
I

Republic of Sudan

Shendi University

College of Post Graduate Studies and Scientific Research

Title:

NOSQL Data base Retrieval Using Hash algorithm for column store

A thesis Submitted in Fulfillment of the Requirements of the Degree of

M.sc in Computer Sciences

By: Noah Omer Mohamed Ahmed

Supervisor Assoc. Prof.: Mohammed Bakri Bashir Elsafi

May 2019

II

Abstract

 The NoSQL Data Storage is a storage infrastructure designed

specifically to store, manage and retrieve large amounts of unstructured data.

The Column-Based is the one type of Nosql database that store the data in a

column structured. The column-based database stores these data in one file

which it produced a delay in handling the user’s queries, because the

database handling the file sequential. Additionally the Nosql DBMS’s don’t

support primary key concepts. This research developed hash-base indexing

algorithm that enhance search process and speed up user’s query response

time. Furthermore, provide researchers and framework that they can use to

test their indexing algorithm. The hash algorithm developed by using Java

language and connect with Apache HBase DBMS, which installed in

Hadoop server and using Zookeeper tool. The experiments conduct to

measure the response time of the proposed (Hash) algorithm and Indexed

algorithm .the result show that the Hash algorithm enhanced the response

time when it compared with Indexed algorithm. The Hash algorithm can be

able to reduce the response time if it implements another algorithm to reduce

collision of keys in the index table.

III

IV

Acknowledgments

V

Dedication

I dedicate this work

To my mother

And my father

To all who gave efforts and facilitated this study

To my brother Mohammed.

To my sisters Rasha & Hanan for their continuous support and

advice and all who have had positive impact on our lives.

To my friends for their support during my study.

To all of them I dedicate this work with real love and respect.

Noha.....

VI

TABLE OF CONTENTS

Abstract ..II

 III .. المستخلص

Acknowledgments.. IV

Dedication ... V

Chapter one: ... 1

Introduction .. 1

1.1 Over view ... 2

1.2 Problem Background ... 3

1.3 Problem Statement ... 4

1.4 Research Objectives:.. 4

1.5 Research Contributions: ... 4

1.6 Research Methodology: ... 5

1.7 Research Scope: ... 5

1.8 Thesis Outline: ... 5

Chapter Two... 7

Literature review .. 7

2.1 Over view:.. 8

2.2 Nosql database management systems concepts: .. 8

3.2 The relational and NOSQL databases:... 9

2.4 Mainstream NoSQL Data Models: .. 11

2.4.1 Key value stored databases: .. 12

2.4.2 Column stored databases:.. 12

2.4.2. 1 HBase:.. 13

2.4.3 Document stored databases: .. 13

2.4.4 Graph stored databases:... 14

2.5 CAP theorem and NoSQL database classification: ... 14

2.6 Column family stores: .. 16

2.7 Percussion of Column Family Stores:.. 17

2.7.1 Distributed Co-clustering: ... 17

2.7.2 A Distributed Column-Oriented Database: ... 17

2.7.3 Distributed Ordered Table in NoSQL: .. 17

2.7.3.1 Procedure of Distributed Ordered Table in NoSQL: ... 18

VII

2.8 Indexing of NoSQL in Column Family Stores: ... 19

2.8. 1 Mapping between Indexed Columns and the Row key of Index Table: 19

2.8. 1.1 Single Column to Single Dimensional: ... 19

2.9 Index Persistence: .. 21

2.9.1 Persistent on Disk:... 21

2.9.2 Non persistent on Disk: ... 22

2.9.3 Memory Only: ... 22

2.10 A review on data index technique:... 22

Chapter three .. 32

Research methodology ... 32

3.1 Over view:.. 33

3.2 Research Design and Procedure:.. 33

3.3 problems Formulation: ... 35

3.4 Design and Development of hash indexing technique:.. 35

3.5 Experiment and Testing: .. 36

3.5.1 Platforms and tools:... 36

3.5.1.1The Hadoop Distributed File System (HDFS): ... 36

3.5.1.2 Zookeeper:.. 37

3.5.1.3 HBase: .. 37

3.5.2Dataset used in the Technique:... 38

3.6Evaluation technique:.. 39

Chapter four ... 40

Index technique based on hash algorithm implementation and results .. 40

4. 1 Over view:... 41

4. 2 Hash as concept:.. 41

4. 2. 1 Features of Hashing:.. 41

4. 3 Hash algorithm:... 43

4. 4 Hashing function: .. 44

4. 5 Indexing technique based on hash: ... 44

4. 6 Framework for Environment indexing technique: .. 45

Experiment and discussion: ... 46

4. 7 Description of the indexing process:... 47

4. 8 Query for retrieval process on hash technique:... 48

VIII

4. 9 Experiment and Results: ... 49

4. 10 Discussion of Hash indexed technique: .. 55

4. 11 Evaluation: .. 56

Chapter five:... 57

Conclusion ... 57

5. 1 Over view:... 58

5. 2 Conclusions:.. 58

5. 3 Future work: .. 58

5. 4 Recommendations:.. 58

References:... 59

Appendices... 63

Histogram equalization java code: ... 63

Appendices image: ... 67

IX

LIST OF TABLES

Table 2.1 review index Technique of Nosql…………………………………………….26-31

Table 3.1 spec server…………………………….………………………………….……….36

Table 3.2 Description of dataset…………………………………………………….………38

Table 4.1 Response time from HBase………………………………………………………50

Table 4.2Response time from hash function………………………………..………………51

Table 4.3Response time from HBase and hash function…….…………..….……………52-53

X

LIST OF FIGURES

Figure 2.1 A 60-second schematic of large data across social media…………..…………9

Figure 2.2Model NoSQL…………………………………………………………………12

Figure 2.3 CAP theorem……………………………………………………….…………15

Figure 2.4 Column Family Stores………..…………………………………………..……16

Figure 2.5 MDDS Architecture……………………….…..……………...…..……..……..18

Figure 3.1 Research Framework………………………………………………………..….34

Figure 3.2 operating system………………………………………………………..………36

Figure 4.1Features of Hashing………………………………………………………..…….42

Figure 4.2Form work for Environment Indexing technique…………….………….………46

Figure 4.3Architecture in Environment…………………………..………………………..47

Figure 4.4 Flow chart Store Data in HBase using Hashing………………………………..48

Figure 4.5 How to retrieval in hashing……………………………………………………..49

Figure 4.6 Flow chart retrieval processes……………….…………………………………49

Figure 4.7 response time from HBase………………...……………………………………50

Figure 4.8 response time from Hash function…………...…………..……………………..53

Figure 4.9 response time from HBase and hash function……………………………..…...54

XI

LIST OF ABBREVIATIONS

Abbreviation Description

AP Availability and Partition tolerance

APIs Application Programming Interfaces

CAP theorem Consistency, Availability, tolerance of network Partition

CP Consistency and Partition

DB Database

DBMS Database Management Systems

DCODE Distributed Column-Oriented Database Engine

DFS Distributed File System

Disco Distributed Co-clustering

DOT Distributed Ordered Table

GFS Google File System

HDFS Hadoop Distributed File System

M2M Multi-Column to Multi-Dimensional

M2S multi-column to single dimensional

MBR Minimum Bounding Rectangle

MDDS Multidimensional Data Segment

MDRQ Multi Dimensional Range Query

NoSQL Not Only SQL

RDBMS Relational Database Management Systems

S2S Single column to Single dimensional

1

Chapter one:

Introduction

2

1.1 Over view

 New web applications like facebook and twitter produce large

unstructured data that challenge mining, processing, modeling, security,

indexing, analysis, storage, and Relation database[1] . Firstly, the size of the

data is a larger than the reception and deal with the ordinary computers

hosted on the file storage systems distributed (Distributed File System) (DFS)

in the servers over the Internet. These storage systems ensure a low cost,

access, and processing much faster than the storage in one unit. Secondly, the

storage in the form of traditional methods such as a relational database is not

suitable to store these data. Consequently, the applications such as Amazons

and Facebook faced problems to store the received unstructured data in the

relational database management systems (DBMS’s). These challenges

encouraged the researchers and companies to introduced new database system

called Nosql.

NoSQL is a category of database that typically is schema free and does

not follow relational model[2]. NoSQL is a collection of non-relational data,

typically schema-free databases designed from scratch to address

performance, scalability and availability issues of relational databases for

storing structured or unstructured data. Consequently, these NoSQL databases

classified into different categories by grouping the similar data in same

category. Furthermore, these new databases are very different from

traditional relational databases that use a SQL as query language[3], so it is

referred to as "NoSQL" database. NoSQL also be interpreted as the

abbreviation of "NOT ONLY SQL" to show the advantage of NoSQL.

3

1.2 Problem Background

 With the development of internet application that uses Nosql DBMS

and increasing database size which needs to be able to store and process

effectively, the Nosql database systems facing many challenges. These

challenges are various based on the Nosql database systems and the

complexity of the data that stored in the DBMS’s. Hence, the authors in

[4]divided the data store model for Nosql into column-based, key value,

graph, and document based model. The Column-Based is the one type of

Nosql database that store the data in a column structured.

On one hand, the size of the data that produced by the web applications is

unstructured and the column-based database stores these data in one file

which it produced a delay in handling the user’s queries, because the

database handling the file sequential. Furthermore, the Nosql database does

not support the primary key concepts, which affect the query process in the

database file. On the other hand, the size of the data is very large as well as

has a properties associated with it like volume and variability, but when

facing increasing size which accused by delay. In addition, handling large

data and storage systems used currently cannot store such large amount of

data.

 The aforementioned issues directed the research to find means to

speed up the query processing. The addressing these issues either

implementing an indexing algorithm or techniques during the storing the

data in database, or by provide a query optimization techniques that reduce

query response time.

4

1.3 Problem Statement

 The unstructured nature of the Nosql data prevents the DBMS’s in

column base data base from implementing a primary key, which it’s

speeding up query execution. Consequently, defining a primary key or

indexing is an important issue, which is used to reduce query processing

time and increase system performance.

1.4 Research Objectives:

1. To study and review critically the indexing techniques in Nosql

database and especially in Column stored DBMS’s.

2. Design and implement a Nosql indexing algorithm for column-based

database type.

3. Design and develop a framework to evaluate any indexing algorithm

in NoSQL database.

1.5 Research Contributions:

 This research is handling the response time delay by design a new

indexing algorithm for Nosql database. Additionally, the indexing

algorithms reduce the number of collisions in keys that has a numeric data

type which appears during the indexing process. When applying hash

functionality in Nosql, it improves response time, retrieval, and accessibility.

Consequently, the contributions in this research are as following:

5

1- An Enhanced Hash indexing algorithm for column-based DBMS’s.

2- A Framework to evaluate the NoSQL indexing algorithms.

1.6 Research Methodology:

The methodology presents to be adopted in continuing this research,

which content the research procedures that Clearfield the focusing of this

study, Problems Formulation ,which explain how the researcher find the

Hash Indexing technique, Design and Development of hash indexing

technique, Platforms and tools this included (Hadoop, Zookeeper, HBase) ,

dataset, technique design, experiment and evaluation are included.

1.7 Research Scope:

The research is focusing on NoSQL database query issues. The research is

limited to column oriented models in the NoSQL. The index is hashing

techniques in NoSQL.

 The proposed algorithm applied only in the column oriented Nosql

databases only , while the other categories not used

 Security of Nosql is not concern in this research

 The algorithm developed to handle only text and numbers data

because the column-store databases deal with text data.

 The operation used to test the algorithm is the retrieval which include

search and retrieve the data.

1.8 Thesis Outline:

 The remainder of this study is organized as follows.

Chapter Two: stared with a review for various indexing techniques using

NoSQL, NoSQL database modeling,. These models are four types key value,

6

column oriented, Document store and Graph store. There are column

oriented store features and key primly index in data base. In addition to that

Hash logarithms were used to predict index techniques in model column

oriented store in NoSQL data base which used to measures accuracy rate of

these techniques.

Chapter Three: covers the research methodology which includes research

procedures, the operational framework, dataset, technique design, tools,

platform, experiments test and evaluation.

Chapter Four: shows the designs of indexing techniques, beginning with

preprocessing and what technique is suitable. Then, involves building

indexes using NoSQL technique, presents the findings of this study and the

discussion of the results, to evaluate technique support change in hash index

introduced to predict index model which used to evaluate performance. In

this experiment one against all approach.

 The thesis concludes with Chapter Five which states the

conclusion of the research. Additionally, it provides recommendations for

future work.

7

Chapter Two
Literature review

8

2.1 Over view:

 The increase of an unstructured Data volume during recent years

produced issues for Traditional relational database management systems

(RDBMS). RDBMS are facing challenges, such as high performance, huge

storage, high scalability, and high availability. To handling these problems, a

series of Not Only SQL (NoSQL) databases have been proposed and widely

used in industry and academic fields such as Google Big Table, Yahoo!

PNUTS, HBase and Cassandra. This chapter discuss in detail the Nosql

concepts, which it started with an introduction to Nosql database

management systems and its relation with the relation DBMS’s. Then the

chapter discuss the indexing techniques implemented in the literature that

handling the problem of the primary key. The chapter concluded with

comparative analysis of the indexing techniques in Nosql as well as the

problem formulation.

2.2 Nosql database management systems concepts:

 The large Data is set of Data with a large Volume, high Variety and

complex structure, so the management, analyzing, storing and processing the

data is very difficult [5]. Moreover the increase of the data produces a new

type of data not recognized before. In addition to structure data and semi

structured, an unstructured database is appear, which enforced the industries

and the researchers to develop a new DBMS’s. These New DBMS’s which

it’s later called Nosql consider the features of unstructured DBMS’s, which

is different from the relation database management systems[6]. Additionally,

the unstructured data is produced from web application such as Social

media applications(facebook, twitter, skype) and so on generated data every

second , which illustrated the size of the data and the nature of it as

explained in Figure2.1.

9

Figure 2.1 A 60-second schematic of large data across social media[7]

2.3 The relational and NOSQL databases:

Database Management Systems (DBMS) are the higher-level software,

working with lower-level application programming interfaces (APIs) that

take care of the database operations[1]. Furthermore, DBMSs have been

developed for decades that provide operations to deal with data on the

database such as processed, recorded, and retrieved operations. DBMS’s can

be divided into two main categories relational and non-relational or NoSQL

databases. A relational database is a collection of data items organized as a

set of formally-described tables from which data can be accessed or

reassembled in many ways without having to reorganize the database

tables[8] . One of the relational database is SQL which is a database query

language designed for the retrieval and management of data in a relational

database.

The main Disadvantages of traditional database are[9]:

1. Limited capacity: Existing relational database cannot support large

data in search engine, or Big System.

every 1
minute

Facebook

• 41, 000
posts

Spoti fy

• 14 new
songs added

Twitter

• 278, 000
tweets

Fl icker

• 20 million
views

Youtube

• 72 hours
video
uploaded

Skype

• 1.4 million
minutes
connecting

Google

• 2 million
searches

11

2. Expansion difficult: Multi-table correlation mechanism which exists in

relational database became the major factor of database scalability.

3. Slow reading and writing: A relational database itself has a certain

logic complexity, with the data size increases, it is prone to bring

about deadlocks and other concurrency issues, this has led to the rapid

decline in the efficiency of reading and writing[10].

On the other hand, the term “NoSQL” already exists since 1998. Carlo Stress

named an open-source database “NoSQL” to make clear, that his project

does not support any SQL interface. The underlying concept of his NoSQL-

databases waives relations therefore the expression would be more

appropriate. It is no common definition for NoSQL-databases available but

Edict et.al. [11] .

Point out 7 important characteristics in NoSQL-databases:

1. Are not based on a relational approach.

2. Scale horizontal.

3. Are often open-source products (although proprietary products are

available)

4. Don’t need a defined schema.

5. Provide an API for the integration in other software products.

6. Use a decentralized architecture for the easy replication of data.

7. Follow the BASE principle (Basically Available, Soft State, and

eventually.

Meanwhile, NoSQL have some inadequacies, such as does not support

SQL which is industry standard, lacking of transactions, reports and other

additional features. Furthermore, NoSQL not mature enough for most of the

NoSQL database products were created in recent years and so on[12] . Feature

of NoSQL database described above are common ones, in reality, each

product comply with the different data models and CAP theorem. Therefore,

11

NoSQL database data model will introduce, and classify NoSQL according

to CAP theorem[13].

The main advantages of NoSQL are[14]:

(1) High concurrent of reading and writing with low latency :

Database were demand to meet the needs of high concurrent of reading

and writing with low latency, at the same time, in order to greatly

enhance customer satisfaction, database were demand to help applications

reacting quickly enough.

(2) Efficient large data storage and access requirements:

 Large applications, such as search engines, need database to meet the

efficient data storage and can respond to the needs of millions of traffic.

(3) High scalability and high availability

With the increasing number of concurrent requests and data, the database

needs to be able to support easy expansion and upgrades, and ensure rapid

uninterrupted service.

(4) Lower management and operational costs

With the dramatic increase in data, database costs, including hardware costs,

software costs and operating costs, have increased. Therefore, need lower

costs to store large data. Although relational databases have occupied a high

position in the data storage area, but when facing above requirements, it has

some inherent limitations.

To solve several needs above, a variety of new types of databases

management systems appeared.

2.4 Mainstream NoSQL Data Models:

 Data model of traditional database are mainly relational, specifically

to support associated class operations and transactions. But in the NoSQL

database fields according to their characteristics NoSQL-databases can be

divided into four groups , the mainstream data model is the following:

12

Figure 2.2Model NoSQL[12]

2.4.1 Key value stored databases:

 This kind of NoSQL databases use a simple schema based on key

value pairs. Key-value data model means that a value corresponds to a

Key, although the structure is simpler, the query speed is higher than

relational database, support mass storage and high concurrency, etc., query

and modify operations for data through the primary key were supported well.

Large number of key value NoSQL DBMS’s developed such as Aero spike,

Apache Ignite, ArangoDB, Berkeley DB, Couch base, Dynamo, Foundation

DB, Infinity DB, Me cache DB, MUMPS, Oracle NoSQL Database, Orient

DB, Redis, Riak, Sci DB, SDBM/Flat File.

2.4.2 Column stored databases:

 Data is stored in columns instead of rows. Column stored database

using Table as the data model, but does not support table association.

Column stored database has the following characteristics [15]:

 (1) Data is stored by column that is data stored separately for each column.

(2) Each column of data is the index of database.

 (3) Only access the columns involving the queries result to reduce the I/O of

system.

(4) Concurrent process queries, that is, each column treat by one process.

Model NoSQL
database

Key value stored
databases

Column stored
databases

Document stored
databases

Graph stored
databases

data stored

https://en.wikipedia.org/wiki/Aerospike_(database)
https://en.wikipedia.org/wiki/Apache_Ignite
https://en.wikipedia.org/wiki/ArangoDB
https://en.wikipedia.org/wiki/Berkeley_DB
https://en.wikipedia.org/wiki/Couchbase
https://en.wikipedia.org/wiki/Dynamo_(storage_system)
https://en.wikipedia.org/wiki/FoundationDB
https://en.wikipedia.org/wiki/FoundationDB
https://en.wikipedia.org/wiki/InfinityDB
https://en.wikipedia.org/wiki/MemcacheDB
https://en.wikipedia.org/wiki/MUMPS
https://en.wikipedia.org/wiki/Oracle_NoSQL_Database
https://en.wikipedia.org/wiki/OrientDB
https://en.wikipedia.org/wiki/OrientDB
https://en.wikipedia.org/wiki/Redis
https://en.wikipedia.org/wiki/Riak
https://en.wikipedia.org/wiki/SciDB

13

(5) There have the same type of data, similar characteristics and good

compression ratio.

Overall, the advantage of this data model is more suitable application on

aggregation and data warehouse. Although column-oriented database has

not subverted the traditional stored by row, but in architecture with

data compression, shared-nothing, massively parallel processing, column-

oriented database can maintain high-performance of data analysis and

business intelligence processing. Column oriented databases management

system such as HBase, Yale University Hadoop DB, Face book’s

Cassandra[1], Hypertable [16], Google's Big table[9], and Yahoo's PNUTS,

Accumulo, Scylla, Apache Druid, Vertica.

2.4.2. 1 HBase:

HBase is an open source project that provides transactional and indexing

extension for HBase; Apache HBase is used to have random, real time

read/write access to Big Data. It hosts very large tables on top of clusters of

commodity hardware[17].

Apache HBase is a non relational database modeled after Google's big table,

Big table acts up on Google File System; likewise Apache HBase works on

top of Hadoop and HDFS. HBase is used whenever we need to provide fast

random access to available data. Companies such as Facebook, Twitter,

Yahoo, and Adobe use HBase internally.

2.4.3 Document stored databases:

 Data is not stored in tables but in documents. Documents refer to structured

files, like JSON, YAML or RDF. Document database and Key-value is very

similar in structure, but the Value of document database is semantic, and

is stored in JSON or XML format. In addition, the document databases

can generally a Secondary Index to value to facilitate the upper

application, but Key-value database cannot support this.

https://en.wikipedia.org/wiki/Accumulo
https://en.wikipedia.org/wiki/Scylla_(database)
https://en.wikipedia.org/wiki/Apache_Druid
https://en.wikipedia.org/wiki/Vertica

14

Document database is not concerned about high performance read and

write concurrent, but rather to ensure that big data storage and good

query performance. Typical document database, Mongo DB[18], Couch

DB[19] , ArangoDB, BaseX, Cluster point.

2.4.4 Graph stored databases:

Data is stored as graph or tree structures which link the different data

aspects. Graph databases allow you to store entities and relationships

between these entities. Entities are also known as nodes, which have

properties[20]. In graph databases, traversing the joins or relationships is

very fast. The relationship between nodes is not calculated at query time but

is persisted as a relationship. Traversing persisted relationships is faster than

calculating them for every query. Some of the popular graph databases are

Infinite Graph, Flock DB , Allegro Graph, ArangoDB, Apache Graph, Mark

Logic, Neo4J, Orient DB, Virtuoso.

2.5 CAP theorem and NoSQL database classification:
In 2000, Professor Eric Brewer put forward the famous CAP theorem. That

is, Consistency, Availability, tolerance of network Partition. CAP theorem's

core idea is a distributed system cannot meet the three district needs

simultaneously, but can only meet two.

https://en.wikipedia.org/wiki/ArangoDB
https://en.wikipedia.org/wiki/BaseX
https://en.wikipedia.org/wiki/Clusterpoint
https://en.wikipedia.org/wiki/AllegroGraph
https://en.wikipedia.org/wiki/ArangoDB
https://en.wikipedia.org/wiki/Apache_Giraph
https://en.wikipedia.org/wiki/MarkLogic
https://en.wikipedia.org/wiki/MarkLogic
https://en.wikipedia.org/wiki/Neo4J
https://en.wikipedia.org/wiki/OrientDB
https://en.wikipedia.org/wiki/Virtuoso_Universal_Server

15

Figure 2.3 CAP theorem[10]

 According to CAP theorem and different concerns of NoSQL database,

a preliminary classification of NOSQL databases is as follows :

• Concerned about consistency and availability (CA)

Part of the database is not concerned about the partition tolerance [23], and

mainly use of Replication approach to ensure data consistency and

availability. Systems concern the CA are: the traditional relational database,

Vertical (Column-oriented), Aster Data (Relational),Green plum (Relational)

and so on.

• Concerned about consistency and partition tolerance (CP):

Such a database system stores data in the distributed nodes[21], but also

ensure the consistency of these data, but support not good enough for the

availability. The main CP system: Big Table (Column-oriented), Hyper

table (Column oriented), HBase (Column oriented) Mongo DB (Document),

Territory (Document), Red is (Key value), Scalar is (Key value) , Me

cache DB (Key value), Berkeley DB (Key value).

• Concerned about availability and partition tolerance (AP):

16

Such systems ensure availability and partition tolerance primarily by

achieving consistency. Such systems ensure availability and partition

tolerance primarily by achieving consistency, AP’s system: Volde mort (Key

value), Tokyo Cabinet (Key value), KAI (Key value), Couch DB(Document

oriented),Simple DB(Document-oriented), Riak (Document-oriented).

2.6 Column family stores:

Column family databases store data in column families as rows that have

many columns associated with a row key as shown in Figure 2.4Column

families are groups of related data that is often accessed together. Each

column family can be compared to a container of rows in an RDBMS table

where the key identifies the row and the row consists of multiple columns.

The difference is that various rows do not have to have the same columns,

and columns can be added to any row at any time without having to add it to

other rows. Some of the popular column family stores are Cassandra and

HBase.

Figure 2.4 Column Family Stores[22]

Row

Row key y
Column1

Name1:value

1

Column9

 Name9:value

9

Colum N

NameN:valueN

VALvalueN

Row

Row key x
Column1

 Name1:value

1

Column2

 Name2:value

2

Column

 NameN:value

nnN valueN

17

2.7 Percussion of Column Family Stores:

2.7.1 Distributed Co-clustering:

The Distributed Co-clustering (Disco) framework introduces practical

approaches for distributed data pre-processing, and co-clustering. Disco

developed using Hadoop, an open source Map-Reduce implementation. The

experiments show that Disco can scale well and efficiently process and

analyze extremely large datasets (up to several hundreds of gigabytes) on

commodity hardware[23].

2.7.2 A Distributed Column-Oriented Database:

Distributed Column-Oriented Database Engine (DCODE) for ancient

analytic query processing that combines advantages of both column storage

and parallel processing. DCODE enhance an existing open-source columnar

database engine by adding the capability for handling queries over a

cluster[24].

2.7.3 Distributed Ordered Table in NoSQL:

The way of storing the data in Nosql DBMS is affecting the process of the

data and the query execution time. The need for design and develop a new

technique to handle the delay in the query process is an important issue[25].

A lot of Not Only SQL (NoSQL) databases have been proposed in the era of

large data. that has attracted lots of attention[26]. Distributed Ordered Table

(DOT) horizontally partitions table into regions and distributes regions to

region servers according to the keys. Multi-Dimensional Range Query

(MDRQ) is a common operation over DOTs. Many indexing techniques

have been proposed to improve the performance of MDRQ, but they cannot

guarantee high performance[27].

18

2.7.3.1 Procedure of Distributed Ordered Table in NoSQL:

A. Multidimensional Data Segment (MDDS):

A data segment includes the following sections. First, the header stores the

segment’s unique identifier, its total length in bytes, and the record format’s

(the same as in the record descriptor). Second, the indexing dimensions

section indicates the record fields used for data indexing, as in the record

descriptor. Lastly, the records section stores the sequence of data records as

an array of bytes. These sections, except the header, are of variable length,

which is stored in their section length field[28].

B. Record Descriptor

MDDS requires the user to provide record descriptor, in XML format, with

the record structure of the ingress data[29] .

C. Software Architecture:

MDDS’s main components have been written C++ language and its

architecture is illustrated.

Data Investor: The data investor produces data segments from every chunk of

records it receives. To do so, it performs two operations on each chunk: data

segmentation and segment assembling.

Indexing and Writing Segments to Storage: Right after being assembled, a

data segment is in memory, in the right format to be accessed by the query

processor, and ready to be written to storage.

Figure 2.5 MDDS Architecture

Data
Segmenta

tion
segment

assembling
Indexing Storage

19

2.8 Indexing of NoSQL in Column Family Stores:

Unnecessary full table scans cause a huge amount of unnecessary I/O and

can drag down an entire database. The tuning expert first evaluates the SQL

based on the number of rows returned by the query. The most common

tuning remedy for unnecessary full-table scans is adding indexes. The

Primary Key for a table acts as a default index. Additional indexes can be

added to a table depending upon the data size it holds other type of indexes

like Standard b-tree indexes and Bitmapped and function-based indexes can

also eliminate full-table scans.

2.8. 1 Mapping between Indexed Columns and the Row key of Index

Table:

Index data can be stored by the table of DOTs or other data structures. Each

data structure must have a unique identifier to identify the index data. For

tables of DOTs, the identifier is the row key for R-tree, it is the ranges of

Minimum Bounding Rectangle (MBR). The unique identifier is called row

key, because most indexing techniques use tables of DOTs to store indexes.

Similarly, the data structures storing index data are called index tables. The

tables of DOTs are single dimensional. DOTs identify records by the row

key for insert and query operations. The row key of an index table may

contain one or more indexed columns. Based on the mapping between

indexed columns (source) and the row key of index table (destination), there

are three kinds of mappings: single column to single dimensional, multi-

column to multi-dimensional, and multi-column to single dimensional. These

mappings determine how the indexes are built and how queries are

processed.

2.8. 1.1 Single Column to Single Dimensional:

A single column to single dimensional (S2S) index builds one index table for

each indexed column and usually stores index data in tables of DOTs. The

row key of an index table is usually concatenated by the value of indexed

21

column and the raw row key. The S2S index is simple to implement, and its

drawback is that only one indexed column can be altered by the row key of

an index table.

2.8.1.2 Multi-Column to Multi-Dimensional:

Spatial data structures like R-tree and R+-tree [15] have been widely used in

spatial databases to store and query geometric objects. These structures map

multi- dimensional data into multi-dimensional spaces. Multi- column to

multi-dimensional (M2M) indexes use spatial data structures to map multiple

indexed columns to the row key.

2.8.1.3 Multi-Column to Single Dimensional:

A multi-column to single dimensional (M2S) index maps data of multiple

indexed columns into the row key of an index table. The most common

mapping function used is the space filling curve like Order curve and Hilbert

curve. The advantages of M2S indexes are that they can use the table

structure of DOTs to store index data and can filter multiple indexed

columns at the same time. However, using the curves alone can result in

false positive sub queries.

2.8.2 Index Structure of Column Family Stores:

According to Silberschatz et al the index structure can be categories into

secondary, or clustering, which is also applicative for indexing DOTs.

2.8.2.1 Secondary indexes:

Secondary indexes provide mapping from the values of indexed columns to

the row key of the raw table. Queries will be processed by firstly finding

rows satisfying all conditions (whose row keys are called the final row keys)

and then querying the raw table based on the fial row keys.

21

2.8.2.2 Clustering:

Clustering indexes have the same row key as secondary indexes and store all

target columns of queries; therefore results can be directly returned without

querying the raw table.

2.8.3 Time to Build Indexes:

DOTs usually use LSM tree on regions to reduce insert latency, namely, a

record will be firstly inserted into the MemStore. The MemStore will be

flushed to disk when meeting some conditions, like reaching the threshold.

Therefore there are two kinds of indexes, on insert or on flush.

2.8.3.1 on Insert Index:

On insert indexes build indexes when records are inserted, and they can be

on either client side or server side. Client side means indexes are built when

records are inserted into the raw table. It leaves the responsibility of building

and maintaining indexes to users.

2.8.3.2 on Flush Index:

On flush indexes will not build indexes for in- memory records until they are

flushed to the disk. Inserts return directly without building indexes, which

significantly reduces the insert latency. However, a query must be processed

on both indexed data on disk and non-indexed data in MemStore.

2.9 Index Persistence:

As the name indicates, DOTs are distributed systems. No matter where the

index data is stored, its reliability should always be considered carefully.

2.9.1 Persistent on Disk:

It is not necessary for users to worry about reliability when the index data is

persistent on disk because the underlying distributed file systems like Google

file systems (GFS) and Hadoop distributed file systems (HDFS) naturally

provide transparent persistence. The disadvantage of persistent on disk index

is that the storage cost is high. Using erasure codes to save index data is also

22

considerable, but it leaves the risk of lower query performance when

recovering data.

2.9.2 Non persistent on Disk:

To reduce the storage overhead, some techniques like CCIndex store only

one copy of index data, which is called non persistent on disk.

2.9.3 Memory Only:

Memory only indexes store index in memory only for high performance of

both insert and query. Indexes will be rebuilt when a region is migrated or

the node is restarted.

2.10 A review on data index technique:

These reviews studied the research conducted to design and develop an

index technique for NoSQL database. This study focus in the column

oriented database.

Gugnani, et al. [30] Proposed a complementally clustering index technique

called CCIndex to handle the storing of the ever growing big data. The

research uses the HBase NoSQL DBMS to test proposed technique which

focuses only on columns-based type. The proposed technique is designs to

accelerate index on HBase.

The CCIndex technique was developed by Zou, et al. [31]is a

complementally clustering index on Distributed Ordered Tables for

accelerating multi-dimensional range queries built on Apache HBase.

CCIndex builds Complemented Clustering Index Tables (CCITs) for each

index column. The index tables are regular HBase tables and are split into

regions and stored on Region Servers. Each CCIT contains data for all

columns. Thus, ranges queries can be evaluated using a simple scan

operation and involve no random reads. CCIndex uses the region-to-server

mapping information provided by HBase meta-tables to estimate the result

size of queries and optimize the query plan.

23

 Ren, et al. [32] introduce a middleware called IndexFS that adds support to

existing file systems such as, Luster, and HDFS for scalable high-

performance operations on metadata and small files. IndexFS uses a table-

based architecture that incrementally partitions the namespace on a per-

directory basis, preserving server and disk locality for small directories.

Feng, et al. [33] developed indexing technique named LCindex, short for

Local and Clustering Index, to solve this issue. Experimental results confirm

that LCIndex can achieve high performance on both insert operations and

flexible MDRQ. LCIndex techniques have been proposed to improve the

performance of MDRQ, but they cannot guarantee high performance on both

insert and flexible MDRQ at the same time.

Wang, et al. [34] proposed an adaptive indexing technique to speed up a

complex data query on HBase for IoT based SG big data a indexing

techniques for complex queries over the SG dataset to efficiently exploit the

rich connotations of data to enable characteristic analytics and fault

prediction. As part of popular big data platform, HBase is replacing classic

relational databases to host huge heterogeneous data records in the form of

key-value storage. However, most existing secondary index schemes on

HBase are managed and retrieved by corresponding data columns instead of

queries to incur inefficiency in answering a complex data query.

Guo, et al. [35] the ICF-HBase index method has great significance on large

scale data query of HBase. The HBase database only supports the row key

index method, and index could not be constructed on a non row key field. To

solve this problem, this paper proposes a general HBase secondary index

method based on Isomorphic column family(ICF-HBase), which construct

key-value index in an index family of the original data table, in order to

realize the single key index, multi key index, data import and optimized

24

query mechanism However, there are still some problems in HBase, such as

the query pattern that supports only the row key index, the lack of support

for multi dimensional complex query, and the lack of support for cross

transaction. However, these methods also bring some additional problems,

such as the impact of the original region load balancing, data and index

consistency and so on.

 Qi, et al. [36] Proposed Consistency Analysis of Secondary Index on

Distributed Ordered Tables; however, the DOT does not support queries

very well other than the primary key. One solution to this problem is

indexing. Many indexing techniques are focusing on how to improve the

query ability, but do not care about the consistency between the index table

and base data table. This paper focuses on the relationship between the

consistency and the performance about the indexing techniques. This paper

gives the dentition about the consistency between the index table and the

base data table, and presents the inconsistency window to measure the

degree of consistency.

Gao and Qiu [37] Proposed a Supporting Queries and Analyses of Large-

Scale Social Media Data with Customizable and Scalable Indexing

Techniques over NoSQL Databases, However, the level of indexing support

varies significantly across different NoSQL databases, and their current

index structures are not flexible enough to handle the queries in social media

data analyses. To solve this problem, a general customizable indexing

framework proposed that can be built over distributed NoSQL databases.

This framework allows users to define customized index structures that

contain the exact necessary information about the original data so as to

achieve efficient queries about social events.

25

[38]Secondary index is another kind of index techniques for cloud data

management. CCIndex is another kind of secondary index solutions based on

Key-value store proposed by in one secondary index table was built for each

indexed column. In order to reduce the random read, the detailed information

of each record was pushed into the secondary index table, so that the random

read can be changed into sequential read. The author also proposed some

optimization methods to support multi-dimensional query. CCIndex is easily

to be implemented, but it has several drawbacks.

Wu, et al. [39] Proposed B-tree Based Indexing for Cloud Data Processing.

The research present a novel, scalable B+-tree based indexing scheme for

efficient data processing in the Cloud. This paper presents CG-index (Cloud

Global index), a secondary indexing scheme for Cloud storage systems. CG-

index is designed for Cloud platform and built from scratch. It is tailored for

online queries and maintained in an incremental way. It shares many

implementation strategies with shared-nothing databases , peer- to-peer

computing , and existing Cloud storage systems CG-index supports usual

dictionary operations (insert, delete and lookup), as well as range search with

a given key range.

Liang and Yang [40] Provided several techniques, e.g., MD-HBase to help

researchers have good understanding on current multidimensional indexing

techniques and their design of new multidimensional indexing approach.

Conduct extensive experimental study to learn the intrinsic characteristics of

MD-HBase techniques. Results show that it is possible to build a

multidimensional cloud indexing system that is both elastically scalable and

efficient.

[Colmenares, et al. [41]] [42] proposed an ingestion, Indexing and Retrieval

of High Velocity Multidimensional Sensor Data on a Single Node Its design

26

centers around a two-level indexing structure, wherein the global index is an

in-memory R*-tree and the local indices are serialized kd-trees. This study is

confined to records with numerical indexing fields and range queries, and

covers ingest throughput, query response time, and storage footprint. In

addition, author evaluate a kd-tree partitioning based scheme for grouping

incoming streamed data records. Compared to a random

scheme.[Colmenares, et al. [42]][Colmenares, Dorrigiv [42]][Colmenares,

Dorrigiv [42]][Colmenares, et al. [42]][Colmenares, Dorrigiv

[42]][Colmenares, et al. [42]][Colmenares, Dorrigiv [42]][Colmenares, et al.

[42]][Colmenares, Dorrigiv [42]][Colmenares, et al. [42]]

27

Table 2.1 review index Technique of Nosql

No Paper Title Year

Data Type Application Area Problem Indexing Types Indexing

technique

Dataset

(Size)

NOSQL

Data base

1 Characterizing and

Accelerating

Indexing

Techniques on

Distributed

Ordered Tables

2017 Columns The problem

of storing this ever

growing

a complemental

clustering index

CCIndex Big size HBase

2 CCIndex: a

Complemental

Clustering Index on

Distributed

Ordered Tables for

Multi-dimensional

Range

Queries

2017 Columns Text High

performance, low

space overhead, and

high reliability

a Complemental

Clustering Index

CCIndex Big size HBase

3 IndexFS: Scaling

File System

Metadata

Performance

with Stateless

Caching and Bulk

Insertion

 Columns Table-based (Metadata). important

performance

bottleneck for many

distributed file

systems in both the

data intensive

scalable

computing (DISC)

world and the high

performance

computing (HPC)

world

file systems IndexFS largest file

size(Teraby

tes)

HBase

28

4 LC Index: A Local

and Clustering

Index on

Distributed

Ordered Tables for

Flexible

Multi-Dimensional

Range Queries

2015 Columns Statistic the performance

of spatial trees relies

on balanced data

whereas the data

distribution of

indexed columns is

usually

unbalanced (e.g.

limited traffic speed

in a jam), which

limits the flexibility

of MDRQ of these

indexing techniques

Local and

Clustering Index

LC index Big size HBase

5 A Query-oriented

Adaptive Indexing

Technique for

Smart
Grid Big Data

Analytics

2017 Columns IoT (Internet of Things) based

Smart Grid (SG)

Delay query retrieval

time because there is

no indexing

Structure adaptive

indexing

technique

Big Data

Analytics

HBase

6 A HBase

Secondary Index

Method Based on

Isomorphic

Column

Family

2017 Columns The HBase database The HBase database

only supports the

rowkey index method,

and index could not

be constructed on a

non

rowkey

field.(improve the

retrieval

performance of

HBase by optimizing

the structure of HBase

schema and the

design of rowkey)

isomorphic

column family

(ICF-HBase)

Secondary Index

Rowkey Big Data -HBase

29

7 The Consistency

Analysis of

Secondary Index

on

Distributed

Ordered Tables

2017 Columns Social

network, computer simulation,

scientific computing

the DOT cannot

support range

query over non-key

columns

Secondary Index Secondary

Index

Big Data -HBase

8 Supporting Queries

and Analyses of

Large-Scale Social

Media Data with

Customizable and

Scalable Indexing

Techniques over

NoSQL Databases

2017 Columns Social media efforts in

supporting the data

storage and

processing

requirements

IndexedHBas Indexed Base a large

number

HBase

9 An Efficient Index

for Massive IOT

Data in Cloud

Environment

2017 Columns Internet of Things transactional and

indexing extension

for H Base

cal- index

Secondary index

Secondary

index

a large

number

HBase

10 Efficient B-tree

Based Indexing for

Cloud Data

Processing

2017 Columns flexible computing infrastructure we present a novel,

scalable B+-tree

based indexing

scheme for efficient

data processing in the

Cloud

Cloud Global

index

CG-index a large

number

Cloud

31

11 Towards

Performance

Evaluation of

HBase based

Multidimensional

Cloud Index

2015 Columns data processing and

retrieval

Is organized as

follows. Section 2

introduces the related

work of

multidimensional

cloud indexing

Approaches.

multidimensional

cloud indexing

MD- HBase

techniques

a large

number
HBase

12 A Performance-

improved and

Storage-efficient

Secondary Index

for Big Data

Processing

2017 Columns smart grid these indexing

techniques are

essentially designed

for columns, not for

the whole query,

which slow down the

query process

Secondary Index HIndex and

Hive

a large

number
HBase

13 Ingestion, Indexing

and Retrieval of

High-Velocity

Multidimensional

Sensor Data on a

Single Node

2017 Columns sensors, systems, and automated

processes generate

(data stream).

Ingestion, Indexing

and Retrieval

Tree R*-tree and

the local

indices are

serialized kd-

trees

a large

number
HBase

31

14 A Single-Node

Datastore for High-

Velocity

Multidimensional

Sensor Data

2016 Columns Internet of Things go back to basics and

revisit the ingestion,

indexing, storage, and

retrieval of high-

velocity

multidimensional

sensor data on a

single node

Tree R*-tree a large

number
HBase

32

Chapter three

 Research methodology

33

3.1 Over view:

 In this chapter we will explain the methods or methods you used to get to the

research problem and the tools you used to get to the problem.

3.2 Research Design and Procedure:

 The research framework started with literature review, which studies several

published papers focused on Nosql database and index techniques. Furthermore,

the researcher highlighted the problem of study as well as the technique that

used which is hash indexing; in addition to that the researcher explained the

designation of the intended technique and prepared the environment and the

suitable tools that can be utilized. In addition, the data set and the test are made

by the researcher through the research and did the readings, then the researcher

undertook the results and then evaluated them.

34

Figure 3.1 Research Framework

Phase 1: review the literature

Phase 2: problem formulation

Phase 3: hash indexing
technique design and

development

Phase 4: experiment and testing

•Dataset used in the Technique

•Platform andTools

•technique design

•experiment and testing

phase5: evaluation technique

35

3.3 problems Formulation:

The development of science and information technology has led to an increase

in the quantity of data compiled. the quantities of this data is very large and

required to be processed, stored, managed and utilized, After determine problem

formulations there are algorithms and techniques give us solution space area.

On this area we can determine what exactly techniques design and development

the work. Depending on all Steps, we can implement and applying experiment

and testing our solution. from here the following steps illustrate this : Literature

has been reviewed in the Nosql databases for information, understanding and

how to deal with them, as well as review the literature in the indexes in the

databases and showed the amount of papers have a second index and hence the

techniques used in the second index were compared and the problem of delay in

time emerged techniques of indexing the work of research.

3.4 Design and Development of hash indexing technique:

After reviewing the literature in the techniques of indexes in traditional

databases to know the techniques and choose the appropriate one suitable for

databases and understanding and knowledge of the shortcomings of them must

be thought of some solutions and hence began the technical Hash index to

facilitate the process of index and accelerate the time of retrieval in the process

of research.

36

Figure 3.2 operating system

3.5 Experiment and Testing:

The indexing algorithm implemented and tested on the server is designed with

the specifications as explained in Table 3.1, after the environment has been

configured and the tools required in the work environment are activated.

Table 3.1 spec server

Server Processor RAM Hard disk Operating system

Hp Compaq Elite

Convertible

Minitower

Intel (R) Core i5

3.00GHz

4GB 320GB Ubuntu Server 16.04LTS

3.5.1 Platforms and tools:

Since 1970, RDBMS has been the solution for data storage and maintenance

related problems. After the advent of big data, companies realized the benefit of

processing big data and started opting for solutions like Hadoop.

3.5.1.1The Hadoop Distributed File System (HDFS):

 Hadoop uses distributed file system suitable for storing large files data, and

Map Reduce to process it. Hadoop excels in storing and processing of huge data

of various formats such as arbitrary, semi, or even unstructured[43]. Enables the

linxe

hadoop

Zookeeper

HBase code jave

Dataset

hashing
lograthim

37

underlying storage for the Hadoop cluster, it divides the data into smaller parts

and distributes it across the various servers/nodes, it provides high latency batch

processing, It provides only sequential access of data. There are two basic

components at the core of Apache Hadoop[44]: the Hadoop Distributed File

System (HDFS), and the Map Reduce parallel processing framework[45].

1. HDFS: HDFS is the storage component of Hadoop. It’s a distributed file

system. HDFS is a fault tolerant and self-healing distributed file system

designed to turn a cluster of industry standard servers into a massively scalable

pool of storage. HDFS is optimized for high throughput and works best when

reading and writing large files[46].

2. Map Reduce: Map Reduce is a massively scalable, parallel processing

framework that works in tandem with HDFS. With Map Reduce and Hadoop,

computations are executed at the location of the data.

3.5.1.2 Zookeeper:

 Allow centralized infrastructure with various services, providing

synchronization across a cluster of servers. Large data analytics applications

utilize these services to coordinate parallel processing across big clusters [47].

Apache Zookeeper provides operational services for a Hadoop cluster.

Zookeeper provides a distributed configuration service, a synchronization

service and a naming registry for distributed systems. Distributed applications

use Zookeeper to store and mediate updates to important configuration

information[48].

3.5.1.3 HBase:

HBase is a column stored database management system that runs on top of

Hadoop Distributed File System (HDFS). It is well suited for sparse data sets,

which are common in many big data use cases[44]. HBase applications are

written in Java much like a typical Apache Map Reduce application. an HBase

system comprises a set of tables. Each table contains rows and columns, much

like a traditional database[49]. Each table must have an element defined as a

38

Primary Key, and all access attempts to HBase tables must use this Primary

Key. Additionally, HBase supports a rich set of primitive data types including:

numeric, binary data and strings[50], and a number of complex types including

arrays, maps, enumerations and records.

3.5.2Dataset used in the Technique:

The name is data set Social Influence on Shopping is Survey of 2,676

millennial, What social platform has influenced online shopping the most, This

data was collected on social survey mobile platform What goodly. Shop have

300,000 millennial and members, and have collected 150,000,000 survey

responses from this demographic to date. Data dictionary View, No definitions

added for the 1 file and the 6 columns in this dataset [51].

About this dataset:

Table 3.2 Description of dataset

No Info Description

1. Shared with Everyone

2. Created Mar 18, 2017 by @ahalps

3. Modified May 18, 2017 · All activity

4. Version cdbaa8b1

5. Tags

ecommerce, social, social media, online shopping,

millennial, marketing, social media marketing, snap

chat, instagram, twitter, facebook

6. License CC-BY-SA

https://data.world/ahalps
https://data.world/ahalps/social-influence-on-shopping/activity
https://data.world/ahalps/social-influence-on-shopping/activity
https://data.world/datasets/ecommerce
https://data.world/datasets/ecommerce
https://data.world/datasets/social%20media
https://data.world/datasets/social%20media
https://data.world/datasets/millennials
https://data.world/datasets/millennials
https://data.world/datasets/social%20media%20marketing
https://data.world/datasets/social%20media%20marketing
https://data.world/datasets/snapchat
https://data.world/datasets/snapchat
https://data.world/datasets/twitter
https://data.world/datasets/twitter

39

3.5.3 Technique design:

When configuring the working environment and running the tools, a Hash

function is applied and a Hash table is created to store Hash values or Hash

symbols. The process of fragmentation of data is properly stored and retrieved

to determine the speed of execution of the query

3.5.4 Experiment and Testing:

3.5.4.1Experiment

Run Hash function and make some modifications to it in the relational database.

It relies on fragmentation, reducing the number of keys in the index of the Hash

table, and converting the index data type to numeric to facilitate the search. We

used Hash function mainly in Hash table to quickly locate data and map HASH

values Possible to reduce the number of collisions in the index.

3.5.4.2Testing:

Perform the test after making sure that the Hash function performs a retrieval of

data from the dataset by searching, recording the data retrieval time and

interpreting the results.

3.6Evaluation technique:

Comparison of the results of the original data retrieved from the non-indexed

data bases with the results retrieved from the Hash table after the

implementation of Hash and some time measurement after reducing the number

of collisions. To make sure that Hash works effectively, it is necessary to make

calculations easier, fewer seals and a uniform distribution of data.

41

Chapter four

Index technique based on hash

algorithm implementation and results

41

4. 1 Over view:

 This chapter consists of two parts. The first section examines the

technique of Hashing, Hash function, Hash table and its features, and the second

section, how to design the Hash technique, how to conduct the experiment, Test

experiment, discuss the results and evaluate them.

4. 2 Hash as concept:

The Hashing is considered as the most important and fastest data structures

ever, and many applications use this structure in compilers. The hash structure

quickly accesses any data, regardless of the size of this data as well as data entry

very quickly. In addition to the speed feature, it is easy to apply as apply ing it

through a regular matrix or a coefficient and convert the large keys to small

keys. In general, it is possible to convert a set of keys to specific locations in the

index in the array. In the simplest equation, there is no conversion process and

the key is the same as the direct index in the matrix. But there are many other

cases where there is no key from the basis and therefore the process of

conversion from any value to the index sites will be done using the Hash

function and in case index type is the integer number. In hashing there is a hash

function that maps keys to some values. But this hashing function may lead to

collision that is two or more keys are mapped to same value, Hashing is

implemented in two steps:

 An element is converted into an integer by using a hash function. This

element can be used as an index to store the original element, which falls

into the hash table.

 The element is stored in the hash table where it can be quickly retrieved

using hashed key.

4. 2. 1 Features of Hashing:

 Hash functions are used to meet some of the properties listed below[52]:

http://www.geeksforgeeks.org/hashing-data-structure/

42

Figure 4.1Features of Hashing[52]

 Low cost: The costs of creating a Hash function must be low enough to find a

useful solution based on the Hash function compared to alternative methods.

 Determinism: An hash function must be deterministic - that is, each value of

the inputs must produce the same value as the hash. The function must be Hash

in the arithmetic sense of the term. This condition does not apply to hash

functions that depend on external variables.

 Parity: The Hash function must specify the expected inputs as evenly as

possible through the output set. This means that each Hash value must be

produced with the same probability.

 Multiple variables: In many applications, the hash values may vary at each

run of a program, or may change during the same operation (when an hash table

needs to be expanded). In this case, one needs a hash function with two variable

operators - the input data z and the n number of allowed hash values.

 Data reconciliation: Some data entered in some applications may contain

features that are not related to comparison purposes.

Features

Low cost

Determinis
m

Parity

Multiple
variables

Data
reconciliati

on

Continuity

43

 Continuity: The hash function used to find similar data must be as continuous

a function as possible; two inputs that differ slightly at approximately equal

hash value must be specified.

4. 2. 2 The uses of Hash:

In practice are used in several ways[53]:

1. Test integration or no change in data: through the Hash to any data you will

get the exit output. In case you take the Hash for the same data, we must get the

same Hash output. If Hash changes, this means that the data has changed.

2. Search: For example, I want the same files in a disk, the easiest way is to

calculate each file. And the knowledge of the matching hacks and so on.

3. The data is stored in a non-retrievable manner: it is known that the two keys

must be stored in the base in the form of a hash. The reason is that if there is a

penetration of the base, all the passwords will be easily retrieved, so it was like

a trap for the hacker.

4. 3 Hash algorithm:

 Hashing Algorithm is using this study for the storage of the

unstructured data into the HBase database. Thus the consisting hashing

algorithm is very useful to store the large amount of unstructured data into the

HBase database. The steps of Hash[54]:

 Tables are used to store data or records, and retrieve them quickly.

 Records are stored in groups using the hash keys.

 Hash keys are calculated by applying the hash algorithm to a selected

value within the record. This value must be a shared value for all records.

 Each group can contain organized records in a particular order.

44

Algorithm 1: Hash index algorithm [55].

Input: A ← key from dataset table

Output K: Hash index key

Function Hash Index (A)

{

 Keysarray [DatasetKey];

 DatasetKey← ASCI (A);

Hash Index=(Sum(DatasetKey) mod Keysarray_Size);

Hash Index -> K

}

4. 4 Hashing function:

A hash function is any function that can be used to map data of arbitrary size to

data of a fixed size[56] . The values returned by a hash function are called hash.

Hash functions are often used in combination with a hash table, a common data

structure used in computer software for rapid data lookup. Hash functions

accelerate table or database lookup by detecting duplicated records in a large

file.

Hash function assigned key values to elements in a hash table using a Hash

function is helps calculate the best index an item should going. Index must be

small enough for the arrays size[57]. Don’t over write other data in the Hash

Table. Is job to store values in an array with a limited size. It does it in a way

that the array doesn’t need to be searched through to find it[58].

4. 5 Indexing technique based on hash:

Hashing used to uniquely identify a specific object from a group of similar

objects. Assume that you have an object and you want to assign a key to it to

make searching easy. To store the key/value pair, you can use a simple array

like a data structure where keys (integers) can be used directly as an index to

store values. However, in cases where the keys are large and cannot be used

directly as an index, you should use hashing. In hashing, large keys are

45

converted into small keys by using hash functions. The values are then stored in

a data structure called hash table. The idea of hashing is to distribute entries

(key/value pairs) uniformly across an array. Each element is assigned a key

(converted key). By using that key you can access the element in O (1) time.

Using the key, the algorithm (hash function) computes an index that suggests

where an entry can be found or inserted.

4. 6 Framework for Environment indexing technique:

One of the challenges faced this research find a tools that are allow the user to

deal with Nosql databases. Because the Nosql is new technology as well as

there are no standard till now, hence each Nosql DBMS follow different

method to deal with the database. Consequently, to find driver or tool to

connect the application to DBMS is very difficult, because the programming

languages don’t provide a library for each DBMS’s. additionally, there are not

any test bed or application that allow the research to test their proposed

indexing algorithm.

The aforementioned issues directed the researcher to develop a framework that

will help other researchers to test their indexing algorithms in an easy way.

The framework is composed from two parts as explained in Figure 4.2. dataset

part and the algorithm part.

1. The data set: this part allows the researcher to insert their dataset into

database table in HBase, which the dataset is read from the file and then

inserted into database.

2. The indexing process: framework provides a function that allows the

researcher to write their algorithm code inside it. Additionally the

framework connects the proposed algorithm with user’s dataset to index

the data.

3. Additionally, the framework offer a simple interface to perform the

user’s queries and display the result of the query as well as calculate the

response time before show it to the user.

46

Experiment and discussion:

Environment setup from HBase:

The workspace is equipped with the Hadoop, an open source library, the

Zookeeper utility to connect Hadoop to the HBase database, the Java code the

data in the HBase file is sat with what is known as the data table. Then, take the

reading from the table. Then measure the recovery time by the search process.

In hash technology, a hash table is fed through arithmetic and Hash function,

HBase

Hadoop

HTable (index) HTable

HTable

Indexing

Algorithms

Data set

Extract Insert

User inter face

Data set
Indexing

Zookeeper

Figure 4.2 Frameworks for Environment Indexing technique

47

measuring time by calculating keys, measuring recovery time, and observing the

time difference after the recovery process from the hash table.

4. 7 Description of the indexing process:

 The new index is created in a matrix using the Hash algorithm by

calculation of the Hash function and stored in the Hash table in the form of

pairs. The algorithm is implemented in three stages as described by Down:

Created Hash Table:

A Hash table is created which stores the values, which are the old index and the

index of the Hash, Hash Table Is a data structure that is used to store key pairs

and uses a hash function to calculate indexing in a matrix in which an element

or search is managed using a good hash function[59], offers fast insertion and

search, they are limited in size because, they are based on arrays, can be resized,

but it should be avoided. They are hard to order[60]

Generating new index using Hash Function:

Use in Hash Algorithm: Calculation applied to a key to transform it into an

address, for numeric keys, divide the key by the number of available addresses,

n, and take the remainder for alphanumeric keys, divide the sum of ASCII codes

in a key by the number of available a addresses, n and take the remainder,

Folding method divides key into equal parts then adds the parts together.

Hadoop

Zookeeper

HBase

HTable of Data base

Data set

Code java

Figure 4.3Architecture in Environment

48

Store the new index with old index in pairs:

The new index is stored after attaching the Hash with the old index in pairs

called the values inside the Hash table.

Figure 4.4 Flow chart Store Data in HBase using Hashing

4. 8 Query for retrieval process on hash technique:

 The process of retrieving the values after the Calculation index user

keys using Hash Function operation, Provides the Exact index for the

Information, Goes directly to the location in the array and Send Info back to

the user. Then Get old index from Hash Table using new index, and Get row

record from data set Table using old index. As shown in figure below:

Begin

Data Set

Code Java

HBase

1. Created Hash Table.

2. Generating new index using Hash

Function.

3. Store the new index with old index in

pairs.

2.2
End

49

4. 9 Experiment and Results:

In this section, the experiment and Results is conducted to evaluate performance

of index technique on Social Influence Data set. This Data set contains Social

Influence Form a lot of HBase. Here, retrieval main Data which segmented to

10 main body regions.

Hash Table Calculate

I want the

Informatio

n with this

ID

Hash Function = Speed

Begin

Query for

user

Get old index from Hash Table using new index

Calculation index user

keys using Hash Function.

end

Get row record from data set Table using old index.

Figure 4.6 Flow chart retrieval processes

Figure 4.5 How to retrieval in hashing

51

1. Experiment one:

The experiment start by retrieving large data Different sizes of Data Set from

HBase were retrieved and read back time was retrieved. The problem of latency

occurred in time because the retrieval process was done through the search

process. The Table 4.1 demonstrates the Result:

Table 4.1 Response time from HBase

No of record per

millions

Indexed algorithm response

time in seconds

1 16

2 26

3 31

4 39

5 50

6 54

7 64

8 72

9 79

10 83

51

Figure 4.7response time from HBase

Result one:

Larage data retrieved Indexed algorithm is Delay in response time in seconds

time. As indicated in Appendix No(1, 2).

2. Experiment two:

After the download of Hash tables and the Hash function, the data was retrieved

through a calculation using the Hash function. The time was measured and the

recovery time was reduced from the comparison tables of Data From Indexed

algorithm but the decrease in time is very small because the number of keys is

large in the index Keys. The next table demonstrates the Result:

16

26
31

39

50
54

64

72

79
83

0

10

20

30

40

50

60

70

80

90

1 2 3 4 5 6 7 8 9 10

 Indexed algorithm response time in
seconds hbase response time in

seconds

52

Table 4.2Response time from hash function

No of record per millions

Hash function response

time in seconds

1 14

2 24

3 28

4 37

5 46

6 52

7 61

8 69

9 71

10 75

Figure 4.8 response time from Hash function

14

24
28

37

46

52

61

69
71

75

0

10

20

30

40

50

60

70

80

1 2 3 4 5 6 7 8 9 10

Hash_function response time in seconds

Hash_function response time in
seconds

53

 Result two:

When Hash Algorithm is used in retrieval the reduced is response time. As

indicated in Appendix No(3,4)

3 Comparison between retrieval times of the data obtained from

Indexed in Htable and Hash function in Hash table :
 The retrieval time of the data obtained from indexed in Htable the search

process and the retrieval time of the data from the Hash table were compared by

a calculation of the Hash function. The next table demonstrates the Result:

Table 4.3Response time from HBase and hash function

No of record per millions HBase response time in
seconds

Hash function response
time in seconds

1 16 14

2 26 24

3 31 28

4 39 37

5 50 46

6 54 52

7 64 61

8 72 69

9 79 71

10 83 75

54

Figure 4.9 response time from HBase and hash function

Result three:

Search in indexed algorithm retrieval delay the response time where ape

calculation Hash Algorithm used Hash Function retrieval reduces the response

time. As indicated in Appendix No (5,6).

16

26

31

39

50

54

64

72

79

83

14

24

28

37

46

52

61

69
71

75

0

10

20

30

40

50

60

70

80

90

1 2 3 4 5 6 7 8 9 10

R
e

sp
o

n
se

 T
im

e
 P

e
r

Se
co

n
d

s

Number of Rows (X1,000,000)

 عنوان المخطط

 hbase

Hash_function

55

4. 10 Discussion of Hash indexed technique:

After the constructed of Hash tables using the Hash function, the data was

retrieved through a calculation using the Hash function. The time was measured

and the recovery time was reduced from the comparison tables of Data From

HBase but the decrease in time is very small because the number of keys is

large in the index Keys.

In experiment 1:

After the initialization of the environment and the work of retrieving the data

from the database in different sizes and the size of the first reading 100 Record

and took ten volumes in a row and recording the recovery time through the

drawing was noted that the larger the size of the data increased the recovery

time, which confirms the delay in time was noted for lack of index in NoSQL

there is a primly key In the database, a process is searched through row key in

the database, which leads to delay in the search process because of the large

data. Here an algorithm is designed to assist the query in executing the process.

In experiment 2:

The algorithm of Hash was selected and executed on Nosql. The calculation of

the Hash table was performed by the Hash function, which resulted in the

acceleration of the search process and the readings of the same data volumes

were taken from the data set.

In experiment 3:

The data read from the database was compared with the reading from the Hash

table. A slight difference was observed in the collision of the keys and the

collision occurs when two elements in the index are in the Hash table, the large

number of data keys and the detection of similar rows in a large file.

56

4. 11 Evaluation:

In the database table, the retrieval process takes place after the search process

through the row key. In order to increase the number of large keys, there is a

delay in the retrieval time. In Hash tables, the process of retrieval is performed

through the calculation. In a short time, the Hash table is performed through a

Hash function. The Hash function is evaluated by a lower collision, a simple

calculation and a uniform distribution. In the string, the number of large keys

decreases to smaller keys and fewer collisions speed up query execution.

57

Chapter five:

Conclusion

58

5. 1 Over view:

This chapter the conclusions from this thesis. In section 5.1, we provide

summary of the thesis. Future work is proposed in section 5.2.

5. 2 Conclusions:

In this thesis, we have studied, analyzed, designed and implementation hash

technique for indexing large data As we have seen from the results obtained by

many works in the literature, large database has a properties associated with it

like volume, velocity, variability and value, but when facing increasing size, it

will face delay problems. In addition, unstructured format of data which accused

huge hidden values from large datasets with various types and rapid generation

and deals with the speed of data from different sources are main problem of

large data. To address this issue, we proposed Index technique based on hash

algorithm. At first, we studied hash indexing technique design and development

it We found in Hash technology that Hash tables are fed through a calculation

using the Hash function, as well as retrieving a calculation which makes it

easier) Reduce keyboard collisions by increasing storage space in the index

table, detecting similar rows, and detect duplicate records in a large file,

Contribute to the detection of existing problems in NoSQL database and find

appropriate solutions, Work development.

5. 3 Future work:

Following the investigation described in this thesis, the main lines of the

research re-mains open and number of projects could be taken up:

 Develop and algorithm to handle collision in the hash table such as

chain.

 Implement hash indexing technique in the other Nosql type such as

key-value store.

5. 4 Recommendations:

The Nosql is new technology as well as there are no standard till now, hence

each Nosql DBMS follow different method to deal with the database.

59

References:
[1] B. Acharya, A. K. Jena, J. M. Chatterjee, R. Kumar, and D.-N. Le, "NoSQL Database

Classification: New Era of Databases for Big Data," International Journal of
Knowledge-Based Organizations (IJKBO), vol. 9, pp. 50-65, 2019.

[2] L. Perkins, E. Redmond, and J. Wilson, Seven databases in seven weeks: a guide to
modern databases and the NoSQL movement: Pragmatic Bookshelf, 2018.

[3] A. Nayak, A. Poriya, and D. Poojary, "Type of NOSQL databases and its comparison
with relational databases," International Journal of Applied Information Systems, vol.
5, pp. 16-19, 2013.

[4] R. R. Parmar and S. Roy, "MongoDB as an Efficient Graph Database: An Application of
Document Oriented NOSQL Database," Data Intensive Computing Applications for
Big Data, vol. 29, p. 331, 2018.

[5] W. Fan and A. Bifet, "Mining big data: current status, and forecast to the future,"

ACM sIGKDD Explorations Newsletter, vol. 14, pp. 1-5, 2013.
[6] J. Liu, J. Li, W. Li, and J. Wu, "Rethinking big data: A review on the data quality and

usage issues," ISPRS Journal of Photogrammetry and Remote Sensing, vol. 115, pp.
134-142, 2016.

[7] K. A. I. Hammad, M. A. I. Fakharaldien, J. M. Zain, and M. A. Majid, "Big Data Analysis
and Storage."

[8] S. Schmid, E. Galicz, and W. Reinhardt, "Performance investigation of selected SQL
and NoSQL databases," AGILE 2015–Lisbon, pp. 9-12, 2015.

[9] J. R. Lourenço, B. Cabral, P. Carreiro, M. Vieira, and J. Bernardino, "Choosing the right
NoSQL database for the job: a quality attribute evaluation," Journal of Big Data, vol.
2, p. 18, 2015.

[10] V. Chang, Y.-H. Kuo, and M. Ramachandran, "Cloud computing adoption framework:
A security framework for business clouds," Future Generation Computer Systems,
vol. 57, pp. 24-41, 2016.

[11] W. Cho and E. Choi, "A GPS trajectory map-matching mechanism with DTG big data

on the HBase system," in Proceedings of the 2015 International Conference on Big
Data Applications and Services, 2015, pp. 22-29.

[12] J. Han, E. Haihong, G. Le, and J. Du, "Survey on NoSQL database," in Pervasive
computing and applications (ICPCA), 2011 6th international conference on, 2011, pp.
363-366.

[13] R. Hecht and S. Jablonski, "NoSQL evaluation: A use case oriented survey," in Cloud
and Service Computing (CSC), 2011 International Conference on, 2011, pp. 336-341.

[14] K. Fan, "An overview of NoSQL database," Programmer, vol. 6, pp. 76-78, 2010.
[15] B. Acharya, M. Pandey, and S. S. Rautaray, "SURVEY ON NoSQL DATABASE

CLASSIFFICATION: NEW ERA OF DATABASES FOR BIG DATA."
[16] A. Moniruzzaman and S. A. Hossain, "Nosql database: New era of databases for big

data analytics-classification, characteristics and comparison," arXiv preprint
arXiv:1307.0191, 2013.

[17] B. Shen, Y.-C. Liao, D. Liu, and H.-C. Chao, "A Method of HBase Multi-Conditional
Query for Ubiquitous Sensing Applications," Sensors, vol. 18, p. 3064, 2018.

[18] H. Zhuang, K. Lu, C. Li, M. Sun, H. Chen, and X. Zhou, "Design of a more scalable
database system," in 2015 15th IEEE/ACM International Symposium on Cluster, Cloud

and Grid Computing, 2015, pp. 1213-1216.

61

[19] G. Cox, E. Armengaud, C. Augier, A. Benoit, L. Bergé, T. Bergmann, et al., "A multi-

tiered data structure and process management system based on ROOT and
CouchDB," Nuclear Instruments and Methods in Physics Research Section A:

Accelerators, Spectrometers, Detectors and Associated Equipment, vol. 684, pp. 63-
72, 2012.

[20] D. D. Tambunan, "PERBANDINGAN ANALISIS APLIKASI DATABASE NoSQL REDIS DAN
SQL MySQL," Universitas Widyatama, 2016.

[21] A. K. Zaki, "NoSQL databases: new millennium database for big data, big users, cloud
computing and its security challenges," International Journal of Research in

Engineering and Technology (IJRET), vol. 3, pp. 403-409, 2014.
[22] P. Murugan and A. Sentraya, "A Study of NoSQL and NewSQL databases for data

aggregation on Big Data," ed, 2013.
[23] S. Papadimitriou and J. Sun, "Disco: Distributed co-clustering with map-reduce: A

case study towards petabyte-scale end-to-end mining," in 2008 Eighth IEEE
International Conference on Data Mining, 2008, pp. 512-521.

[24] Y. Liu, F. Cao, M. Mortazavi, M. Chen, N. Yan, C. Ku, et al., "DCODE: A distributed
column-oriented database engine for big data analytics," in Information and
Communication Technology, ed: Springer, 2015, pp. 289-299.

[25] A. Nowosielski, P. A. Kowalski, and P. Kulczycki, "The column-oriented database
partitioning optimization based on the natural computing algorithms," in 2015

Federated Conference on Computer Science and Information Systems (FedCSIS) ,
2015, pp. 1035-1041.

[26] A. Nowosielski, P. A. Kowalski, and P. Kulczycki, "The column-oriented database
partitioning optimization based on the natural computing algorithms," in Computer

Science and Information Systems (FedCSIS), 2015 Federated Conference on, 2015, pp.
1035-1041.

[27] K. Dehdouh, F. Bentayeb, O. Boussaid, and N. Kabachi, "Using the column oriented
NoSQL model for implementing big data warehouses," in Proceedings of the

International Conference on Parallel and Distributed Processing Techniques and
Applications (PDPTA), 2015, p. 469.

[28] R. Dharavath, A. K. Jain, C. Kumar, and V. Kumar, "Accuracy of atomic transaction
scenario for heterogeneous distributed column-oriented databases," in Intelligent

Computing, Networking, and Informatics, ed: Springer, 2014, pp. 491-501.
[29] C. Cao, W. Wang, Y. Zhang, and X. Ma, "Leveraging Column Family to Improve

Multidimensional Query Performance in HBase," in Cloud Computing (CLOUD), 2017

IEEE 10th International Conference on, 2017, pp. 106-113.
[30] S. Gugnani, X. Lu, H. Qi, L. Zha, and D. K. D. Panda, "Characterizing and accelerating

indexing techniques on distributed ordered tables," in Big Data (Big Data), 2017 IEEE
International Conference on, 2017, pp. 173-182.

[31] Y. Zou, J. Liu, S. Wang, L. Zha, and Z. Xu, "CCIndex: A complemental clustering index
on distributed ordered tables for multi-dimensional range queries," in IFIP

International Conference on Network and Parallel Computing, 2010, pp. 247-261.
[32] K. Ren, Q. Zheng, S. Patil, and G. Gibson, "IndexFS: Scaling file system metadata

performance with stateless caching and bulk insertion," in Proceedings of the
International Conference for High Performance Computing, Networking, Storage and

Analysis, 2014, pp. 237-248.

61

[33] C. Feng, X. Yang, F. Liang, X.-H. Sun, and Z. Xu, "Lcindex: A local and clustering index

on distributed ordered tables for flexible multi-dimensional range queries," in
Parallel Processing (ICPP), 2015 44th International Conference on, 2015, pp. 719-728.

[34] C. Wang, Y. Zhu, Y. Ma, M. Qiu, B. Liu, J. Hou, et al., "A query-oriented adaptive
indexing technique for smart grid big data analytics," Journal of Signal Processing

Systems, vol. 90, pp. 1091-1103, 2018.
[35] Y. Guo, S. Li, H. Zhang, and W. Zhong, "A HBase Secondary Index Method Based on

Isomorphic Column Family."
[36] H. Qi, X. Chang, X. Liu, and L. Zha, "The consistency analysis of secondary index on

distributed ordered tables," in Parallel and Distributed Processing Symposium
Workshops (IPDPSW), 2017 IEEE International, 2017, pp. 1058-1067.

[37] X. Gao and J. Qiu, "Supporting queries and analyses of large-scale social media data
with customizable and scalable indexing techniques over NoSQL databases," in

Cluster, Cloud and Grid Computing (CCGrid), 2014 14th IEEE/ACM International
Symposium on, 2014, pp. 587-590.

[38] Y. Ma, J. Rao, W. Hu, X. Meng, X. Han, Y. Zhang, et al., "An efficient index for massive
IOT data in cloud environment," in Proceedings of the 21st ACM international
conference on Information and knowledge management, 2012, pp. 2129-2133.

[39] S. Wu, D. Jiang, B. C. Ooi, and K.-L. Wu, "Efficient B-tree based indexing for cloud
data processing," Proceedings of the VLDB Endowment, vol. 3, pp. 1207-1218, 2010.

[40] S. Liang and Y. Yang, "Towards performance evaluation of HBase based
multidimensional cloud index," in Computer Science and Network Technology

(ICCSNT), 2015 4th International Conference on, 2015, pp. 629-632.
[41] J. A. Colmenares, R. Dorrigiv, and D. G. Waddington, "Ingestion, Indexing and

Retrieval of High-Velocity Multidimensional Sensor Data on a Single Node," arXiv
preprint arXiv:1707.00825, 2017.

[42] J. A. Colmenares, R. Dorrigiv, and D. G. Waddington, "A single-node datastore for
high-velocity multidimensional sensor data," in Big Data (Big Data), 2017 IEEE

International Conference on, 2017, pp. 445-452.
[43] A. Katal, M. Wazid, and R. Goudar, "Big data: issues, challenges, tools and good

practices," in 2013 Sixth international conference on contemporary computing (IC3),
2013, pp. 404-409.

[44] M. N. Vora, "Hadoop-HBase for large-scale data," in Proceedings of 2011
International Conference on Computer Science and Network Technology, 2011, pp.
601-605.

[45] R. C. Taylor, "An overview of the Hadoop/MapReduce/HBase framework and its
current applications in bioinformatics," in BMC bioinformatics, 2010, p. S1.

[46] A. Jangra, V. Bhatia, U. Lakhinaza, and N. Singh, "An efficient storage framework
design for cloud computing: Deploying compression on de-duplicated No-SQL DB

using HDFS," in 2015 1st International Conference on Next Generation Computing
Technologies (NGCT), 2015, pp. 55-60.

[47] P. Hunt, M. Konar, F. P. Junqueira, and B. Reed, "ZooKeeper: Wait-free Coordination
for Internet-scale Systems," in USENIX annual technical conference, 2010.

[48] F. P. Junqueira and B. C. Reed, "The life and times of a zookeeper," in Proceedings of
the twenty-first annual symposium on Parallelism in algorithms and architectures,

2009, pp. 46-46.

62

[49] N. Das, S. Paul, B. B. Sarkar, and S. Chakrabarti, "NoSQL Overview and Performance

Testing of HBase Over Multiple Nodes with MySQL," in Emerging Technologies in
Data Mining and Information Security, ed: Springer, 2019, pp. 269-279.

[50] A.-V. Vo, N. Konda, N. Chauhan, H. Aljumaily, and D. F. Laefer, "Lessons learned with
laser scanning point cloud management in Hadoop HBase," in Workshop of the

European Group for Intelligent Computing in Engineering, 2018, pp. 231-253.
[51] data.world. (May 18, 2017). Social Influence on Shopping. Available:

https://data.world/ahalps/social-influence-on-shopping
[52] J. Song, L. Gao, L. Liu, X. Zhu, and N. Sebe, "Quantization-based hashing: a general

framework for scalable image and video retrieval," Pattern Recognition, vol. 75, pp.
175-187, 2018.

[53] T. Hoeiland-Joergensen, P. McKenney, D. Taht, J. Gettys, and E. Dumazet, "The Flow
Queue CoDel Packet Scheduler and Active Queue Management Algorithm," 2070-

1721, 2018.
[54] H. Yoon, J. Yang, S. F. Kristjansson, S. E. Sigurdarson, Y. Vigfusson, and A. Gavrilovska,

"Mutant: Balancing storage cost and latency in LSM-tree data stores," ACM SoCC, pp.
162-173, 2018.

[55] A. Kunthavai, S. Vasantharathna, and S. Thirumurugan, "Pairwise Sequence

Alignment using Bio-Database Compression by Improved Fine Tuned Enhanced Suffix
Array," International Arab Journal of Information Technology (IAJIT), vol. 12, 2015.

[56] Y. Li and G. Ge, "Cryptographic and parallel hash function based on cross coupled
map lattices suitable for multimedia communication security," Multimedia Tools and

Applications, pp. 1-22, 2019.
[57] N. B. Greenfield, "System and method for characterizing data through a probabilistic

data structure," ed: Google Patents, 2018.
[58] B. J. Bulkowski and V. Srinivasan, "Data distribution across nodes of a distributed

database base system," ed: Google Patents, 2018.
[59] T. Kraska, A. Beutel, E. H. Chi, J. Dean, and N. Polyzotis, "The case for learned index

structures," in Proceedings of the 2018 International Conference on Management of
Data, 2018, pp. 489-504.

[60] Y. Zhu, Z. Zimmerman, N. S. Senobari, C.-C. M. Yeh, G. Funning, A. Mueen, et al.,
"Exploiting a novel algorithm and GPUs to break the ten quadrillion pairwise

comparisons barrier for time series motifs and joins," Knowledge and Information
Systems, vol. 54, pp. 203-236, 2018.

63

Appendices

Histogram equalization java code:

Package hashing1;

import java.io.IOException;

import java.sql.DriverManager;

import java.util.HashMap;

import java.util.HashSet;

import java.util.LinkedHashMap;

import java.util.LinkedHashSet;

import org.apache.hadoop.conf.Configuration;

import org.apache.hadoop.hbase.Cell;

import org.apache.hadoop.hbase.HBaseConfiguration;

import org.apache.hadoop.hbase.client.Get;

import org.apache.hadoop.hbase.client.HTable;

import org.apache.hadoop.hbase.client.Result;

import org.apache.hadoop.hbase.client.ResultScanner;

import org.apache.hadoop.hbase.client.Scan;

//import

org.apache.hadoop.hbase.protobuf.generated.ClientProt

os.Scan;

import org.apache.hadoop.hbase.util.Bytes;

import com.google.common.hash.HashFunction;

import java.sql.*;

public class RetriveData_old {

 public static void main(String[] args) throws

IOException, Exception {

 //

 Connection conn = null;

 String url = "jdbc:mysql://localhost:3306/";

 String dbName = "nosql";

 String driver = "com.mysql.jdbc.Driver";

 String userName = "root";

 String password = "Qwerty2012";

 Statement st = null;

64

 Class.forName(driver).newInstance();

 conn = DriverManager.getConnection(url +

dbName, userName, password);

 System.out.println("connected!.....");

 // measuring the start time of the file

download

 long lStartTime = System.nanoTime();

 String query = " insert into exp

(start,endt)" + " values (?, ?)";

 PreparedStatement preparedStmt =

conn.prepareStatement(query);

 preparedStmt.setLong(1, lStartTime);

 // Instantiating Configuration class

 Configuration comfit =

HBaseConfiguration.create ();

 // Instantiating Table class

 Table table = new Table (comfit, "dataset5");

 // Instantiating Get class

 Get g = new Get(Bytes.toBytes("Question"));

 // Reading the data

 Result result = table.get(g);

 // Reading values from Result class object

 byte[] value =

result.getValue(Bytes.toBytes("Question"),

Bytes.toBytes(""));

 byte[] value1 =

result.getValue(Bytes.toBytes("Segment Type"),

Bytes.toBytes(""));

 byte[] value2 =

result.getValue(Bytes.toBytes("Segment Description"),

Bytes.toBytes(""));

 byte[] value3 =

result.getValue(Bytes.toBytes("Answer"),

Bytes.toBytes(""));

 byte[] value4 =

result.getValue(Bytes.toBytes("Count"),

Bytes.toBytes(""));

65

 byte[] value5 =

result.getValue(Bytes.toBytes("Percentage"),

Bytes.toBytes(""));

 // Printing the values

 String Question = Bytes.toString(value);

 String SegmentType = Bytes.toString(value1);

 String SegmentDescription=

Bytes.toString(value2);

 String Answer= Bytes.toString(value3);

 String Count= Bytes.toString(value4);

 String Percentage= Bytes.toString(value5);

 HTable table1 = new

HTable(HBaseConfiguration.create(), "dataset5");

 Scan scan = new Scan();

 scan.setCaching(20);

 scan.addFamily(Bytes.toBytes("Question"));

 ResultScanner scanner =

table.getScanner(scan);

 for (Result result1 = scanner.next(); (result

!= null); result = scanner.next()) {

 for (Cell cell : result.listCells()) {

 String qualifier =

Bytes.toString(cell.getQualifierArray(),

cell.getQualifierOffset(),

 cell.getQualifierLength());

 String values =

Bytes.toString(cell.getValueArray(),

cell.getValueOffset(), cell.getValueLength());

// System.out.println("Qualifier : " +

qualifier + " : Value : " + values);

 hashFun(values);

 }

 }

 long lEndTime = System.nanoTime();

 long output = lEndTime - lStartTime;

 output = output / 1000000;

66

 preparedStmt.setLong(2, output);

 preparedStmt.execute();

 conn.close();

 System.out.println("Disconnected!");

 }

 public static int hashFun(String Str1) {

 int index = 0;

 LinkedHashSet<String> lhs = new

LinkedHashSet<String>();

 LinkedHashMap<String, Integer> lhm = new

LinkedHashMap<String, Integer>();

 Integer freq = lhm.get(Str1);

 lhm.put(Str1, freq == null ? 1 : freq + 1);

 lhs.add(Str1);

 return index;

 }

67

Appendices image:

Figure 1Mysql

68

Figure 2 Zookeeper (1)

Figure 3 Zookeeper (2)

69

Figure 2HBase 1

Figure 3HBase2

71

The following appendix shows the time to retrieve data from the database index
HBase.

Figure 4before Hash Function

71

Figure 5Retrive data

72

Figure 6before Hash Function

The following appendices show the time to retrieve data from the database after

using the hash algorithm.

