows 

Yt = B0(1- r1 -r2) -r1Yt-1+r2Yt-2+B1X1t- B1r1X1t-1- B1r2X1t-2…….               + 

BpXpt- Bpr1Xpt-1- Bpr2Xpt-2+Wt    ………….…………….(9)  

Estimate the regression equations (9) by OLS and obtain estimated coefficients of 

the lagged variables Yt-1 ,Yt-2 (r1,r2). 

In order to deal with this problem we used  The Two Stages least squares 

procedure (2SLS) ,we can summarize this method as follows [Kadiyala,1968]: 

Pre multiply equation (2) by T we obtain: 

                 T Y = TXB+T U   ……………………………(10) 

where :       
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multicollinearity Problem : 

Originally multicollinearity meant the existence of  a (perfect) or exact linear rela-

tion among some or all explanatory variables of regression model . For the p vari-

able regression  involving explanatory  variables  X1,X2,…….,XP   , an exact linear 

relationship is said to exist if the following condition is satisfied 

[Gujarati ,1995:323]: 

      C1X1+C2X2+…………..+CPXP = 0      

Where: 
      C1,C2,….,CP are constants thus that not all of them are zero simultaneously. 

 

Multicollinearity is also the name we give to the problem of nearly perfect linear 

relationships among explanatory  variables , this is the more common problem , 

and it said to exist if the following condition is satisfied : 

                      C1X1+C2X2+…………..+CPXP +Vi= 0 

 

Where :    Vi is stochastic error term. 

Note that the perfect collinearity does not usually happen except in the case 

of the dummy variable trap 

Use of Eigenvalues and Eigenvectors: 

Suppose we consider the X'X matrix (correlation form) we know that there 
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exist an orthogonal matrix [Myres,1986:86] . 

                  V = [V1,V2,…………….,VP]  

Such that :     V`(X`X)V =    diag(λ1, λ2,…………, λP) …………….(11)  

The λi is the i-th eigenvalue of the correlation matrix , the column of V are 

normalized eigenvectors associated with eigenvalues of (X'X). 

For our purpose here, we need to denote the ith element of the vector Vi by 

Vij . Now if multicollinearity is present at least one λi @ 0  thus , we write , for at 

least one value of j ,  V`j(X`X)Vj @ 0  .Which implies that for at least one eigen-

vector Vj ,   

Thus the number of small eigenvalues of the correlation matrix relate to the 

number of multicollinearities according to the definition in  (11) and the 

“weights” Ci  are the individual elements in the associated eigenvectors. 

There are several methods that have been proposed to remedy multicollin-

earity problem by modification the method of OLS to allow biased estimators of 

regression coefficients , these methods are ridge regression , principal components 

regression and latent roots regression in this study we used ridge regression. 

Ridge Regression: 

This method first suggested by Hoerl in 1962 , it discussed at length by Ho-

erl and Kenard in (1970) [Hoerl & Kennard ,1970] .The ridge regression estima-

tors are obtain by introducing into the least squares estimator b a biasing constant 
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C³0 therefore, yields the ridge regression coefficients[Ghufran ,1990]: 

bR= (X´X+ CI)-1 X´Y   ……………….………….(12) 

When all variables are transformed to the correlation form, the ridge regres-

sion coefficients become: 

bR= (rxx+ CI)-1 rxy       …………………..………..(13) 

 Where: 

rxx: (p´p) matrix  containing the pairwise coefficients of simple correlation be-

tween the explanatory  variables.  

rxy: (p´1) vector containing the coefficients of simple correlation between the de-

pendent variable and the explanatory  variables.  

The form (13) of bR called standardized ridge regression coefficients. 

The constant C reflects the amount of bias in the estimators , when    C = 0 

(13) reduces to OLS regression coefficients in standardized form, when C > 0 the 

ridge regression coefficients are biased but tend to be more stable than OLS esti-

mators ( in application the interesting value of C usually lie in the range (0,1) )

[Draper & Smith ,1980:313] .The ridge regression estimator has two forms 

[Kadiyala,1980] : 

When the constant C takes a sequential values (C=CI),ridge regression estima-

tor called ordinary ridge regression estimator as in (12) 

When C takes an estimated values (Ci=diag(c) ) , ridge regression estimator 
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called generalized ridge regression estimator , and written as   

                 bR= (X´X+ diag(C))-1 X´Y   …………………..(14) 

We can write the ridge regression estimators of equation (13) using the eigen 

values and eigen vectors as follows (C=CI): 

 
And when (Ci=diag(C) ): 

   
The Mean square error when C=CI is given as: 

 
and when Ci=diag(c) is given as: 

 
Note that the first term of MSE in equations (15) and (16) presents the Bias2

(bR) which is increasing function of  C , and the second one is Var(bR) which is 

decreasing function of  C , this means we accepted some bias in order to decrease 
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the variance [El Any,1987] . 

Choice of biasing C: 

There are many procedures suggested to choose the optimum value of C , in 

this study we used Hoerl , Kenard & Baldwin technique as one of the simulation 

techniques when C is a constant ,this technique takes the following formula 

[Hoerl & others,1975]  

Ch = pS2/b`olsbols 
Where  
p: number of the estimated parameters            

S2: mean square errors of OLS estimators  

bols : vector of OLS estimators  

And we used the following formula for Ci=diag(C) [Dwived,1980]: 

Ci = S2/bi
2

ols    i = 1,2,……,p 

Where:     biols :  the i-th estimator of OLS.  

Simulation Experiment :  

We used computer simulation to generate data contain  multicollinearity 

and autocorrelation both .Delphi Language (version 6.0) used to construct statisti-

cal package designed by researcher.     

Step1: Generate a random number U which follows uniform distribution     U~ U

(0,1).  

Step2: Generate a random variable Vt which follows standard normal distribution 
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Vt~ N(0,1) , we used Box – Mullar , Polar and Inverse transform methods 

Step3: Compute the disturbance term Ut which follows :- 

AR(1)              Ut =ρUt-1+ Vt         -1 ρ 1 

AR(2)              Ut = ρ1Ut-1 + ρ2Ut-2+ Vt        -1 ρ1 ,ρ2  1 

Step4: Generate an explanatory variables : 

Generate X1:   

       We used a random number  generation to generate X1, (X1~ U(0,1)) b- 

Compute X2, X3,……………, Xp  

Two methods used to compute : X2, X3,……………, Xp : 

MethodI [Ghufran ,1990]: 

X2 = g1+g2X1+D 
X3 = X2+g3X2 
. 
. 
Xp= Xp-1 + gpXp-1 

Where   

                 g1 ,g2 ,………….,gp  are arbitrary . 

                 D  : (n´1) vector follows uniform distribution (U(0,1)) . 

MethodII [Yue Fang and Sergio,2003] 

Xj = Dj-1+Xj-1          j = 2,3,……….,p 

Step5:  Compute dependent variable Yt : 

    Yi =  B0 +B1 X 1t+B2 X 2t+ ……. +Bp X pt+ Ut                    t = 1,2,……..,n 

Where:  B0 ,B1,B2,, ……. ,Bp : are arbitrary. 
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Step6:     Standardize  Yt and X,s           

 Step7:  Applying OLS . 

Dealing with Autocorrelation: 

We used the Two Stages least squares procedure (2SLS) to deal with the prob-

lem of autocorrelation as   follows : 

Transform the original generated  data    

Standardize the transformed data . 

Applying OLS . 

Dealing with Multicollinearity:  

After we eliminated the problem of autocorrelation ,we used the ridge re-

gression method to deal with the problem of multicollinearity.    

       Figure (1) shows the main form of the program that use to generate data.  

 

 

   

           
   
 
 
 
 
 
 

Figure 1 : The main form  use to generate data 
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Models Criteria: 

The package designed to appropriate, different sample sizes from 2 to infin-

ity, number of explanatory variables from 2 to 45 and it’s more flexible in choos-

ing the autocorrelation coefficients.  

In order to make this study more inclusive we choose the following criteria 

to the models: 

Sample size:  

We choose the following sizes as small samples sizes  

                             n = 5,10,20 

We choose the following sizes as large samples sizes  

                           n = 30,50,100,200 

Number of explanatory variables: 

              We choose different number of explanatory variables as follows : 

                                        p = 2,5,10,20 

Dependent variable Y:  

According to a number of explanatory variables p we compute Y where : 

      Yt =  B0 +B1 X 1t+B2 X 2t+ ……. +Bp X pt+ Ut     

                                                                           p = 2,5,10,20 

The models are : 

      Yt = -2 +0.5 X 1t+0.7 X 2t                                             

Shendi University Journal - Issue No. 6 - January 2009 14 

A Simulation Study Of Ridge regression Method With Autocorrelated Errors  



 

      Yt = 5 +8 X 1t -9 X 2t  +3 X 3t -6 X 4t +0.7 X 5t               

     Yt = 10 +0.5 X 1t +0.3 X 2t  -2 X 3t -3 X 4t +1.5 X 5t -0.2 X 6t +0.5 X 7t    +2.3 X 8t 

+6 X 9t +3.5 X10t                                                    

     Yt = 2 +3 X 1t +5 X 2t  -0.2 X 3t -0.3 X 4t -0.5 X 5t +1.2 X 6t +1.3 X 7t        +1.5 X 8t 

+0.02 X 9t +0.03 X10t+0.05 X11t -2 X12t  -3 X13t -5 X14t   +12 X15t +13 X16t  

+15 X17t  -.04 X18t -0.06 X19t +0.03 X20t                

Autocorrelation  Coefficients: 

        We choose the following values for the autocorrelation coefficients:   

AR(1)   :    r  =  ±0.99 ,    ±0.7    ,      ±0.3 

AR(2)   :    r1, r2  = ±0.99 ,    ±0.7    ,      ±0.3 

Conclusions: 

From the results obtained in this study , we can conclude that : 

Dealing with autocorrelation from data that suffered from multicollinearity : 

 Multicollinearity increases when the error term follows first or second  order 

autoregressive scheme. 

Multicollinearity decreases if the model has a few explanatory variables. 

When the error term follows first order autoregressive scheme : 

MSE for ridge regression and ordinary least squares methods decreasing rap-

idly as sample size increase when an autocorrelation coefficient greater 

than or equal to |0.99|. 
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MSE for ridge regression method increases as the number of explanatory 

variables increase when an autocorrelation coefficient is less than or equal 

to |0.3|              . 

When the sample size is too large the OLS and ridge regression method 

smallest S2 and largest R2 . 

Ordinary least squares method has largest S2 and  smallest R2 when an auto-

correlation coefficient is greater than or equal to |0.99|.   

For small and large sample sizes the significance of the models estimated by 

OLS and ridge regression becomes more strong as the sample size and the 

number of explanatory variables increase .  

When the error term follows second order autoregressive scheme : 

MSE for ordinary least squares method decreases as sample size increases 

when an autocorrelation coefficient is greater than or equal to |0.7|  .            

MSE for ordinary least squares method decreases as number of explanatory 

variables increase when an autocorrelation coefficient less than or equal to 

|0.7|              . 

Ordinary least squares models are not significant. 

The S2 for Ordinary least squares method decreases as sample size in-

creases.  

When the sample size is too large the models estimated by OLS and ridge 
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regression are not significant . 

When an error term follows first or second order autoregressive scheme  

Ordinary least squares method has largest MSE  

When the sample size is too large the MSE for OLS and ridge regression 

increases , whereas, it decreases when the explanatory  variables are too 

much .  

The MSE for ordinary ridge regression greater than the MSE for generalize 

ridge regression, whereas, the opposite occurs when the sample size is 

too large . 

The variance for ordinary ridge regression (generalize ridge regression) 

greater than the biased^2 for ordinary ridge regression (generalize ridge 

regression). 

Among the types of ridge regression method , if we take the    MSE as a criterion 

of comparison we find that ordinary ridge is the best when the sample size is 

too large , otherwise , generalized ridge is the best one.  
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